
dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 77

Doi:10.1145/1409360.1409380

abstract
In the past decades, advances in speed of commodity CPUs
have far outpaced advances in RAM latency. Main-memory
access has therefore become a performance bottleneck for
many computer applications; a phenomenon that is widely
known as the “memory wall.” In this paper, we report how
research around the MonetDB database system has led to a
redesign of database architecture in order to take advantage
of modern hardware, and in particular to avoid hitting the
memory wall. This encompasses (i) a redesign of the query
execution model to better exploit pipelined CPU architec-
tures and CPU instruction caches; (ii) the use of columnar
rather than row-wise data storage to better exploit CPU data
caches; (iii) the design of new cache-conscious query pro-
cessing algorithms; and (iv) the design and automatic cali-
bration of memory cost models to choose and tune these
cache-conscious algorithms in the query optimizer.

1. intRoDuction
Database systems have become pervasive components in
the information technology landscape, and this importance
continues to drive an active database research community,
both academic and industrial. Our focus here is on so-called
architecture-conscious database research that studies the
data management challenges and opportunities offered by
advances in computer architecture. This area of research
started receiving impetus 10 years ago1,2 when it became
clear that database technology was strongly affected by the
emergence of the “memory wall”—the growing imbalance
between CPU clock-speed and RAM latency.

Database technology, as still employed in the majority
of today’s commercial systems, was designed for hardware
of the 1970–1980s and application characteristics that
existed at the time. This translates into the assumption of
disk I/O being the dominating performance factor, and an
architecture tuned to supporting so-called online transac-
tion processing (OLTP) workloads. That is, sustaining sim-
ple lookup/update queries at high throughput. In contrast,
modern hardware has since become orders of magnitude
faster but also orders of magnitude more complex, and criti-
cal database applications now include—besides OLTP—the
online analysis of huge data volumes stored in data ware-
houses, driven by tools that explore hidden trends in the
data, such as online analytical processing (OLAP) tools that
visualize databases as multidimensional cubes, and data
mining tools that automatically construct knowledge mod-
els over these huge data-sets. This changed situation has
recently made the research community realize that database
architecture as it used to be is up for a full rewrite,21 and to

make future systems self-tuning to data distributions and
workloads as they appear.4

In this paper, we summarize the work in the MonetDBa
project that has focused on redefining database architecture
by optimizing its major components (data storage, query
processing algebra, query execution model, query process-
ing algorithms, and query optimizer) toward better use of
modern hardware in database applications that analyze
large data volumes. One of the primary goals in this work
has been breaking the memory wall.

Our focus here is the following innovations:

Vertical storage: Whereas traditionally, relational data-
base systems store data in a row-wise fashion (which
favors single record lookups), MonetDB uses columnar
storage which favors analysis queries by better using CPU
cache lines.
Bulk query algebra: Much like the CISC versus RISC idea
applied to CPU design, the MonetDB algebra is
 deliberately simplified with respect to the traditional
relational set algebra to allow for much faster implemen-
tation on modern hardware.
Cache-conscious algorithms: The crucial aspect in over-
coming the memory wall is good use of CPU caches, for
which careful tuning of memory access patterns is
needed. This called for a new breed of query processing
algorithms, of which we illustrate radix-partitioned hash-
join in some detail.
Memory access cost modeling: For query optimization to
work in a cache-conscious environment, we developed a
methodology for creating cost models that takes the
cost of memory access into account. In order to work on
diverse computer architectures, these models are
parameterized at runtime using automatic calibration
techniques.

2. PReLiminaRies
Computer architecture evolution in the past decades has
had many facets. A general trend is that “latency lags band-
width,”16 which holds for both magnetic disk and RAM. This

Breaking the Memory Wall in
MonetDB
by Peter a. boncz, Martin l. Kersten, and stefan Manegold

A previous version of this paper entitled “Database Archi-
tecture Optimized for the New Bottleneck: Memory Access”
appeared in the Proceedings of the International Conference
on Very Large Data Bases (September 1999), pp. 54–65.

a MonetDB is distributed using a nonrestrictive open-source license, see
http://monetdb.cwi.nl

78 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

has profoundly influenced the database area and indeed our
work on MonetDB.

Another facet is that predictable array-wise processing
models have been strongly favored in a string of recent CPU
architectural innovations. While the rule “make the common
case fast” was exploited time and time again to design and
construct ever more complex CPUs, the difference in perfor-
mance efficiency achieved by optimized code and intended
use (e.g., “multimedia applications”) versus nonoptimized
code and nonintended use (e.g., “legacy database applica-
tions”) has become very significant. A concrete example is
the evolution of CPUs from executing a single instruction
per clock cycle, to multi-issue CPUs that use deeply pipe-
lined execution; sometimes splitting instructions in more
than 30 dependent stages. Program code that has a high
degree of independence and predictability (multimedia or
matrix calculations) fills the pipelines of modern CPUs per-
fectly, while code with many dependencies (e.g., traversing a
hash-table or B-tree) with unpredictable if-then-else checks,
leaves many holes in the CPU pipelines, achieving much
lower throughput.

2.1. the memory hierarchy
The main memory of computers consists of dynamic random
access memory (DRAM) chips. While CPU clock-speeds have
been increasing rapidly, DRAM access latency has hardly
improved in the past 20 years. Reading DRAM memory took
1–2 cycles in the early 1980s, currently it can take more than
300 cycles. Since typically one in three program instructions
is a memory load/store, this “memory wall” can in the worst
case reduce efficiency of modern CPUs by two orders of mag-
nitude. Typical system monitoring tools (top, or Windows
Task manager) do not provide insight in this performance
aspect, a 100% busy CPU could be 95% memory stalled.

To hide the high DRAM latency, the memory hierar-
chy has been extended with cache memories (cf., Figure 1),
typically located on the CPU chip itself. The fundamental

principle of all cache architectures is reference locality, i.e.,
the assumption that at any time the CPU repeatedly accesses
only a limited amount of data that fits in the cache. Only the
first access is “slow,” as the data has to be loaded from main
memory, i.e., a compulsory cache miss. Subsequent accesses
(to the same data or memory addresses) are then “fast” as
the data is then available in the cache. This is called a cache
hit. The fraction of memory accesses that can be fulfilled
from the cache is called cache hit rate.

Cache memories are organized in multiple cascading lev-
els between the main memory and the CPU. They become
faster, but smaller, the closer they are to the CPU. In the
remainder we assume a typical system with two cache levels
(L1 and L2). However, the discussion can easily be general-
ized to an arbitrary number of cascading cache levels in a
straightforward way.

In practice, cache memories keep not only the most
recently accessed data, but also the instructions that are cur-
rently being executed. Therefore, almost all systems nowa-
days implement two separate L1 caches, a read-only one for
instructions and a read-write one for data. The L2 cache,
however, is usually a single “unified” read-write cache used
for both instructions and data.

A number of fundamental characteristics and parameters
of cache memories are relevant for the sequel:
capacity (C). A cache’s capacity defines its total size in bytes.
Typical cache sizes range from 32KB to 4MB.
line size (Z). Caches are organized in cache lines, which rep-
resent the smallest unit of transfer between adjacent cache
levels. Whenever a cache miss occurs, a complete cache line
(i.e., multiple consecutive words) is loaded from the next
cache level or from main memory, transferring all bits in the
cache line in parallel over a wide bus. This exploits spatial
locality, increasing the chances of cache hits for future refer-
ences to data that is “close to” the reference that caused a
cache miss. The typical cache-line size is 64 bytes.
associativity (A). An A-way set associative cache allows load-
ing a line into one of A different positions. If A > 1, some
cache replacement policy chooses one from the A candidates.
Least recently used (LRU) is the most common replacement
algorithm. In case A = 1, the cache is called directly mapped.
This organization causes the least (virtually no) overhead in
determining the cache-line candidate. However, it also offers
the least flexibility and may cause a lot of so-called conflict
misses. The other extreme case is fully associative caches.
Here, each memory address can be loaded to any line in the
cache (A = #). This avoids conflict misses, and only so-called
capacity misses occur as the cache capacity gets exceeded.
However, determining the cache-line candidate in this strat-
egy causes a relatively high overhead that increases with
the cache size. Hence, it is feasible only for smaller caches.
Current PCs and workstations typically implement two- to
eight-way set associative caches.
latency (l) is the time span from issuing a data access
until the result is available in the CPU. Accessing data that
is already available in the L1 cache causes L1 access latency
(lL1), which is typically rather small (1 or 2 CPU cycles). In
case the requested data is not found in L1, an L1 miss occurs,
additionally delaying the data access by L2 access latency (lL2)

figure 1: hierarchical memory architecture.

Phys. Virt.
TLB

swap file
(on disk)

Virtual memory

L1 cache

Main memory

Bus

Memory page

L2 cache

L1 cache-line

Registers

L2 cache-line

CPU

C
P

U
 D

ie

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 79

for accessing the L2 cache. Analogously, if the data is not yet
available in L2, an L2 miss occurs, further delaying the access
by memory access latency (lMem) to finally load the data from
main memory. Hence, the total latency to access data that
is in neither cache is lMem + lL2 + lL1. As mentioned above,
all current hardware actually transfers multiple consecutive
words, i.e., a complete cache line, during this time.
bandwidth (b) is a metric for the data volume (in megabytes)
that can be transferred to the CPU per second. The differ-
ent bandwidths are referred to as L2 access bandwidth (bL2)
and memory access bandwidth (bMem), respectively. Memory
bandwidth used to be simply the cache-line size divided by
the memory latency. Modern multiprocessor systems pro-
vide excess bandwidth capacity b′ ≥ b. To exploit this, caches
need to be nonblocking, i.e., they need to allow more than one
outstanding memory load at a time. CPUs that support out-
of-order instruction execution can generate multiple con-
current loads, as the CPU does not block on a cache miss,
but continues executing (independent) instructions. The
number of outstanding memory requests is typically limited
inside the CPU. The highest bandwidth in modern hardware
is achieved if the access pattern is sequential; in which case
the automatic memory prefetcher built into modern CPUs
is activated. The difference between sequential access band-
width (b s = b′) and the respective (nonprefetched) random
access bandwidth (b r = Z/lr) can be a factor 10, which means
that DRAM has truly become a block device, very similar to
magnetic disk.
Transition lookaside buffer (Tlb). A special kind of cache,
the TLB is part of the virtual memory support built into mod-
ern CPUs: it remembers the latest translations of logical into
physical page addresses (e.g., 64). Each memory load/store
needs address translation; if the page address is in the TLB
(a TLB hit), there is no additional cost. If not, a more com-
plex lookup in a mapping table is needed; thus a TLB miss
implies a penalty. Moreover, the lookup in the (memory-
 resident) TLB mapping table might generate additional CPU
cache misses. Note that with a typical page size of 4KB and
64 entries in the TLB, on many systems TLB delay already
comes into play for random access to data structures (e.g.,
hash-tables) larger than 256KB.
unified hardware model. Summarizing the above discus-
sion, we describe a computer’s memory hardware as a cas-
cading hierarchy of N levels of caches (including TLBs).
An index i ∈ {1, . . . , N} identifies the respective value of a
 specific level. Exploiting the dualism that an access to level
i + 1 is caused by a miss on level i allows some simplification
of the notation. Introducing the miss latency li = li + 1 and the
respective miss bandwidth bi = bi + 1 yields li = Zi /bi. Each cache
level is characterized by the parameters given in Table 1.b We
point out, that these parameters also cover the cost-relevant
characteristics of disk accesses. Hence, viewing main mem-
ory (e.g., a database system’s buffer pool) as cache (level
N + 1) for I/O operations, it is straightforward to include disk
access in this hardware model.

We developed a system-independent C program called
Calibrator c to automatically measure these parameters
on any computer hardware. The Calibrator uses carefully
designed memory access patterns to generate cache misses
in a controlled way. Comparing execution times of runs with
and without cache misses, it can derive the cache parame-
ters and latencies listed in Table 1. A detailed description of
the Calibrator is given in Manegold.11,12 Sample results for
a PC with a 2.4 GHz Intel Core 2 Quad Q6600 CPU look as
follows:

CPU loop + L1 access: 1.25 ns = 3 cy

Caches:

Level Size Linesize Asso. Seq-miss-latency rand-miss-latency

 1 32 KB 64 byte 4-way 0.91 ns = 2 cy 4.74 ns = 11 cy

 2 4 MB 128 byte 4-way 31.07 ns = 75 cy 76.74 ns = 184 cy

TLBs:

Level #entries pagesize miss-latency

 1 256 4KB 9.00 ns = 22 cy

3. monetDB aRchitectuRe
The storage model deployed in MonetDB is a significant
deviation of traditional database systems. It uses the decom-
posed storage model (DSM),8 which represents relational
tables using vertical fragmentation, by storing each column
in a separate <surrogate,value> table, called binary
association table (BAT). The left column, often the surrogate
or object-identifier (oid), is called the head, and the right col-
umn tail. MonetDB executes a low-level relational algebra
called the BAT algebra. Data in execution is always stored in
(intermediate) BATs, and even the result of a query is a col-
lection of BATs.

Figure 2 shows the design of MonetDB as a back-end that
acts as a BAT algebra virtual machine, with on top a variety
of front-end modules that support popular data models and
query languages (SQL for relational data, XQuery for XML).

BAT storage takes the form of two simple memory arrays,
one for the head and one for the tail column (variable-width
types are split into two arrays, one with offsets, and the other
with all concatenated data). Internally, MonetDB stores

Description unit symbol

cache name (level) – Li

cache capacity bytes Ci

cache-line size bytes Zi

number of cache lines – #i = Ci /Zi

cache associativity – Ai

Sequential (x = s) and random (x = r) access

miss latency ns li
x

Access latency ns λx
i+1 = li

x

miss bandwidth bytes/ns bi
x = Zi / li

x

Access bandwidth bytes/ns bx
i+1 = bi

x

table 1: cache parameters per level (i Œ {1, . . . ,N})

b Costs for L1 accesses are assumed to be included in the CPU costs, i.e., l1
and b1 are not used and hence undefined. c http://www.cwi.nl/�manegold/Calibrator/calibrator.shtml

80 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

columns using memory-mapped files. It is optimized for
the typical situation that the surrogate column is a densely
ascending numerical identifier (0, 1, 2,…); in which case the
head array is omitted, and surrogate lookup becomes a fast
array index read in the tail. In effect, this use of arrays in vir-
tual memory exploits the fast in-hardware address to disk-
block mapping implemented by the memory management
unit (MMU) in a CPU to provide an O(1) positional database
lookup mechanism. From a CPU overhead point of view this
compares favorably to B-tree lookup into slotted pages—the
approach traditionally used in database systems for “fast”
record lookup.

The Join and Select operators of the relational alge-
bra take an arbitrary Boolean expression to determine the
tuples to be joined and selected. The fact that this Boolean
expression is specified at query time only, means that the
RDBMS must include some expression interpreter in the criti-
cal runtime code-path of these operators. Traditional data-
base systems implement each relational algebra operator as
an iterator class with a next() method that returns the next
tuple; database queries are translated into a pipeline of such
iterators that call each other. As a recursive series of method
calls is performed to produce a single tuple, computational
interpretation overhead is significant. Moreover, the fact
that the next() method of all iterators in the query plan is
executed for each tuple, causes a large instruction cache foot-
print, which can lead to strong performance degradation
due to instruction cache misses.1

In contrast, each BAT algebra operator has zero degrees of
freedom: it does not take complex expressions as parameter.
Rather, complex expressions are broken into a sequence of
BAT algebra operators that perform one simple operation on
an entire column of values (“bulk processing”). This allows
the implementation of the BAT algebra to forsake an expres-
sion interpreting engine; rather all BAT algebra operations
in the implementation map onto simple array operations.
For instance, the BAT algebra expression

R:bat[:oid, :oid]:=select(B:bat[:oid,:int], V:int)

can be implemented at the C code level like:

for (i = j = 0; i <n; i++)
 if (B.tail[i] == V) R.tail[j++] = i;

The BAT algebra operators have the advantage that tight
for-loops create high instruction locality which eliminates
the instruction cache miss problem. Such simple loops are
amenable to compiler optimization (loop pipelining, block-
ing, strength reduction), and CPU out-of-order speculation.

A potential danger of bulk processing is that it material-
izes intermediate results which in some cases may lead to
excessive RAM consumption. Although RAM sizes increase
quickly as well, there remain cases that we hit their limit as
well. In the MonetDB/X100 project3 it was shown how partial
column-wise execution can be integrated into (nonmaterial-
izing) pipelined query processing.

We can conclude that the MonetDB architecture for realiz-
ing database system functionality is radically different from
many contemporary product designs, and the reasons for its
design are motivated by opportunities for better exploiting
modern hardware features.

4. cache-conscious Joins
Among the relational algebra operators, the Join operator,
which finds all matching pairs between all tuples from
two relations according to some Boolean predicate, is the
most expensive operator—its complexity in the general
case is quadratic in input size. However, for equality join
predicates, fast (often linear) algorithms are available,
such as hash-Join, where the outer relation is scanned
sequentially and a hash-table is used to probe the inner
relation.

4.1. Partitioned hash-join
The very nature of the hashing algorithm implies that the
access pattern to the inner relation (plus hash-table) is ran-
dom. In case the randomly accessed data is too large for the
CPU caches, each tuple access will cause cache misses and
performance degrades.

Shatdal et al.19 showed that a main-memory variant of
Grace Hash-Join, in which both relations are first parti-
tioned on hash-number into h separate clusters, that each
fit into the L2 memory cache, performs better than normal
bucket-chained hash-join. However, the clustering opera-
tion itself can become a cache problem: their straightfor-
ward clustering algorithm that simply scans the relation
to be clustered once and inserts each tuple in one of the
clusters, creates a random access pattern that writes into
h separate locations. If h is too large, there are two factors
that degrade performance. First, if h exceeds the number of
TLB entriesd each memory reference will become a TLB miss.
Second, if h exceeds the number of available cache lines (L1

figure 2: monetDB: a Bat algebra machine.

(virtual) dense surrogates

(memory mapped) simple memory array

BAT “age”BAT “name”

1907

1927

1927

1968

select(age,1927)

BAT algebra

1

2

0

1

0

11

23

33

0

1

2

3

0

1

2

3

John Wayne\0

Roger Moore\0

Bob Fosse\0

Will Smith\0

MonetDB back-end

SQL
front-end

XQuery
front-end

SPARQL
front-end

d If the relation is very small and fits the total number of TLB entries times
the page size, multiple clusters will fit into the same page and this effect will
not occur.

NovEmbEr 2008 | voL. 51 | No. 11 | communications of the acm 81

or L2), cache thrashing occurs, causing the number of cache
misses to explode.

4.2. Radix-cluster
Our Radix-Cluster algorithm2 divides a relation U into h clus-
ters using multiple passes (see Figure 3). Radix-clustering
on the lower B bits of the integer hash-value of a column is
achieved in P sequential passes, in which each pass clusters
tuples on Bp bits, starting with the leftmost bits (∑p

1 Bp = B).
The number of clusters created by the Radix-Cluster is h =
Π1

P hp, where each pass subdivides each cluster into hp = 2Bp
new ones. When the algorithm starts, the entire relation is
considered one single cluster, and is subdivided into h1 = 2B1
clusters. The next pass takes these clusters and subdivides
each into h2 = 2B2 new ones, yielding h1 * h2 clusters in total,
etc. With P = 1, Radix-Cluster behaves like the straightfor-
ward algorithm.

The crucial property of the Radix-Cluster is that the num-
ber of randomly accessed regions hx can be kept low; while
still a high overall number of h clusters can be achieved
using multiple passes. More specifically, if we keep hx = 2Bx
smaller than the number of cache lines and the number of
TLB entries, we completely avoid both TLB and cache thrash-
ing. After Radix-Clustering a column on B bits, all tuples that
have the same B lowest bits in its column hash-value, appear
consecutively in the relation, typically forming clusters of
|U|/2B tuples (with |U| denoting the cardinality of the entire
relation).

Figure 3 sketches a Partitioned Hash-Join of two integer-
based relations L and R that uses two-pass Radix-Cluster to
create eight clusters—the corresponding clusters are sub-
sequently joined with Hash-Join. The first pass uses the two
leftmost of the lower three bits to create four partitions. In
the second pass, each of these partitions is subdivided into
two partitions using the remaining bit.

For ease of presentation, we did not apply a hash-function
in Figure 3. In practice, though, a hash-function should even
be used on integer values to ensure that all bits of the join attri-
bute play a role in the lower B bits used for clustering. Note
that our surrogate numbers (oids) that stem from a dense
integer domain starting at 0 have the property that the lower-
most bits are the only relevant bits. Therefore, hashing is not
required for such columns, and additionally, a Radix-Cluster
on all log(N) relevant bits (where N is the maximum oid from
the used domain) equals the well-known radix-sort algorithm.
experiments. Figure 4 show experimental results for a Radix-
Cluster powered Partitioned Hash-Join between two mem-
ory resident tables of 8 million tuples on an Athlon PC (see
Manegold13). We used CPU counters to get a breakdown of cost
between pure CPU work, TLB, L1, and L2 misses. The vertical
axis shows time, while the horizontal axis varies the number
of radix-bits B used for clustering (thus it is logarithmic scale
with respect to the number of clusters h). Figure 4(a) shows
that if a normal Hash-Join is used (B = 0), running time is more

figure 3: Partitioned hash-join (H = 8 ¤ B = 3).

00

11

10
01

0

0

1
1 0

1

0

1

001

010

100

111

011

000

0
1

0
1

0
1

0

11
10

01

00

Two−pass radix-cluster

(111)

(100)

(110)

(001)

(001)

(001)
(011)

(001)

(100)

(000)

(101)

(010)

Two−pass radix-cluster

partitioned
hash-join

92

57

17

81

66

06

96

75

03

20

37

47

96

57

17

81

75

66

03

20

06

47

92

37

17

32

35

20

96

03

66

10

2

47 1

32

17

66

2

96

47

35

20

03

10

(011)

(010)

(000)

(100)

(111)

(001)

(011)

(010)

(000)

(010)

L

R

47

92

06

66

75

57

03

17

81

20

37

96

66

47

20

03

35

96

2

32

10

17

Black tuples hit (lowest 3-bits of values in parenthesis)

figure 4: execution time breakdown of individual join phases and overall join performance.

 0

 5

10

15

20

25

30
(a) (b) (c) (d)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

S
ec

on
ds

C
lo

ck
s

(i
n

bi
ll

io
ns

)

Number of radix-bits

L2T2

L1T1

TLB1+2 TLB1+2

TLB1+2

L1
L2
CPU

0

2

4

6

8

10

12

0 5 10 15 20
0

1

2

3

4

5

6

7

8

S
ec

on
ds

C
lo

ck
s

(i
n

bi
ll

io
ns

)

Number of radix-bits

T1 T2 L1 L2

L1
L2
CPU

0

2

4

6

8

10

12

0 5 10 15 20
0

1

2

3

4

5

6

7

8

S
ec

on
ds

C
lo

ck
s

(i
n

bi
ll

io
ns

)

Number of radix-bits

P = 1 P = 2 P = 3

L1
L2
CPU

0

5

10

15

20

25

30

35

0 5 10 15 20

64M 2M 64k 2k 64

S
ec

on
ds

 (
po

in
ts

: m
ea

su
re

d,
 l

in
es

: m
od

el
ed

)

Number of radix-bits

Partitioned Hash-Join single-pass Radix-Cluster multi-pass Radix-Cluster Radix-Cluster + PartHJoin

Cluster size [bytes]

T2 L2

T1 L1

Simple
1 pass
2 passes
3 passes
minimum

82 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

than 30 s due to excessive L1, L2, and TLB misses, but if we
join 211 = 2048 clusters of around 4000 tuples each (i.e., each
cluster fits into the Athlon’s L1 cache), performance improves
around 10-fold. The lines T2, L2, T1, and L1 indicate the clus-
tering degree after which the inner relation (plus hash-table)
fits, respectively, the level 2 TLB, L2 data cache, level 1 TLB,
and L1 data caches on this Athlon processor. However, Figure
4(b) shows that the straightforward clustering algorithm
degrades significantly due to L1 and TLB misses after B = 8,
as it is filling 256 clusters with only 256 L1 cache lines (on this
Athlon), while for similar reasons L2 cache misses become a
serious problem after 12 bits. To keep clustering efficient, we
should therefore use multipass Radix-Cluster, as shown in
Figure 4(c). Since using more clusters improves Partitioned
Hash-Join yet degrades Radix-Cluster, the overall results in
Figure 4(d) shows a sweet spot at B = 12 (two passes).

When a user submits a query to a running database server,
its query optimizer determines a physical plan, choosing the
right order of the operators as well as choosing the physical
algorithm to use. For instance, it may compare SortMerge-
with Hash-Join. Additionally, in case of Hash-Join, the opti-
mizer must now also determine how many partitions h,
thus, radix-bits B, to use. On the one hand, it needs crucial
parameters of the unified hardware model (i.e., the cache
configurations) as derived by Calibrator (see Section 2.1);
e.g., at DBMS startup. On the other hand, it should model
the memory access cost of query processing operators given
a value distribution estimate and tuning parameters (such
as B). The lines in Figure 4(d) represent the cost prediction
of our model for Partitioned Hash-Join, indicating that the
techniques described in Section 5 can be quite accurate.

5. moDeLinG memoRy access costs
Cache-conscious database algorithms, such as the radix-par-
titioned hash-join, achieve their optimal performance only if
they are carefully tuned to the hardware specifics. Predictive
and accurate cost models provide the cornerstones to auto-
mate this tuning task. We model the data access behavior in
terms of a combination of basic access patterns using the
unified hardware model from Section 2.1.

5.1. memory access cost
Memory access cost can be modeled by estimating the num-
ber of cache misses M and scoring them with their respective
miss latency l.13 Akin to detailed I/O cost models we distin-
guish between random and sequential access. However, we
now have multiple cache levels with varying characteristics.
Hence, the challenge is to predict the number and kind of
cache misses for all cache levels. Our approach is to treat all
cache levels individually, though equally, and calculate the
total cost as the sum of the cost for all levels:

s s r r
Mem

1

(M + M).
N

i i i i
i

T l l
=

= ⋅ ⋅∑

This leaves the challenge to properly estimate the number
and kind of cache misses per cache level for various database
algorithms. The task is similar to estimating the number and
kind of I/O operations in traditional cost models. However,

our goal is to provide a generic technique for predicting cache
miss rates, sacrificing as little accuracy as possible.

The idea is to abstract data structures as data regions and
model the complex data access patterns of database algo-
rithms in terms of simple compounds of a few basic data
access patterns. For these basic patterns, we then provide
cost functions to estimate their cache misses. Finally, we
present rules to combine basic cost functions and to derive
the cost functions of arbitrarily complex patterns.

5.1.1. Basic Access Patterns
Data structures are modeled using a set of data regions .
A data region R ∈ consists of |R| data items of size R (in
bytes). We call |R| the length of region R, R its width, and
||R|| = |R| · R its size.

A database table is hence represented by a region R with
|R| being the table’s cardinality and R being the tuple size
(width). Similarly, more complex structures like trees are
modeled by regions with |R| representing the number of
nodes and R representing the size (width) of a node.

The following basic access patterns are eminent in the
majority of relational algebra implementations.

A single sequential traversal s_trav(R) sweeps over R,
accessing each data item in R exactly once (cf., Figure 5).

A single random traversal r_trav(R) visits each data item
in R exactly once. However, the data items are not accessed
in storage order, but chosen randomly (cf., Figure 6).

A repetitive sequential traversal rs_trav(r, d, R) per-
forms r sequential traversals over R. d = uni (unidirectional)
indicates that all traversals sweep over R in the same direc-
tion. d = bi (bidirectional) indicates that subsequent travers-
als go in alternating directions.

A repetitive random traversal rr_trav(r, R) performs r
random traversals over R. Assuming that the permutation
orders of two subsequent traversals are independent, there is
no point in discriminating uni- and bidirectional accesses.

random access r_acc(r, R) hits r randomly chosen data
items in R after another. The choices are independent of
each other. Each data item may be hit more than once. Even

figure 6: single random traversal: r_trav(R).

. . .3 1 2|R|

R_
_ ||R||

figure 5: single sequential traversal: s_trav(R).

. . .1 2 3 |R|

R_
_ ||R||

NovEmbEr 2008 | voL. 51 | No. 11 | communications of the acm 83

with r ≥ |R| we do not require that each data item is hit at
least once.

An interleaved access nest(R, m, , O[, D]) models a nested
multicursor access pattern where R is divided into m (equal-
sized) subregions. Each subregion has its own local cursor.
All local cursors perform the same basic pattern . O speci-
fies, whether the global cursor picks the local cursors ran-
domly (O = ran) or sequentially (O = seq). In the latter case,
D specifies, whether all traversals of the global cursor across
the local cursors use the same direction (D = uni), or whether
subsequent traversals use alternating directions (D = bi).
Figure 7 shows an example.

5.1.2. Compound Access Patterns
Database operations access more than one data region, e.g.,
their input(s) and their output, which leads to compound
data access patterns. We use b, c, and = b ∪ c (b ∩
c = /0) to denote the set of basic access patterns, compound
access patterns, and all access patterns, respectively.

Be 1,…, p ∈ (p > 1) data access patterns. There are only
two principle ways to combine patterns. They are executed
either sequentially (: × →) or concurrently (: ×
 →). We can apply and repeatedly to describe more
complex patterns.

Table 2 illustrates compound access patterns of some
typical database algorithms. For convenience, reoccurring
compound access patterns are assigned a new name.

5.2. cost functions
For each basic pattern, we estimate both sequential and ran-
dom cache misses for each cache level i ∈ {1, . . . , N}. Given
an access pattern ∈ , we describe the number of misses
per cache level as a pair

= ∈ ×
r

N N s rM () M (), M ()i i i

containing the number of sequential and random cache
misses. The detailed cost functions for all basic patterns
introduced above can be found in Manegold.11,12

The major challenge with compound patterns is to
model cache interference and dependencies among basic
patterns.

5.2.1. Sequential Execution
When executed sequentially, patterns do not interfere.
Consequently, the resulting total number of cache misses
is at most the sum of the cache misses of all patterns.
However, if two subsequent patterns operate on the same
data region, the second might benefit from the data that
the first one leaves in the cache. It depends on the cache
size, the data sizes, and the characteristics of the patterns,
how many cache misses may be saved this way. To model
this effect, we consider the contents or state of the caches,
described by a set s of pairs 〈R, r〉 ∈ × [0, 1], stating for
each data region R the fraction r that is available in the
cache.

In Manegold11,12 we discuss how to calculate (i) the
cache misses of a basic pattern q ∈ b given a cache state
s q−1 as

− −′=
r r

 1 1M (S ,) (S ,M ()),q q
i i q i i q

and (ii) the resulting cache state after executing q as

− −′′= 1 1S (S ,) (S ,).q q q
i i q i q

figure 7: interleaved multicursor access: nest(R, m, s_trav(R),
seq, bi).

R1

R2

Rm

. . .

. . .

. . .

.

.

.

Local cursors Global cursor

1 2 3 k

algorithm Pattern Description name

W ← select(U) s_trav(U) s_trav(W)

W ← nested_loop_ join(U, V) s_trav(U) rs_trav(|U|, uni, V) s_trav(W) =: nl_join(U, V, W)

W ← zig_zag_ join(U, V) s_trav(U) rs_trav(|U|, bi, V) s_trav(W)

V' ← hash_build(V) s_trav(V) r_trav(V’) =: build_hash(V, V')

W ← hash_ probe(U, V') s_trav(U) r_acc(|U|, V’) s_trav(W) =: probe_hash(U, V’, W)

W ← hash_ join(U, V) build_hash(V, V') probe_hash(U, V', W) =: h_joins(U, V, W)

{Uj}|j
m
=1 ← cluster(U, m) s_trav(U) nest({Uj}|m

j=1, m, s_trav(Uj),ran) =: part(U, m, {Uj}|m
j=1)

W ← part_nl_ join(U, V, m) part(U, m, {Uj}|m
j=1) part(V, m, {V j}|m

j=1) nl_join(U1, V1, W1) . . . nl_join(Um, Vm, Wm)

W ← part_h_ join(U, V, m) part(U, m, {Uj}|m
j=1) part(V, m, {V j}|m

j=1) nl_join(U1, V1, W1) . . . h_join(Um, Vm, Wm)

table 2: sample data access patterns (U, V, V', W Œ)

84 communications of the acm | dEcEmbEr 2008 | voL. 51 | No. 12

research highlights

With these, we can calculate the number of cache misses
that occur when executing patterns 1, . . . , p ∈ , p > 1
sequentially, given an initial cache state s0, as

−

=

⊕ = ∑
r r

 0 1
1

1

M (S , (,...,) M (S ,).
p

q
i i p i i q

q

5.2.2. Concurrent Execution
When executing patterns concurrently, we actually have to
consider the fact that they are competing for the same cache.
We model the impact of the cache interference between con-
current patterns by dividing the cache among all patterns.
Each pattern gets a fraction 0 < .n < 1 of the cache accord-
ing to its footprint size F, i.e., the number of cache lines that
it potentially revisits. The detailed formulas for Fi() with
 ∈ are given in Manegold.11,12

We use M
Æ

 i/n to denote the number of misses with only a
fraction 0 < .n < 1 of the total cache size available.

With these tools at hand, we calculate the cache misses
for concurrent execution of patterns 1, . . . , p ∈ (p > 1)
given an initial cache state s0 as

=

= ∑
r r

e 0 0
1 /

1

M (S , (, . . . ,)) M (S ,).
q

p

i i p i v i q
q

For our radix-partitioned hash-join algorithm, Figures
4d and 8 compare the cost predicted by our cost model to
the measured execution times on an Athlon PC. An exhaus-
tive experimental validation of our models is presented in
Manegold.11,12

5.2.3. Query Execution Plans
With the techniques discussed, we have the basic tools at
hand to estimate the number and kind of cache misses of
complete query plans, and hence can predict their mem-
ory access costs. The various operators in a query plan are
combined in the same way the basic patterns are combined

to form compound patterns. Basically, the query plan
describes, which operators are executed one after the other
and which are executed concurrently. We view pipelining as
concurrent execution of data-dependent operators. Hence,
we can derive the complex memory access pattern of a query
plan by combining the compound patterns of the operators
as discussed above. Considering the caches’ states as intro-
duced before takes care of handling data dependencies.

6. ReLateD WoRK
The growing mismatch between the way database systems
are engineered versus hardware evolution was first brought
to light in a number of workload studies. An early study15
already showed database workloads, compared with scien-
tific computation, to exhibit significantly more instruction
cache misses (due to a large code footprint) and more (L2)
data cache misses.

Instruction cache misses are specifically prevalent in
transaction processing workloads. The STEPS10 approach
therefore organizes multiple concurrent queries into execu-
tion teams, and evaluates each query processing operator for
all members of the team one after another, while its code is
hot. Another proposal in this direction, aimed at analysis que-
ries, proposed to split query plans into sections whose code
fits the instruction cache, putting a so-called “Buffer” opera-
tor on the section boundary.23 The Buffer operator repeatedly
invoke the query subsection below it, buffering the resulting
tuples without passing them on yet, such that the operators in
the subsection are executed multiple times when hot, amor-
tizing instruction cache misses. The high locality of the BAT
algebra operators in MonetDB and materialization of results
can be seen as an extreme form of this latter strategy.

In the area of index structures, Cache-sensitive B+ Trees
(CSB+-Trees)17 ensure that internal nodes match the cache-
line size, optimizing the number of cache-line references,
and introduce highly optimized in-node search routines for
faster lookup.

The MonetDB work2,12,13 showed vertical data fragmenta-
tion (DSM8) to benefit analysis queries, due to reduced mem-
ory traffic and an increased spatial locality. Column-stores
have since received much attention for use in data warehous-
ing environments (e.g., C-Store,20 and the CWI follow-up
system MonetDB/X1003), introducing column-store specific
compression and query evaluation techniques.

Considering hash-join, cache-sized partitioning was
first proposed in Shatdal19 and subsequently improved in
Boncz,2 as summarized in Section 4. The Radix-Cluster
algorithm was later supplemented with an inverse Radix-
Decluster algorithm,14 that allows to perform arbitrary data
permutations in a cache-efficient manner (this can be used
for sorting, as well as for postponing the propagation of join
columns to after the join phase).

An alternative hash-join approach uses software prefetch-
ing, exploiting the explicit memory-to-cache prefetching
instructions offered by modern CPUs. Group prefetching was
shown in Chen6 to perform better than cache-partitioning
and was also shown to be more resistant to interference by
other programs. Prefetching was also successfully applied
in B-tree access7 to increase the width of the nodes without

figure 8: sample cost model validation.

0

5

10

15

20

25

30

0 5 10 15 20

S
ec

on
ds

 (
po

in
ts

: m
ea

su
re

d,
 l

in
es

: m
od

el
ed

)

Number of radix-bits

Measured
Modeled

Partitioned Hash-Join

(a) (b)

0

2

4

6

8

10

12

0 5 10 15 20

se
co

nd
s

 (
po

in
ts

: m
ea

su
re

d,
 l

in
es

: m
od

el
ed

)

Number of radix-bits

T1 T2 L2L1
T1

T2 L2

L1

4 passes
3 passes
2 passes
1 pass

Radix-Cluster

dEcEmbEr 2008 | voL. 51 | No. 12 | communications of the acm 85

through prefetching. in ACM
SIGMOD International Conference
on Management of Data (SIGMOD),
june 2001.

 8. copeland, g.P. and khoshafian, s.
a decomposition storage model.
in ACM SIGMOD International
Conference on Management of Data
(SIGMOD), may 1985, 268–279.

 9. govindaraju, N., gray, j., kumar,
r., and manocha, d. gPuTerasort:
high performance graphics co-
processor sorting for large database
management. in ACM SIGMOD
International Conference on
Management of Data (SIGMOD),
june 2006.

 10. harizopoulos, s. and ailamaki, a.
sTEPs towards cache-resident
transaction processing. in
International Conference on Very
Large Data Bases (VLDB), aug. 2004.

 11. manegold, s. understanding, modeling,
and improving main-memory database
performance. Phd thesis, universiteit
van amsterdam, amsterdam, the
Netherlands, dec. 2002.

 12. manegold, s., boncz, P.a., and
kersten, m.L. generic database cost
models for hierarchical memory
systems. in International Conference
on Very Large Data Bases (VLDB),
aug. 2002, 191–202.

 13. manegold, s., boncz, P.a., and
kersten, m.L. optimizing main-
memory join on modern hardware.
IEEE Trans. Knowl. Data Eng., 14, 4
(july 2002), 709–730.

 14. manegold, s., boncz, P.a., Nes, N.,
and kersten, m.L. cache-conscious
radix-decluster projections. in
International Conference on Very
Large Data Bases (VLDB), aug. 2004,
684–695.

 15. maynard, a.m.g., donnelly, c.m.,
and olszewski, b.r. contrasting
characteristics and cache performance
of technical and multi-user commercial
workloads. SIGOPS Oper. Syst. Rev.,
28, 5 (aug. 1994), 145–156.

 16. Patterson, d. Latency lags bandwidth.
Commun. ACM 47, 10 (oct. 2004),
71–75.

 17. rao, j. and ross, k.a. making
b+ -Trees cache conscious in
main memory. in ACM SIGMOD
International Conference on
Management of Data (SIGMOD),
june 2000.

 18. ross, k.a. conjunctive selection
conditions in main memory. in
Proceedings of the ACM SIGACT-
SIGMOD-SIGART Symposium on
Principles of Database Systems
(PODS), june 2002.

 19. shatdal, a., kant, c., and Naughton,
j. cache conscious algorithms for
relational query processing. in
International Conference on Very
Large Data Bases (VLDB), sept. 1994,
510–512.

 20. stonebraker, m., abadi, d.j., batkin, a.,
chen, X., cherniack, m., ferreira, m.,
Lau, E., Lin, a., madden, s.r., o’Neil,
E.j., o’Neil, P.E., rasin, a., Tran, N.,
and zdonik, s.b. c-store: a column-
oriented dbms. in International
Conference on Very Large Data Bases
(VLDB), sept. 2005, 553–564.

 21. stonebraker, m., madden, s.r., abadi,
d.j., harizopoulos, s., hachem, N., and
helland, P. The end of an architectural
era (it’s time for a complete rewrite).
in International Conference on Very
Large Data Bases (VLDB), sept. 2007,
1150–1160.

 22. zhou, j. and ross, k.a. implementing
database operations using simd
instructions. in ACM SIGMOD
International Conference on
Management of Data (SIGMOD),
june 2002.

 23. zhou, j. and ross, k.a. buffering
database operations for enhanced
instruction cache performance.
in ACM SIGMOD International
Conference on Management of Data
(SIGMOD), june 2004.

paying the latency cost of fetching the additional cache lines.
Memory prefetching has also been applied to optimize vari-
ous data accesses in the Inspector Join algorithm.5 A general
disadvantage of hardware prefetching is that it is notoriously
platform- dependent and difficult to tune, therefore hinder-
ing its application in generic software packages. A precondi-
tion for such tuning is the availability of a unified hardware
model that provides parameters, and memory cost formulas,
as introduced in Manegold11,12 and summarized in Section 5.

Architecture-conscious results continue to appear regu-
larly in major database research publications, and also have
a specialized workshop (DaMoN) colocated with SIGMOD.
Other topics that have been addressed include minimiz-
ing branch mispredictions in selection operations,18 using
SIMD instructions for database tasks,22 and query process-
ing with GPU hardware,9 which led in 2006 to a NVIDIA
graphics card to become the PennySort sorting benchmark
champion. Recently there is interest in the use of Flash
memory for database storage as well as query parallelization
for multicore CPUs.

7. concLusion
When MonetDB debuted more than a decade ago, the idea
of using vertical storage was radical, however in the past few
years the database community has confirmed its benefits
over horizontal-only storage,20 and the principle is currently
being adopted broadly in commercial systems.

Less repeated, as of yet, have been the MonetDB results
that focus on highly CPU-efficient execution. The reshaping
of relational algebra to map it into tightly looped array pro-
cessing, leads to as yet unmatched raw computational effi-
ciency, benefiting from trends in CPU design and compiler
optimizer support.

In the broad sense, the research around MonetDB aims
at redefining database architecture in the face of an ever-
changing computer architecture and database application
landscape. This research still continues, for instance by mak-
ing database systems self-tuning using automatic on-the-fly
indexing strategies that piggyback on query execution (“data-
base cracking”), and by improving query optimizer efficiency
and robustness using a modular runtime framework that
transforms query optimization from a static procedure that
precedes query execution, into a dynamic mechanism where
query optimization and execution continuously interleave.

Peter A. Boncz (Peter.boncz@cwi.nl) cWi,
kruislaan, amsterdam, the Netherlands.

Martin L. Kersten (martin.kersten@cwi.
nl) cWi, kruislaan, amsterdam, the
Netherlands.

Stefan Manegold (stefan.manegold@
cwi.nl) cWi, kruislaan, amsterdam, the
Netherlands.

© acm 0001-0782/08/1200 $5.00

References

 1. ailamaki, a.g., deWitt, d.j., hill, m.d.,
and Wood, d.a. dbmss on a modern
processor: Where does time go? in
International Conference on Very
Large Data Bases (VLDB), sept. 1999,
266–277.

 2. boncz, P.a., manegold, s., and
kersten, m.L. database architecture
optimized for the new bottleneck:
memory access. in International
Conference on Very Large Data Bases
(VLDB), sept. 1999, 54–65.

 3. boncz, P.a., zukowski, m., and Nes,
N. monetdb/X100: hyper-pipelining
query execution. in International
Conference on Innovative Data
Systems Research (CIDR), jan. 2005,
225–237.

 4. chaudhuri, s. and Weikum, g.
rethinking database system
architecture: Towards a self-tuning
risc-style database system. in
International Conference on Very
Large Data Bases (VLDB), sept. 2000,
1–10.

 5. chen, s., ailamaki, a., gibbons, P.b.,
and mowry, T.c. inspector joins. in
International Conference on Very
Large Data Bases (VLDB), aug. 2005.

 6. chen, s., ailamaki, a., gibbons, P.b.,
and mowry, T.c. improving hash join
performance through prefetching.
ACM Trans. Database Syst., 32, 3
(2007).

 7. chen, s., gibbons, P.b., and mowry,
T.c. improving index performance

