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Abstract

Motivation: Transcriptome-based computational drug repurposing has attracted considerable

interest by bringing about faster and more cost-effective drug discovery. Nevertheless, key limita-

tions of the current drug connectivity-mapping paradigm have been long overlooked, including the

lack of effective means to determine optimal query gene signatures.

Results: The novel approach Dr Insight implements a frame-breaking statistical model for the

‘hand-shake’ between disease and drug data. The genome-wide screening of concordantly

expressed genes (CEGs) eliminates the need for subjective selection of query signatures, added to

eliciting better proxy for potential disease-specific drug targets. Extensive comparisons on simu-

lated and real cancer datasets have validated the superior performance of Dr Insight over several

popular drug-repurposing methods to detect known cancer drugs and drug–target interactions. A

proof-of-concept trial using the TCGA breast cancer dataset demonstrates the application of Dr

Insight for a comprehensive analysis, from redirection of drug therapies, to a systematic construc-

tion of disease-specific drug-target networks.

Availability and implementation: Dr Insight R package is available at https://cran.r-project.org/web/

packages/DrInsight/index.html.

Contact: Jinghua.Gu@BSWHealth.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational drug repurposing has recently gained increasing

popularity in modern pharmacogenomic studies. Large-scale drug-

perturbed gene expression datasets, such as Connectivity Map

(CMap) (Lamb et al., 2006; Subramanian et al., 2017), provide un-

precedented opportunities for prioritizing treatments based on the

associations between disease state and chemical intervention.

Numerical computational approaches have been developed, taking

full advantage of these high-throughput resources, for in silico pre-

diction of disease–drug connectivity and drug–drug connectivity (El-

Hachem et al., 2017; Hameed et al., 2018; Iorio et al., 2010, 2013;

Lee et al., 2016a; Peyvandipour et al., 2018; Sirota et al., 2011).

Notable successes have been achieved using CMap and its variants

to uncover novel therapeutic redirections of existing drugs to treat

various types of diseases, including obesity (Lee et al., 2016b; Liu

et al., 2015a), neurodegenerative diseases (Sandor et al., 2017;

Siavelis et al., 2016), gastrointestinal and liver diseases (Hicks et al.,

2017), stroke and sepsis (Chen et al., 2015b) and cancers (Hsieh

et al., 2016; Liu et al., 2015b; Xiang et al., 2016; Zhao et al., 2016).

It is worth noting that the rapid growth of computational drug dis-

covery also reflects a paradigm shift in pharmacogenomics research:

from the conventional pursuit of a ‘magic bullet’ that targets a single

‘disease-causing’ gene, to the emerging polypharmacology

approaches that examine disease–drug–gene interactions at the sys-

tem and network level.
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Despite a promising first step, systematic delineation of disease-

specific drug–gene interactions has continued to challenge the cur-

rent statistical framework, leaving significant computational poten-

tial on the table. Conventional drug-repurposing methods follow a

two-step model to identify drugs that reverse disease phenotypes.

First, a list of signature genes is compiled based on the disease data-

set. One widely adopted approach is to use statistical tests (e.g. dif-

ferential gene expression analysis) to prioritize the genes by their

ability to differentiate phenotypic changes in the disease data. Then

the top and bottom ranked genes are selected for CMap query. Once

a signature has been created, the second step is to perform enrich-

ment analysis comparing this signature to the drug-perturbed ex-

pression profiles from the reference dataset for drug prioritization.

As far as the performance of drug repurposing is concerned, the

two-step paradigm is limited in the following ways. In practice, it is

very difficult to determine the optimal query signature. Surprisingly,

choices of the signature criteria and size vary drastically from one

study to another in real applications, as shown in Supplementary

Table S1 (Musa et al., 2017). For example, in a central nervous sys-

tem (CNS) injury study, 21 genes were selected as a signature based

on a P-value threshold of 0.05 and absolute fold change �1.5, com-

pared with a glioblastoma (GBM) study where 1000 genes were

used for drug analysis based on a P-value threshold of 0.0001 and

absolute fold change �4. Although adaptations have been reported

to tackle this issue by intensively iterating through hundreds or even

thousands of possible signature size configurations to select the best

parameter based on certain objective functions, their efficacy in a

real-word application has yet to be adequately demonstrated. Aside

from the excessive computational overhead, the utility of these rem-

edies is limited either due to the requirement of external information

(e.g. known FDA-approved drugs) or the proposed procedure is

merely an ad hoc solution with no guarantee that the target criteria

can even be achieved (Shigemizu et al., 2012; Wen et al., 2016).

Another limitation of the two-step model is that, because the signa-

tures include a limited number of genes determined solely from the

disease dataset, the genes that are differentially expressed in the

drug-perturbed expression data with informative importance may

be overlooked. Therefore, enrichment analysis based on a non-

optimized signature with arbitrary size not only creates a big hurdle

for accurate modeling of disease–drug association, but also compro-

mises genome-wide, systematic investigation of drug–target

interactions.

To overcome the above-mentioned limitations in developing a

much improved and system-wide examination of the associations

between diseases, drugs and genes, we developed a novel computa-

tional framework called Dr Insight (Drug Repurposing: Integration

and Systematic Investigation of Genomic High-Throughput data).

Unlike the conventional two-step model, Dr Insight employs order

statistics to directly measure the concordance (e.g. inverse associ-

ation) between the disease data and drug-perturbed data for each in-

dividual gene. Concordantly expressed genes (CEGs) are elicited as

features to further formulate an outlier sum statistic for drug ana-

lysis. Dr Insight has several unique advantages compared to the

existing methods: (i) Dr Insight completely eliminates the need for

users to provide a fixed-sized gene signature derived from the disease

dataset, which allows automated, signature-free drug query. (ii) For

the first time, the order statistics offer a robust statistical evaluation

of the concordance of gene expression change in both disease and

drug profiles. Compared with the conventional model of using only

differentially expressed genes (DEGs) as signatures to calculate the

drug connectivity, statistically significant CEGs construct an

improved set of features that represent potential drug targets with

inverted expression in the disease dataset. (iii) Whereas drug-target

detection in the conventional framework is typically limited to

around a dozen to a few hundred genes, Dr Insight has expanded

the search of potential drug targets to the entire transcriptome.

Dr Insight empowers genome-wide drug-target analysis with an in-

depth examination of drug modes of action (MoA) at the pathway

and network level. A feature comparison of Dr Insight with several

popular signature-based drug-repurposing methods, including

CMap (Lamb et al., 2006), sscMap (Zhang and Gant, 2009),

NFFinder (Setoain et al., 2015) and Cogena (Jia et al., 2016), is

listed in Supplementary Table S2.

To demonstrate the advantage of this new drug-repurposing

framework, we applied Dr Insight to both simulated datasets as

well as three cancer datasets and two non-cancer datasets

(Supplementary Material S1.1 and Supplementary Table S3) and

compared it against the four signature-based methods. We showed

that Dr Insight, without the need to tune the signature size, per-

formed better than previous signature-based methods at detecting

known drugs (FDA-approved or in advanced clinical trials, see

Supplementary Material S1.2 and Supplementary Table S4 for

details) in both simulation and real data. Using data collected from

drug target databases such as the Search Tool for Interactions of

Chemicals (STITCH) (Kuhn et al., 2008) and the Comparative

Toxicogenomics Database (CTD) (Davis et al., 2009)

(Supplementary Material S1.3), we further illustrated the exception-

al performance of Dr Insight for drug target prediction by validating

that the CEGs detected were statistically more enriched in known

drug–target interactions compared with DEGs. Finally, we used the

TCGA breast cancer dataset as a case study to demonstrate that Dr

Insight was not only a powerful tool for novel re-direction of breast

cancer drugs, but also provided unbiased, systematic prediction of

potential drug target pathways to facilitate mechanistic understand-

ing of disease–drug interactions.

2 Materials and methods

Dr Insight completely shifts the computational framework from the

conventional signature-based enrichment analysis to a genome-

wide, disease-drug concordance alignment. Figure 1 gives the princi-

pal workflow of Dr Insight. Instead of extracting a list of significant-

ly up- and down-regulated signature genes based on differential gene

expression analysis, Dr Insight uses order statistics to combine infor-

mation from disease data and drug-perturbed expression data

(Fig. 1A). Such a ‘handshake’ between the two parts of the data

allows a systematic portrait of the drug connectivity at the finest

resolution: for each individual gene, the order statistic gives a quan-

titative measure of its connectivity between the disease and drug

profiles. As an important feature selection step, genes with statistic-

ally significant connectivity are elicited as CEGs, which comprehen-

sively include genes that are concordantly expressed in both disease

and drug-perturbed expression data without depending on a pre-

defined DEG selection criteria (Fig. 1B). The CEGs are further

pooled together to calculate an overall connectivity score for each

individual drug based on an outlier-sum method (Gu et al., 2012;

Tibshirani and Hastie, 2007) to test drug treatment effect (Fig. 1C).

Finally, in combination with several external gene set databases

such as Gene Ontology (GO) (Ashburner et al., 2000), Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,

2000) and NCI Pathway Interaction Database (PID) (Schaefer et al.,

2009), the drug–CEG interactions serve as the skeleton to assemble

disease-specific drug-target interaction networks (Fig. 1D and E).
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2.1 Global investigation of concordant gene expression
The input for Dr Insight is a complete rank list of all genes based on

differential gene expression analysis between case and control sam-

ples (e.g. tumor versus normal). In a disease study, we are typically

interested in whether the drug under investigation shows potential

treatment effect (i.e. negative connectivity) or adverse effect (posi-

tive connectivity) with respect to a given disease profile. When inves-

tigating treatment effect, a gene is deemed ‘concordantly expressed’

if it is inversely expressed between the disease data and the reference

drug data. In other words, a CEG should be up-regulated in the dis-

ease data but down-regulated after drug perturbation, and vice

versa. On the other hand, a CEG in the drug adverse effect model

should display positive correlation as being either up- or down-

regulated in both disease data and drug data.

For gene g ð1 � g � NÞ, we denote its scaled rank (the original

rank scaled by the total number of genes N) in the disease data X

and the ith drug instance Yi (i.e. instance from CMap, see

Supplementary Abbreviations and Terminologies for definition)

as rg;X and rg;Yi
; respectively, where 1

N � rg;X � 1, 1
N � rg;Yi

� 1. In

the case of a drug treatment effect study, the ranks are inversely

ordered in disease and drug data (i.e. large-scaled rank

rg;X represents up-regulation of gene expression in the disease

phenotype, while large-scaled rank rg;Yi
represents that gene g is

down-regulated in drug instance Yi). In this work, we only focus on

finding drugs that can reverse the disease status back to normal

(treatment effect), although this concept can be easily generalized to

investigate adverse effect of drugs. For concordant gene expression,

two patterns are defined when studying drug treatment effect:

1. Type 1 concordant expression: gene g is up-regulated in the dis-

ease phenotype and down-regulated after drug perturbation;

2. Type 2 concordant expression: gene g is down-regulated in the

disease phenotype and up-regulated after drug perturbation.

2.2 Detection of concordantly expressed genes using

order statistic
To model type 1 concordance of gene g between disease data X and

drug instance Yi, we calculate the minimum statistic (smallest order

statistic) as follows:

rmin
g;i ¼ min rg;X; rg;Yið Þ: (1)

rmin
g;i is a non-parametric statistic measuring whether gene g has large

ranks in both the disease data (up-regulation) and reference drug

data (down-regulation). A large rmin
g;i value indicates that gene g has

strong type 1 concordance, in which case a right-tailed test is appro-

priate. Under the null hypotheses H0 that rg;X and rg;Yi
are independ-

ent rank values, the one-sided P-value for rmin
g;i in a right-tailed test is

given by:

P rmin
g;i � r

���H0

� �
¼ 1� P rmin

g;i � r� 1

N

����H0

!
¼ 1� Ir�1

N
1; 2ð Þ;

(2)

where Ir�1
N

is the regularized incomplete Beta function (see the proof

of Theorem 1 in Supplementary Material S2).

Similarly, we use the maximum statistic (largest order statistic):

rmax
g;i ¼ maxðrg;X; rg;Yi

Þ; (3)

to model type 2 concordance. A smaller rmax
g;i gives stronger evidence

that gene g is down-regulated in the disease data and up-regulated

upon drug perturbation, hence suggesting the use of a left-tailed test.

According to Theorem 2 (Supplementary Material S2), the one-

sided P-value for rmax
g;i in a left-tailed test is given by:

P rmax
g;i � r jH0

� � ¼ Ir 2; 1ð Þ: (4)

Statistically significant genes (P-value�0:05) derived from min-

imum and maximum statistics are referred to as type 1 or type 2

CEGs, respectively, which will be later utilized as key features for

downstream drug repurposing analysis. We also comprehensively

assessed Dr Insight’s performance with a series of P-value cut-offs

on five disease datasets, including three cancer and two non-cancer

datasets, and confirmed that the recommended 0.05 thresholds had

robust performance across all applications (Supplementary Material

S3, Supplementary Fig. S1).

2.3 Modeling disease–drug connectivity: CEG-based

outlier-sum statistic
In Dr Insight, the detection of CEGs is considered as an important

feature selection step. Statistically significant CEGs have reversed

differential gene expression between the disease and reference drug

data. An effective drug treatment is one that reverts the aberrant

gene expression back to normal levels. Therefore, for each drug in-

stance Yi, we formulate an outlier-sum based statistic to model the

overall disease-drug connectivity as:

OSi ¼
XN
g¼1

zmin
g;i � 1z zmin

g;i � za

� �
þ zmax

g;i � 1z zmax
g;i � za

� �
; (5)

where zmin
g;i and zmax

g;i are z-scores transformed from the P-values for

the minimum and maximum statistics. za denotes the z-score that

corresponds to the significance level of a, where a ¼ 0:05. 1zð:Þ is

the indicator function, which returns 1 when the input condition is

Fig. 1. Workflow of Dr Insight. (A) The gene rank list from the differential ana-

lysis (e.g. tumor versus normal) on the disease dataset is used as input. The

reference database contains the gene rank lists (drug instances) from CMap.

(B) Type 1 and type 2 CEGs are identified using order statistics. The bar plot

shows the log P-values of type 1 (blue) and type 2 (red) CEGs. (C) An outlier-

sum score (OS) is calculated for each drug instance and are used to perform

K-S test, where the OS scores of the instances from one drug treatment set

(red x’s) are compared against the rest of the drug instances. (D) Between-

drug and within-drug tests are performed to identify disease-specific drug-

pathway regulations. The node is colored by the average z-scores of CEGs

within a pathway. (E) The output of Dr Insight: a drug-pathway connection

network. The size of the pathways (orange circles) are proportional to their

node degrees
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true; and 0 otherwise. The instance-level outlier sum is an aggrega-

tion of the number of CEGs weighted by their individual concordant

expression score, which can be regarded as a surrogate for overall

disease–drug connectivity. In other words, Dr Insight utilizes the

CEG-based outlier-sum statistic to prioritize potential new drug

treatments for a given disease. To be more specific, for a drug treat-

ment set S; Yi 2 S; 1 � i � Ið Þ, such as a group of instances that

are collected from a particular cell line under the same drug perturb-

ation (see Supplementary Material S4.2), we first calculate the

outlier-sum OSi for every individual drug instance in S, and then

compare them with the reference distribution of outlier-sum statis-

tics derived from the entire drug database. We use a two-sample

Kolmogorov–Smirnov (K-S) test to determine whether the OSi from

the instances in drug treatment set S are larger than those from the

rest of the instances in the CMap database. Drug treatment sets with

significant K-S test P-values will be detected as novel repurposing

drug candidates.

2.4 Modeling disease-specific drug–gene connectivity: from CEGs to

drug-target pathways

Computational elicited CEGs are not only a good proxy for disease–

drug connection, but they also provide de novo prediction of poten-

tial disease-specific drug targets. As opposed to the conventional

methods that only include DEGs from the disease data as candidate

drug targets, the elicited CEGs constitutes an optimized gene set to

study drug–gene connectivity by aggregating disease transcriptome

changes with drug perturbation. To further associate biological

functionalities with the detected CEGs so as to attain a system-level

delineation of the disease-specific drug–target interactions, we pro-

vide an interface to perform enrichment analysis of the detected

CEGs on functional gene sets, such as pathways and GO terms from

public databases.

Take pathway analysis as an example. The inputs of the pathway

analysis module include selected CEGs and their corresponding

z-scores for each drug instance. Dr Insight only performs pathway

analysis on significant drugs that are identified at step C of the

workflow (Fig. 1C). In the case study presented in Section 3.5, we

used 222 pathways from the National Cancer Institute PID

(Schaefer et al., 2009) downloaded from Pathway Commons

(Cerami et al., 2011), while the software also provides an interface

so that users can upload their own list of pathways or gene sets. For

pathway 1, the instance-level (for the ith drug instance Yi) and drug

treatment set-level (for drug treatment set S) outlier-sum statistic are

given by:

OS1i ¼
X
g21

zmin
g;i � 1z zmin

g;i � za

� �
þ zmax

g;i � 1z zmax
g;i � za

� �
(6)

and

OS1S ¼
X
g21

zmin
g;S � 1z zmin

g;S � za

� �
þ zmax

g;S � 1z zmax
g;S � za

� �
; (7)

respectively, where the CEG z-scores for drug treatment set S, zmin
g;S

and zmax
g;S , are calculated by:

zmin
g;S ¼ median zmin

g;i Yi 2 S; 1 � i � I
n o� �

; (8)

and

zmax
g;S ¼ median zmax

g;i Yi 2 S; 1 � i � I
	 
� �

: (9)

Two statistical tests are used to determine drug-targetable, dysre-

gulated pathways. First, we use the two-sample Kolmogorov–Smirnov

test (K-S test) to perform a ‘between-drug’ significance test by com-

paring the pathway-level outlier-sum OS1i of drug treatment set

S with the rest of the drugs in the database. The P-value of the test

indicates whether genes in pathway 1 have a stronger pattern of con-

cordant expression in drug treatment set S compared with other

drugs. Second, for each drug treatment set S, we performed a

‘within-drug’ significance test to compare OS1S of pathway 1 to

OS
�1

S of a random pathway �1 of the same size. Fisher’s exact test is

employed to calculate the P-value for within-drug significance.

Finally, we use the maximum of the between- and within-drug P-val-

ues to select statistically significant pathways for each proposed drug

treatment set as a system-level representation of potential drug MoA.

3 Results

3.1 Signature-based connectivity mapping

shows poor agreement in drug detection

using different signature sizes
The determination of query signature has been a long-standing prob-

lem for drug connectivity mapping(Musa et al., 2017; Shigemizu

et al., 2012). However, no existing literature has systematically

studied the impact of signature selection on drug-repurposing

results. Therefore, we applied a range of signature sizes to several

existing drug-repurposing methods, including CMap, sscMap and

NFFinder, to study the consistency of the identified drugs with po-

tential treatment effect. In Figure 2, the Venn diagrams show the

overlap of the identified drugs from five different signature selec-

tions (sizes from 50 to 1000 gene probes, see Supplementary

Material S4.1 for details) for each of the three connectivity-mapping

methods on TCGA breast cancer dataset. Surprisingly for the CMap

method, only five drugs were identified by all signature sizes,

accounting for less than 4% (5/151) of the total identified drugs

(Fig. 2A). On the other hand, as many as 35 drugs detected by size

50 were not reported by any other signature size. Overall, only 58

out of 151 (less than 40%) drugs were commonly identified under

three or more size settings using CMap, indicating a lack of consist-

ency among the identified drugs with different signature sizes. For

sscMap, Figure 2B shows that the signature size had a dramatic ef-

fect in controlling the number of significant drug treatments. When

the signature size was small (50 and 100), sscMap only identified

around a dozen significant drugs, compared with the number that

was dramatically bumped up to over 1000 when the signature size

increased to 600 gene probes. NFFinder showed similar results to

CMap with only 6% (62 out of 1069) of the drugs that were com-

monly identified by all signature sizes (Fig. 2C). The above study

demonstrated an important limitation of the existing signature-

based drug-repurposing methods that the results from different sig-

nature sizes show very poor agreement with one another.

Fig. 2. Overlap of detected drugs (P-value � 0.05) using different signature

sizes on the TCGA breast cancer dataset. Five signature sizes at probe level

are selected: 50, 100, 300, 600 and 1000. (A) CMap. (B) sscMap. (C) NFFinder
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To further validate our findings, we applied the three methods to

two additional prostate cancer datasets (Supplementary Fig. S2A).

In general, the results were very consistent with those from the

breast cancer dataset, where the overlap of five signature sizes

remained very small: from no overlap (sscMap on GEO dataset) to

13% (CMap on TCGA dataset). In the best case scenario, the per-

centage of drugs that were commonly detected in at least three sig-

nature settings did not exceed 41% (CMap on TCGA dataset),

further confirming the enormous gap between detected drugs from

these signature-based methods using different query signatures.

Moreover, we also compared the performance of different

signature-based methods when the same input size was used. Also

using TCGA breast cancer dataset as an example, we compared

CMap, sscMap, NNFinder and Cogena at a series of given signature

sizes from 50 to 1000 probes. We see that, with the same size input,

the four different methods resulted in very inconsistent results

(Supplementary Fig. S2B). There were only a small percentage of

common drugs identified by all four methods for signature sizes

from 200 to 1000. No common drugs were identified with small sig-

nature sizes (size 50 and 100). On the other hand, a large percentage

of drugs proposed by each method were unique to itself. These evi-

dences further strengthen our previous argument that not only do

different signature sizes result in inconsistent drug repurposing can-

didates, but also different methods have very poor agreement with

one another when the same gene signatures are used.

3.2 Performance comparison using realistic simulation
We performed simulation studies to evaluate the performance of

Dr Insight compared with several representative signature-based,

two-step drug-repurposing methods, including CMap, sscMap,

NFFinder and Cogena. We first computationally elicited a group of

drugs from the CMap database as a synthetic positive drug set (i.e.

ground-truth drugs) based on cluster analysis. A Monte Carlo strat-

egy was then employed to simulate input disease data using correl-

ation structures trained from known FDA-approved drugs and a

real disease dataset. The above procedure generates ‘realistic’ simu-

lation data by preserving known disease–drug association patterns.

Details about simulation design can be found in Supplementary

Material S5 and Supplementary Figure S3.

We used datasets from the TCGA (breast cancer and prostate

cancer) to generate two simulation studies. For Dr Insight, the entire

synthetic disease rank list was used as input. DEG-derived signatures

of varying sizes were used for querying CMap, sscMap and

NFFinder. For Cogena, we selected query signatures using the crite-

ria of FDR � 0.05 and log-fold-change � 1, which is recommended

by the original Cogena paper. The overall performance was eval-

uated by the receiver operating characteristic (ROC) curve

(Supplementary Material S6 and Supplementary Fig. S4) and the

areas under the ROC curves (AUCs) were calculated for each

method (Table 1).

CMap, with eight different query signatures, produced an aver-

age AUC of 0.75 that ranged from 0.58 to 0.84 from the eight ROC

curves on TCGA breast cancer-derived simulation dataset. It also

achieved an average AUC of 0.73 (min: 0.66, max: 0.79) in the pros-

tate cancer derived dataset. Similar results were observed for

sscMap, which produced average AUCs of 0.75 (breast cancer) and

0.77 (prostate cancer), with gaps as much as 0.36 (breast cancer,

min: 0.51, max: 0.87) or 0.24 (prostate cancer, min: 0.62, max:

0.86) between the best and the worst performance. Consistent with

what we observed in the previous section, the prediction perform-

ance of CMap and sscMap differed significantly with varying query

signature sizes. The drug predictabilities of NFFinder and Cogena

on both simulation datasets were worse with AUC values no greater

than 0.6. Dr Insight, on the other hand, yielded much higher AUC

values (0.91 and 0.88 on two simulated datasets, respectively) with-

out requiring a pre-determined query signature, which were at least

comparable or even greater than the best performance of all

signature-based methods with any signature size. The simulation

studies validated that the new signature-free, CEG-based drug-

repurposing framework had appealing performance over the con-

ventional signature-based, two-step models to detect disease–drug

associations simulated from known FDA-approved cancer drugs.

Additionally, we also evaluated the false positive rate of

Dr Insight under the null hypothesis. To be more specific, we gener-

ated random disease data through permutations and ran Dr Insight

on these ‘null’ datasets. We repeated this procedure for 50 times and

Fig. 3. Comparing Dr Insight with existing methods on cancer datasets. The

bar plots give the log-transformed enrichment P-values from the five meth-

ods. Multiple enrichment P-values are reported for CMap, sscMap and

NFFinder, which correspond to query signatures of different sizes. The hori-

zontal lines indicate the 0.05 statistical significance level. (A) TCGA breast

cancer dataset. (B) TCGA prostate cancer dataset. (C) GEO prostate cancer

dataset

Table 1. AUC values of five drug-repurposing methods

Methods AUC value for

BRCA-derived

simulation data

avg (min/max)

AUC value for

PRAD-derived

simulation data

avg (min/max)

CMap 0.75 (0.58/0.84) 0.73 (0.66/0.79)

sscMap 0.75 (0.51/0.87) 0.77 (0.62/0.86)

NFFinder 0.54 (0.52/0.57) 0.52 (0.50/0.54)

Cogenaa 0.60 0.56

Dr Insight 0.91b 0.88

aCogena has only one AUC value (per simulation data), which is derived

from the gene signature selected with the recommended criteria by Cogena

paper. bBold values denote the best AUC values across all five methods.
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summarized the number of significant drugs (i.e. false positives)

accordingly (P <¼ 0.05). In general, Dr Insight had an average false

positive rate around 1.15%, indicating good specificity of the

algorithm when there is no association between the disease and

drug data.

3.3 Benchmarking drug prediction performance on

cancer datasets
In addition to the synthetic datasets, we further evaluated the effi-

cacy of Dr Insight to prioritize cancer treatment on public cancer

datasets. Three datasets were included in this study: two TCGA

datasets [breast cancer (Cancer Genome Atlas Network, 2012) and

prostate cancer (Cancer Genome Atlas Research Network, 2015)]

that were previously used to perform realistic simulation, plus one

additional prostate cancer dataset that was downloaded from the

GEO database (Varambally et al., 2005). FDA-approved drugs and

clinical-trial drugs for breast and prostate cancers were collected as

ground-truth drug sets (Supplementary Material S1.2) to benchmark

the performance of the different methods. Similar to the simulation

study, we compared Dr Insight with four other signature-based

methods (CMap, sscMap, NFFinder and Cogena). The gene signa-

tures sized from 50 to 1000 probes were used for the first three

methods and the Cogena gene signature was selected with the crite-

ria of FDR � 0.05 and log-fold-change � 1. For each of the meth-

ods, we ranked all of the drugs by their detection of P-values and

those with statistical significance stronger than 0.05 were identified

as potential treatments.

We performed enrichment analysis (Fisher’s exact test, see

Supplementary Material S6) to evaluate whether the drug candidates

that were identified by each method had statistically significant

overlap with the ground-truth breast cancer or prostate cancer

drugs. The number of proposed candidate drugs by each method are

listed in Supplementary Tables S5.1–S5.11. Figure 3 gives the bar

plots of log P-values from the enrichment tests of all five methods,

three of which had varying signature sizes. For CMap, sscMap and

NFFinder, an overall conclusion is that their performances to iden-

tify known cancer drugs varied dramatically from one dataset to an-

other. More importantly, large deviations were observed when

different signature sizes were applied. For instance, CMap achieved

its best performance with an enrichment P-value of 0.07 for the

TCGA breast cancer data when the signature size was 100, while for

the GEO prostate cancer data, the top2 CMap performances were

produced by signature sizes of 200 and 800. sscMap and NFFinder

had similar behaviors, which strongly supported our earlier conclu-

sion that the conventional signature-based methods had poor agree-

ment among different signature selections. As for Cogena, though

reasonable empirical criteria for signature selection was applied, its

performance in drug detection was still limited. Cogena had its best

performance on the TCGA breast cancer dataset with an enrichment

P-value of 0.007, yet it failed to retrieve statistically significant

results on the other two datasets. In contrast, Dr Insight obtained

the best performance at identifying known cancer treatments on all

three datasets, without the requirement to pre-select the query signa-

ture. Notably on the TCGA and GEO prostate cancer datasets,

Dr Insight returned significant enrichment P-values of 1.2e-4 and

1.3e-5, respectively. These P-values were significantly better than

the next best performances of a P-value of 0.007 given by Cogena

on the TCGA breast cancer, and a P-value of 4.0e-4 given by

NFFinder (size 100) on the GEO prostate cancer dataset.

Comparable results were observed on two non-cancer datasets: sys-

temic lupus erythematosus data (Banchereau et al., 2016) and

Hepatitis B virus infection data (Yoneda et al., 2016)

(Supplementary Fig. S5). In conclusion, applications on cancer data-

sets verified the robust and exceptional performance of the new

CEG-based, signature-free drug-repurposing model, which achieved

the best performance validated by known cancer drugs.

3.4 CEGs significantly improve drug target prediction
In addition to its superior performance in drug identification, an-

other major contribution from Dr Insight is that it optimizes the

modeling of drug–gene connectivity (i.e. drug target prediction),

using a CEG-based feature selection approach. Under the conven-

tional drug-repurposing framework, people largely rely on DEGs

that are identified from the disease data alone to investigate drug–

gene connectivity, and thereafter for pathway analysis (Shigemizu

et al., 2012). In contrast, Dr Insight uses order statistics to systemat-

ically retrieve CEGs with concordant gene expression change be-

tween disease data and drug treatment data, which, in theory, offers

an optimized set of candidates as potential disease-specific drug

targets.

To test whether the CEG-based methodology substantially

improves the outcome for drug target prioritization, we first col-

lected known drug–target interactions from the STITCH database

as ground truth to benchmark the performance of CEG- and DEG-

based methods on the three public cancer datasets. Figure 4A gives

the bar plots of the percentages of the drugs whose CEGs were over-

represented by known drug–target interactions from the STITCH

database. Details of the percentage calculations can be found in

Supplementary Material S7 and Supplementary Tables S6 and S7.

For the DEG-based method, a range of DEG sizes, from 50 to 1000

probes, were tested. For drugs detected by Dr Insight using the

CEG-based method from the TCGA breast cancer dataset, 15 out of

34 drugs (44%) had significant enrichment on targets collected from

the STITCH database, compared with a maximum performance of

19% of enriched drugs achieved by the DEG-based method. The

performance of the DEG-based method, however, also varied sig-

nificantly from one signature size to another, yielding as much as

5-fold of discrepancy between signature sizes from 50 to 200 probes

and 1000 probes in the case of TCGA breast cancer study. Similarly,

in the other two datasets, the CEG-based method consistently out-

performed the DEG-based method, with 29% and 42% of drugs

that were statistically enriched in the TCGA and GEO prostate can-

cer datasets, respectively, compared with the best performances of

11% and 19% of over-represented ground-truth targets from the

Fig. 4. Percentages of the identified drugs with statistically significant enrich-

ment in known drug targets from drug-target databases. (A) Results from

STITCH database. (B) Results from the CTD database
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DEG-based method. In summary, for all the three cancer studies, the

CEG-based method achieved at least twice the efficacy of existing

methods at retrieving drugs that are enriched in known drug–target

interactions reported by the STITCH database.

In a second validation study, we used drug–target interactions

from the CTD database to test the enrichment of the CEG and DEG-

based methods. Since the drug–target interactions from the CTD data-

base are directed, we also separated the CEGs and DEGs into up- and

down-regulated subsets. Figure 4B gives the percentages of drugs with

statistically significant overlap with known targets in the CTD data-

base. From Figure 4B, we see that the CEG-based method achieved

universally better performance for both up- and down-regulated tar-

get genes in all the three cancer datasets. For instance, for the TCGA

breast cancer dataset, 47% and 38% of the drugs from the CEG-

based method had significant enrichment in up- and down-regulated

genes validated by the CTD database, compared with much smaller

percentages of the significant drugs being identified by the best DEG-

based method (13% and 30%, achieved by size of 300). The results

of the DEG-based method shown in Figure 4 were calculated with

CMap-detected drugs, while the results based on sscMap and

NFFinder-detected drugs are shown in Supplementary Figures S6 and

S7, respectively. The above validation studies strongly supported that,

by incorporating differential gene expression from both disease data

and drug-perturbed data simultaneously, Dr Insight successfully

improved drug–target prediction using CEGs as surrogates for

disease-specific drug–gene connectivity.

3.5 Case study: disease-specific drug–pathway–gene

connections inferred from the TCGA breast cancer

dataset
Finally, we used the TCGA breast cancer dataset as an example to

take a close look at applying Dr Insight to re-engineer novel disease

specific drug–pathway–gene connections (Supplementary Material

S10). Figure 5A gives the drug–pathway interaction network among

10 significant drugs (fulvestrant is not included in the network be-

cause there is no significant pathway identified for it) and 31 path-

ways from the NCI PID pathways (Schaefer et al., 2009)

reconstructed by Dr Insight. The color of the edges between drugs

and pathways represents the type of interaction, i.e. down-

regulation (green) and up-regulation (red).

Five out of the ten identified drugs are in our ground-truth breast

cancer drug list. Among them, fulvestrant is an FDA-approved drug

for treating hormone receptor-positive breast cancer. Also identified

were the HSP90-inhibiting drugs tanespimycin and alvespimycin,

the HDAC-inhibiting drug vorinostat and the anti-proliferation

drug sirolimus, all of which are in advanced stages of clinical trials

for treating breast cancer (Chen et al., 2016). Additionally, five

novel drug treatments for breast cancer were identified, which were

also supported by a number of earlier studies. For instance, 15-delta

prostaglandin J2, a member of cyclopentenone prostaglandins, was

previously reported to induce apoptosis and cell death of breast can-

cer cells (Kim et al., 2009; Pignatelli et al., 2004). More interesting-

ly, the HDAC inhibitor trichostatin A (TSA) was found to have

antitumor activity against breast cancer not only in cell lines but

also in animal models (Liu and Li, 2015; Vigushin et al., 2001).

Previously, pathway analysis in the context of connectivity-

mapping-based drug repurposing typically relies on enrichment test

(e.g. Fisher’s exact test) of input DEGs (Lee et al., 2012; Shigemizu

et al., 2012). One key advantage of Dr Insight’s pathway analysis is

that, derived from the CEGs, the identified pathways are more

enriched in ‘drug actionable targets’ compared with the DEG-based

method. Here, ‘drug actionable targets’ refers to target genes within

a pathway with reversed expression, i.e. ranked top/bottom 10% be-

fore and after drug perturbation. We systematically compared the

percentages of drug actionable targets from Dr Insight (CEG) and

the conventional DEG-based method (Supplementary Material S8).

Supplementary Table S8 shows that pathway results from Dr Insight

were highly enriched in actionable targets (>40%), which was

several-fold higher than the average enrichment by the DEG-based

method.

Through subsequent pathway analysis, we found that several

pathways, such as ATR signaling pathway, PLK1 signaling events

and FOXM1 transcription factor network, were down-regulated by

multiple drugs (Fig. 5A) in our data, suggesting that these pathways

are particularly important for breast cancer tumorigenesis.

Consistent with our discovery, abnormal regulation of the above-

mentioned cell cycle signaling-related pathways have been reported

to cause aberrant breast cell proliferation and apoptosis. Such aber-

ration may lead to tumorigenesis owing to the dysregulation of their

critical component genes, including the DNA damage response kin-

ase genes ATR and ATM (Smith et al., 2010), and the cell cycle reg-

ulating protein modulators such as FOXM1(Hunt et al., 1997). Of

note, the connections between these potential breast cancer drugs

and target pathways have been previously addressed in a number of

studies. The HDAC inhibitor TSA is an example. TSA down-

regulates cyclin genes like CCNB1 and CCND1, and cyclin-

dependent kinases such as CDK4, to arrest cell cycle at G1 or G2/M

phase in breast cancer MCF10A-ras cells (Park et al., 2008). These

cell cycle-related genes are critical functional components of

FOXM1 and PLK1 pathways (Fig. 5B, Supplementary Fig. S8),

which are demonstrated to be down-regulated by TSA in our TCGA

breast cancer study. In addition, Liu et al. reported that TSA pro-

moted cell apoptosis by down-regulating MCM family genes in

colon cancer cells (Liu et al., 2013). While MCM genes and their

highly associated pathways, including ATR signaling pathway

(Fig. 5B) and E2F transcription network (Supplementary Fig. S8),

are identified by Dr Insight as potential TSA targets to treat breast

cancer, our results, together with the discovery by Liu et al. suggest

a possible mechanism through which TSA promotes breast cancer

Fig. 5. Reconstructed breast cancer drug–pathway–gene connections for

TCGA breast cancer data. (A) Reconstructed drug–pathway interaction net-

work. (B) Representative target pathways of TSA and the potential target

genes. Blue hexagons are the pathway genes that are identified as TSA CEGs

and being documented as TSA targets in the CTD database; blue circles are

the novel unregistered TSA CEGs. The networks are visualized using

Cytoscape (Shannon et al., 2003)
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cell apoptosis. In addition to the above-mentioned dysregulated

CEGs that are documented as known targets in drug–target inter-

action databases, Dr Insight also detected dozens of novel drug–

target interactions (Fig. 5B), many of which were supported

by previous literature. An example of novel drug targets is PLK1, a

kinase for efficient G2/S arrest that is known to be directly inhibited

by TSA administration in colon cancer cells (McKenzie et al., 2010).

The above set of evidence demonstrates the ability of Dr Insight to

produce a systematic layout of breast cancer drug interaction net-

work by bridging novel and known target genes with key molecular

pathways such as cell cycle arrest and apoptosis.

4 Discussion

In conclusion, to overcome the limitations of the existing computa-

tional framework, we have developed Dr Insight, which for the first

time ever, offers signature-free, enhanced drug repurposing based on

gene expression data. The genome-wide concordance evaluation by

Dr Insight takes into account the dysregulation of gene expression

from both disease and drug-perturbed data simultaneously, which

renders the statistically significant CEGs as better features to investi-

gate the connections among diseases, drugs and genes. Dr Insight

has broken the computational bottleneck for transcriptome-based

drug discovery, which provides an unbiased first look from novel

redirections of existing drugs toward a systematic understanding of

disease-specific drug MoAs at molecular level.

We have demonstrated using TCGA breast cancer dataset that,

in addition to five FDA-approved drugs or drugs in advanced clinic-

al trials for breast cancer treatment, Dr Insight also identified a few

new drug candidates, which were previously reported to have antitu-

mor functions. The identified pathways further pave the road for in-

depth investigation of these recommended small molecules. The

users may cross-reference their de novo identified disease-specific

drug pathways with existing disease-pathway databases to further

understand the efficacy and the side effects of the proposed drugs.

One such example is given by Chen et al. to study the associations

between pathways and adverse drug reactions (Chen et al., 2015a).

A candidate drug can be flagged when it activates pathways that

lead to adverse effects.

Another important aspect in performance evaluation is to assess

the robustness of the methods against noise in the data. Therefore,

we further performed the sensitivity analysis of Dr Insight, together

with other representative methods on simulation data with con-

trolled noise. Based on the numerical results, we conclude that Dr

Insight can tolerate as much as 60% to even 90% of added noise,

depending on datasets (Supplementary Material S9, Supplementary

Fig. S10).

In addition to the signature-based methods that are compared in

the main text, another simple, yet ‘global’ method that comes natur-

ally to mind for connectivity mapping is the inverse correlation

method. To comprehensively validate the advantage of Dr Insight in

drug repurposing, we also compared Dr Insight with the inverse cor-

relation method on all five disease datasets. The results showed that

Dr Insight consistently outperformed the inverse correlation method

in all studies, although interestingly, the performance of the inverse

correlation method remained quite robust to noise (Supplementary

Material S9, Supplementary Figs S9 and S10).
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