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Abstract 

Background: Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., 

photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade‑off between PIC 

selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence 

showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers 

to co‑deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed 

a novel photoimmunoconjugate‑nanoliposome (PIC‑Nal) comprising of three clinically used agents: anti‑epidermal 

growth factor receptor (anti‑EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosen‑

sitizer, and irinotecan (IRI) chemotherapy.

Results: The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to 

form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal–IRI) was facilitated by copper‑free click chemistry, 

which resulted in monodispersed PIC–Nal–IRI with an average size of 158.8 ± 15.6 nm. PIC–Nal–IRI is highly selective 

against EGFR‑overexpressing epithelial ovarian cancer cells with 2‑ to 6‑fold less accumulation in low EGFR expressing 

cells. Successful coupling of PIC onto Nal–IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% 

in OVCAR‑5 cells. Furthermore, PIC–Nal–IRI synergistically reduced cancer viability via a unique three‑way mechanism 

(i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage).

Conclusion: It is increasingly evident that the most effective therapies for cancer will involve combination treat‑

ments that target multiple non‑overlapping pathways while minimizing side effects. Nanotechnology combined with 

photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all 

major regions of a cancer cell—plasma membrane, cytoplasm, and nucleus. PIC–Nal–IRI offers a promising strategy 

to overcome the selectivity‑uptake trade‑off, improve photoimmunotherapy efficacy, and enable multi‑tier cancer 

targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively 

make PIC–Nal–IRI extremely valuable and merits further investigations in living animals.

Keywords: Photoimmunoconjugate, Irinotecan liposome injection, Benzoporphyrin derivative, Epidermal growth 

factor receptor, Multi‑drug delivery
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Background
Photoimmunotherapy (PIT) employs antibody-pho-

tosensitizer conjugates (i.e., photoimmunoconjugates, 

PICs) and harmless near-infrared light (λ = 600–900 nm) 
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to induce reactive oxygen species (ROS)-mediated (e.g., 
1O2,  O2

•–, •OH) tumor destruction while sparing normal 

tissues [1–4]. The fluorescence signal generated from the 

excited photosensitizers can be used for optical imag-

ing and fluorescence-guided surgery (FGS) of tumors 

[5]. Epidermal growth factor receptor (EGFR) has long 

represented an oncologic target of immense interest, 

and it is overexpressed in several malignancies, includ-

ing head and neck cancer, ovarian cancer, and glioblas-

toma [6]. Since the introduction of PIT in the ‘80s [4], 

several EGFR-targeted PICs (e.g., cetuximab-IRDeye700 

and panitumumab-IRDye800) are now in clinical tri-

als for PIT or FGS (NCT02422979, NCT03384238). We 

previously developed a PIC system that comprises of the 

U.S. Food and Drug Administration (FDA)-approved 

anti-EGFR monoclonal antibody cetuximab (Cet) and 

a clinically used benzoporphyrin derivative (BPD) pho-

tosensitizer to target cancer cells [7–11]. The highly 

self-quenched BPD molecules conjugated to Cet can be 

de-quenched (activated) by cancer cells via lysosomal 

proteolysis of the antibody [7, 10, 11]. It is also well-

established that light activation of BPD induces photo-

chemical disruption of the mitochondrial membrane [9], 

which triggers the release of cytochrome c, a potent ini-

tiator of apoptotic cell death [12–14]. This shifts the bal-

ance in the target cells from an anti-apoptotic state to a 

more pro-apoptotic state, mediating eventual cell death.

While PIT leverages PIC to minimize damage to healthy 

tissues, it requires an optimal intracellular PIC concentra-

tion threshold for effective tumor destruction [9, 11]. One 

of the strategies to overcome the insufficient PIC uptake is 

to combine nanotechnology with PIC. With a high surface 

area-to-volume ratio, nanoparticles can be decorated with 

large amounts of antibodies for tumor targeting [15]. We 

recently demonstrated that immobilization of PIC onto 

poly(lactic-co-glycolic acid) (PLGA) nanoparticles could 

facilitate the indirect endocytosis of high payloads of PIC 

under limited antibody-receptor binding events, overcom-

ing the persistent challenge of insufficient PIC uptake by 

cancer cells [10]. However, it remains unclear if this ‘car-

rier effect’ phenomenon with PIC and PLGA nanoparticles 

could be extended to other types of nanoformulations at 

large. In this study, we seek to verify the generalizability of 

this phenomenon using a novel photoimmunoconjugate-

nanoliposome (PIC–Nal) formulation. Furthermore, the 

PIC–Nal is rationally designed to co-deliver irinotecan 

chemotherapy for enhanced PIT outcomes.

Nanoliposomal irinotecan injection (Onivyde®, Nal–

IRI) is a valuable chemotherapy given in combination 

with fluorouracil and leucovorin to patients with gem-

citabine-refractory metastatic pancreatic cancer, and it is 

now being tested in patients with gastric adenocarcinoma 

(NCT03739801), gynecological cancer (NCT01770353), 

lung cancer (NCT03088813), and glioblastoma 

(NCT03119064) [16–19]. Irinotecan acts by inhibiting 

topoisomerase I (Top1) and trapping Top1-DNA cleav-

age complexes (Top1cc) to induce double-stranded DNA 

breaks in the nucleus and promote direct cell death [20]. 

We have shown that light activation of BPD (i.e., pho-

todynamic therapy, PDT) synergizes with irinotecan to 

improve survival outcomes in pancreatic cancer mouse 

models [21–23]. Similarly, others also demonstrated 

that light activation of irinotecan-loaded porphysomes 

reduces pancreatic tumor burden [24]. However, all 

these studies utilized ‘non-targeted’ nanoliposomes car-

rying ‘unquenched’ photosensitizers that are at a higher 

risk of normal tissue phototoxicity. Here, we leverage our 

‘tumor-activatable’ PIC system (i.e., Cet-BPD) [7, 9] to 

improve the selectivity and efficacy of irinotecan.

For many combinations to achieve optimal efficacy, 

spatiotemporal control of drug exposure to coordinate 

targeted inhibition of interconnected cancer survival 

and growth pathways is of paramount importance [25, 

26]. In addition to targeting multiple survival pathways 

or blocking cell death escape mechanisms, drugs that are 

the best candidates for combination are those that target 

all major regions of a cell (i.e., plasma membrane, cyto-

plasm, and nucleus) and also have non-overlapping tox-

icities [27, 28]. Hybrid nanocarriers, such as those based 

on PICs and nanoliposomes, are particularly promising 

approaches for combination therapies because they can 

be designed to compartmentalize multiple agents at a 

fixed ratio, target deliver therapeutics to cancer cells at a 

high payload, and generate cytotoxic ROS upon light acti-

vation [29]. Here, we interface PIC and nanoliposomal 

irinotecan for targeted photoimmuno-chemotherapy. We 

anticipate the mechanism-based nanotechnology com-

prising Cet, BPD, and irinotecan will be more effective in 

reducing cancer viability by targeting different subcellu-

lar components as well as molecular pathways, compared 

to monotherapies. The following studies demonstrate 

how photoimmuno-chemotherapy addresses one of the 

major challenges facing PIT (i.e., PIC uptake) and pro-

vides compelling evidence that cooperative targeting 

EGFR, mitochondrial, and DNA can markedly improve 

treatment efficacy against cancer.

Results
Synthesis and characterization of PIC–Nal and PIC–Nal–IRI

Unilaminar nanoliposome (Nal) and nanoliposomal 

irinotecan (Nal–IRI), prepared via freeze–thaw cycle 

method, are 126.5 ± 3.5 nm and 151.0 ± 11.7 nm in diam-

eter, respectively with a narrow size distribution (Poly-

dispersity index, PdI < 0.1) (Fig. 1a; Table 1). To minimize 

the non-specific electrostatic interactions with the cell 

membrane and to maximize the contribution of specific 
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interactions to binding and internalization [30, 31], the 

surface charge of nanoformulations was engineered 

to be neutral-to-slightly negative (between − 13.6  mV 

and − 19.6  mV; Table  1) by incorporating 6.9  mol% of 

dioleoylglycerophosphoglycerol (DOPG) into the lipid 

composition. To prepare PIC, BPD molecules were con-

jugated to Cet using carbodiimide chemistry (Fig.  1b). 

Overnight reaction of BPD-N-hydroxysuccinimide ester 

and Cet at 3:1, 6:1, and 9:1 molar ratios resulted in the 

formation of PICs with ~ 2, 4, and 6 BPD molecules 

per Cet, respectively. This corresponds to ~ 67% con-

jugation efficiency (Additional file  1: Table  S1). Click 

chemistry conjugation of azide-functionalized PICs to 

DBCO-containing Nal or DBCO-containing Nal–IRI 

resulted in the formation of PIC–Nal and PIC–Nal–IRI 

with diameters of 142.5 ± 5.9  nm and 158.8 ± 15.6  nm, 

respectively (PdI < 0.1) (Table  1). The conjugation effi-

ciency of PIC to Nal was ~ 66% (Table  1), which corre-

sponds to ~ 40 PICs per Nal. Increasing the BPD-to-Cet 

ratio of PIC did not significantly alter the size, surface 

charge, or conjugation efficiency of the PIC–Nal (Addi-

tional file  1: Table  S2). Irinotecan was passively encap-

sulated in the aqueous core of Nal and PIC–Nal at 

encapsulation efficiencies of 38.8 ± 4.4% and 23.7 ± 2.2%, 

respectively. The conjugation efficiency of PIC to Nal–

IRI was 48.0 ± 2.7%, which corresponded to ~ 33 PICs 

Fig. 1 Schematic diagram of the steps for photoimmunoconjugate nanoliposomal irinotecan (PIC–Nal–IRI) synthesis. a Synthesis and 

cryogenic electron microscopy image of monodispersed nanoliposomal irinotecan (Nal–IRI) with an average size of ~ 150 nm (PdI < 0.1, n > 3). b 

Benzoporphyrin derivative (BPD) was covalently conjugated onto cetuximab (Cet) via carbodiimide chemistry to form photoimmunoconjugate 

(PIC). Copper‑free click chemistry was employed to tether PICs onto Nal–IRI to form PIC–Nal–IRI with an average size of 158.8 ± 15.6 nm (PdI < 0.1, 

n > 3)

Table 1 Physical characterization of the nanoformulations

Nal nanoliposome, PIC–Nal photoimmunoconjugate-nanoliposome, Nal–IRI nanoliposomal irinotecan, PIC–Nal–IRI photoimmunoconjugate-nanoliposomal irinotecan

a Encapsulation efficiency (%): The molar ratio of irinotecan within the liposome after purification to that added initially. bConjugation efficiency (%): The molar ratio 

of PIC conjugated onto the liposomal construct to that added initially

Sample Size (d. nm) Polydispersity 
index (PdI)

Zeta potential (mV) Irinotecan encapsulation 
efficiency (%)a

PIC conjugation 
efficiency (%)b

Number 
of PIC 
per Nal

Nal 126.5 ± 3.5 0.08 ± 0.01  − 19.6 ± 0.7 N/A N/A N/A

PIC–Nal 142.5 ± 5.9 0.06 ± 0.01  − 13.6 ± 0.6 N/A 66.5 ± 2.3 39.9 ± 1.4

Nal–IRI 151.0 ± 11.7 0.08 ± 0.01  − 16.6 ± 0.4 38.8 ± 4.4 N/A N/A

PIC–Nal–IRI 158.8 ± 15.6 0.09 ± 0.03  − 14.8 ± 0.3 23.7 ± 2.2 48.0 ± 2.7 32.6 ± 2.6
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per Nal–IRI. Drug release profiles of Nal–IRI and PIC–

Nal–IRI were examined in human serum-containing 

medium at 37  °C (Fig.  2a). At 1  h post-incubation, we 

observed ~ 20% and ~ 42% release of irinotecan from the 

Nal–IRI and PIC–Nal–IRI, respectively. The relatively 

fast irinotecan release from PIC–Nal–IRI (t1/2 = 2  h) 

compared to Nal–IRI (t1/2 = 2.3  h) is likely due to the 

presence of PIC, suggesting that irinotecan will be readily 

available to the cancers cells when PIT occurs. Stability 

studies showed that 4-month dark storage at 4 °C did not 

significantly alter the overall size and monodispersity of 

Nal–IRI and PIC–Nal–IRI (Fig. 2b, c).

Photoactivity of PIC–Nal and PIC–Nal–IRI

Hydrophobic BPD has a poor water solubility (< 0.05 mg/

mL) and readily aggregates in biologically relevant media 

[32]. Conjugation of BPD to pegylated Cet enhances BPD 

solubility and allows precise control of BPD quench-

ing and de-quenching [9]. We have previously shown 

that self-quenched BPD molecules on Cet can be de-

quenched by cancer cells upon lysosomal proteolysis of 

the Cet, and thereby increasing the tumor specificity [9–

11]. Prior to photoactivity evaluation, we confirmed that 

PIC, PIC–Nal and PIC–Nal–IRI do not alter the Q band 

of BPD (690 nm; Fig. 3a, b).

In Fig.  3c, due to the aggregation of BPD molecules 

in PBS, the absorbance values at 690  nm for free BPD 

and PIC in PBS were significantly reduced by ~ 64% 

and ~ 48%, respectively, compared to those fully dis-

solved in dimethyl sulfoxide. On the other hand, PIC–Nal 

showed a less pronounced (~ 28%) loss of absorbance 

value at 690 nm in PBS compared to that fully dissolved 

in DMSO (Fig.  3c). This is presumable due to the pres-

ence of PEG (~ 5  mol%) on the Nal that helps mitigate 

PIC aggregation in PBS. Loading of irinotecan into the 

aqueous core of PIC–Nal did not alter BPD’s absorbance 

value at 690 nm (Fig. 3c). Both free BPD and PIC showed 

poor photoactivity due to the static fluorescence quench-

ing of BPD molecules as reported by us previously 

(Fig.  3d) [7, 9–11]. In contrast, PIC–Nal and PIC–Nal–

IRI exhibit up to 45% of photoactivity. This suggests that 

BPD molecules on PIC–Nal and PIC–Nal–IRI are more 

readily activated by light for PIT in biologically relevant 

media compared to PIC (Fig. 3d). We next examined the 

singlet oxygen (1O2) yield of free BPD, PIC, and PIC–Nal 

using singlet oxygen sensor green (SOSG) probes. Upon 

light activation, the SOSG fluorescence intensity gener-

ated by PIC–Nal was significantly higher than that of free 

BPD, PIC and Nal (Fig. 3e), indicating that PIC–Nal has a 

higher 1O2 yield than BPD, PIC, or Nal. We also showed 

that simply mixing PIC with Nal (i.e., ‘PIC + Nal’) does 

not improve the 1O2 yield of PIC, confirming that the 

enhanced 1O2 yield of PIC-Nal relies on the successful 

click chemistry coupling of PICs onto Nal.

Selectivity and uptake of PIC–Nal in cancer cells

We next investigated if PIC–Nal can selectively deliver 

Nal to EGFR-overexpressing cells by comparing the selec-

tive uptake of PIC–Nal and Nal in EGFR(+) OVCAR-5 

cells and EGFR( −) J774 macrophages at a fixed Nal con-

centration (based on rhodamine incorporation). After 

30  min of incubation at 37  °C, PIC–Nal uptake is 2- to 

6-fold higher than Nal uptake in EGFR(+) OVCAR-5 

cells (Fig.  4a). In contrast, PIC–Nal uptake was compa-

rable to Nal uptake in EGFR(–) J774 macrophages. These 

results suggest PIC–Nal selectively binds to EGFR( +) 

cells over EGFR(–) cells. We also observed a reduc-

tion in the EGFR-targeting capability of PIC–Nal with 

increasing BPD:Cet ratio from 2:1 to 6:1 (Fig.  4a), indi-

cating excessive loading of BPD on Cet can compromise 

the selectivity of the antibody. We next tested if cancer-

selective PIC–Nal can improve the overall uptake of PIC 

Fig. 2 Drug release and the stability of Nal–IRI and PIC–Nal–IRI. a Both Nal–IRI and PIC–Nal–IRI exhibited similar irinotecan release profiles 

in serum‑containing medium at 37 °C. b, c The long‑term stability of Nal–IRI and PIC–Nal–IRI (4 °C, PBS) in dark was assessed by longitudinal 

monitoring of changes in b hydrodynamic size and c polydispersity index
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in EGFR-overexpressing OVCAR-5 cells at 24  h post-

incubation. Compared to PIC alone, we observed that 

PIC–Nal enhances (P < 0.05) the intracellular BPD uptake 

by 95%, 56%, and 32% at BPD:Cet molar ratios of 2:1, 4:1 

and, 6:1, respectively (Fig.  4b). In contrast, this ‘carrier 

effect’ was not present in the low EGFR expressing U87 

cells (Additional file 1: Figures S2, S3).

Leveraging the diagnostic capabilities of BPD fluores-

cence, we visualized the intracellular uptake of free BPD, 

PIC, and PIC–Nal in OVCAR-5 cells at 24 h post-incuba-

tion (Fig. 4c). Hydrophobic BPD can easily partition into 

the plasma membrane of both cancerous and non-malig-

nant cells. Thus, it is not surprising that free BPD shows 

the highest uptake in OVCAR-5 cells compared to PIC 

and PIC–Nal. However, free BPD lacks selectivity against 

EGFR-overexpressing cancer cells, and thus will more 

likely induce off-target phototoxicity in  vivo. Fluores-

cence microscopy images show that PIC–Nal modestly 

enhanced intracellular BPD accumulation compared to 

PIC alone (Fig. 4c), which agrees with our findings using 

the extraction method (Fig.  4b). Incubation with PIC–

Nal led to a significant intracellular accumulation of Nal, 

indicated by the intense rhodamine fluorescence signals 

(Fig. 4c). This suggests the potential of delivering another 

therapeutic agent at a high payload using PIC–Nal. These 

studies verified that PIC–Nal not only enables EGFR-

targeted delivery of Nal, but also serves as a platform to 

enhance PIC uptake in EGFR(+) cancer cells (Fig. 4d).

Fig. 3 Photophysical and photochemical characterizations of PIC, PIC–Nal, and PIC–Nal–IRI. a Absorbance spectra of BPD, PIC, and PIC–Nal in DMSO 

showing overlapping main peaks centered at 435 nm (Soret band) and 690 nm (Q band; wavelength for light activation). b Absorbance spectra of 

irinotecan (IRI), Nal–IRI, and PIC–Nal–IRI in DMSO. c A comparison of the 690 nm absorbance value of BPD, PIC, PIC–Nal, and PIC–Nal–IRI in DMSO 

and PBS at a fixed BPD concentration. d Photoactivity of BPD, PIC, PIC–Nal, and PIC–Nal–IRI. Photoactivity is defined in the Methods section. e 

SOSG reports 1O2 production from free BPD, PIC, PIC–Nal, Nal, and ‘PIC + Nal’ in PBS with and without light activation at 690 nm. (n > 3; **P < 0.01, 

***P < 0.001; n.s.: not significant; one‑way ANOVA, Tukey’s posthoc test)

(See figure on next page.)

Fig. 4 Selective binding, uptake, and imaging of PIC–Nal in cancer cells. a The selectivity of PIC–Nal was assessed in EGFR(−) J774 and EGFR(+) 

OVCAR‑5 cells after 30 min of incubation. Nal alone was used as a control. The BPD:Cet ratio of PIC was varied (2:1, 4:1, 6:1). b The uptake of PIC–

Nal and PIC in OVCAR‑5 cells was assessed at 24 h after incubation, based on intracellular BPD fluorescence signal. c Representative fluorescence 

images of OVCAR‑5 incubated with BPD, PIC, or PIC–Nal for 24 h. The BPD:Cet ratio of PIC was fixed at 6:1. Fluorescence signal of the nuclei (DAPI), 

BPD, and nanoliposome (rhodamine) shown in blue, green, and red, respectively (scale bar = 35 µm). d Depiction of the ‘carrier effect’ of PIC–Nal in 

EGFR(+) cancer cells. (n > 3; *P < 0.05, ***P < 0.001; n.s.: not significant; one‑way ANOVA, Tukey’s posthoc test)
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PIC–Nal delivers irinotecan for synergistic 

photoimmuno‑chemotherapy in vitro

We investigated if PIC–Nal is more phototoxic than PIC 

using OVCAR-5 cells. U87 cells expressing lower EGFR 

levels served as a control (Additional file  1: Figure S1). 

At 24 h after light activation (20 J/cm2), PIC–Nal signifi-

cantly reduced OVCAR-5 viability by ~ 60%, compared 

to ~ 35% viability reduction achieved by using PIC at a 

fixed BPD:Cet ratio of 6:1 (Fig. 5a, b). Similar results were 

observed using PIC and PIC–Nal with lower BPD:Cet 

ratios of 2:1 and 4:1 (Additional file  1: Figure S2). All 

samples, including PIC–Nal alone, PIC alone, and Nal 

alone, have negligible dark toxicity (Fig.  5b). In U87 

cells, we observed no statistically significant difference in 

phototoxicity between PIC–Nal and PIC (Fig.  5c, Addi-

tional file 1: Figure S3), suggesting that the ‘carrier effect’ 

of PIC–Nal is, in part, dependent on the level of EGFR 

expression in cancer cells.

PIC–Nal not only improved PIT efficacy against 

EGFR-overexpressing cancer cells, but provided us an 

opportunity to co-deliver irinotecan chemotherapy to 

further enhance treatment outcomes. We next evalu-

ated the therapeutic efficacy of PIC–Nal–IRI at vari-

ous light fluences (0–0.6  J/cm2) in OVCAR-5 and U87 

cells (Fig.  6a). Control groups include Nal–IRI alone, 

PIC alone, PIC–Nal alone, and simply mixing PIC with 

Nal–IRI (‘PIC + Nal–IRI’) at fixed drug concentrations 

(i.e., irinotecan: 7 μM and BPD: 1 μM). The molar ratio of 

BPD-to-Cet was fixed at 6:1. In OVCAR-5 (Fig. 6b) and 

U87 cells (Fig.  6c), 72  h of Nal–IRI-treatment reduced 

cell viability by ~ 20–25%. Light activation of Nal–IRI 

alone did not alter the cell viability (P > 0.05). Both PIC 

and PIC–Nal alone showed minimal dark toxicity (< 15% 

viability reduction) (Fig.  6b, c). A light dose dependent 

reduction in cell viability was observed in both PIC- and 

PIC–Nal-treated cells. PIC–Nal was consistently found 

to be ~ 10–15% more phototoxic compared to PIC alone 

in OVCAR-5, but not in U87 cells. The  IC50 of PIC–Nal 

upon light activation was approximately 0.6  μM × J/

cm2 and 0.35  μM × J/cm2 for OVCAR-5 and U87 cells, 

respectively (Fig.  6b, c). In OVCAR-5 cells, while both 

PIC–Nal–IRI and ‘PIC +  Nal–IRI’ showed similar pho-

totoxicity at 0.2  J/cm2 or below, we observed that PIC–

Nal–IRI out-performs ‘PIC + Nal–IRI’ at or above 0.5  J/

cm2 (Fig.  6b). At 0.6  μM × J/cm2, we showed that PIC–

Nal–IRI is ~ 20% more cytotoxic than ‘PIC + Nal–IRI’ 

in OVCAR-5 cells (P < 0.001) (Fig. 6d). In contrary, both 

PIC–Nal–IRI and ‘PIC + Nal–IRI’ showed similar photo-

toxicity in U87 cells (Fig. 6e).

We further explored the combination interactions 

between the no-treatment (NT), PIC alone, Nal–IRI 

alone, and PIC–Nal–IRI groups (Fig.  6f, g). Using 

Fig. 5 Phototoxicity of PIC–Nal and PIC in OVCAR‑5 and U87 cells. a Cells were incubated with PIC or PIC–Nal at a fixed BPD concentration 

(0.25 µM) for 24 h prior to light activation (690 nm, 20 J/cm2, 150 mW/cm2). Cell viability was determined by MTT assay at 24 h post‑light activation. 

PIC–Nal is more phototoxic than PIC in b high EGFR expressing OVCAR‑5 but not in c low EGFR expressing U87. (n > 3; *P < 0.05, ***P < 0.001; n.s.: not 

significant; one‑way ANOVA, Tukey’s posthoc test)
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CompuSyn software and robust regression fits of the 

dose–response curve trend lines  (R2 = 0.914–0.999) [33, 

34], the combination index (CI) values were calculated 

to determine if combination of PIT and Nal–IRI using 

PIC–Nal–IRI is synergistic (CI < 1), additive (CI = 1), or 

antagonistic (CI > 1). In OVCAR-5 cells, combination of 

PIT and Nal–IRI using PIC–Nal–IRI is additive at 0.3 J/

cm2 (CI 0.97 ± 0.09), and synergistic at 0.5 and 0.6 J/cm2 

Fig. 6 Combination of PIT and Nal–IRI in OVCAR‑5 and U87 cells. a Cells were incubated with PIC–Nal–IRI or controls at a fixed BPD (1 µM) and 

irinotecan (7 µM) concentration for 48 h prior to light activation (690 nm, 10 mW/cm2, 0–0.6 J/cm2). b OVCAR‑5 viability and c U87 viability were 

determined by MTT assay at 24 h post‑light activation. The  IC50 values of PIC–Nal are ~ 0.6 μM × J/cm2 and ~ 0.35 μM × J/cm2 for d OVCAR‑5 

and e U87 cells, respectively. d, e The reduction of cell viability was compared among the treatment groups. f, g Combination index (CI) was 

determined using CompuSyn software. The CI value quantitatively defines synergism (CI < 1), additive effect (CI = 1) and antagonism (CI > 1) effect 

of light‑activated PIC–Nal–IRI in OVCAR‑5 and U87 cells. (n > 3; *P < 0.05, ***P < 0.001; n.s.: not significant; one‑way ANOVA, Tukey’s post hoc test)



Page 9 of 14Liang et al. J Nanobiotechnol            (2020) 18:1 

(CI 0.76 ± 0.12 and 0.54 ± 0.19, respectively). Therapeu-

tic synergy was observed in a light dose dependent man-

ner in OVCAR-5 cells (Fig. 6f ), but not in U87 cells (CI 

1.2 ± 0.1) (Fig. 6g).

Multi‑tier cellular targeting using PIC–Nal–IRI

The uniqueness of PIC–Nal–IRI lies, in part, in the 

multi-tier cellular targeting abilities. Three mechanisti-

cally distinct therapeutics (i.e., Cet, BPD, and irinotecan) 

were incorporated in PIC–Nal–IRI to target the EGFR, 

mitochondria, and DNA, respectively (Fig. 7a). Downreg-

ulation of total EGFR expression was observed after 24 h 

of PIC–Nal–IRI incubation and persisted throughout the 

treatment duration up to 72 h (Fig. 7b, c). Nal–IRI alone 

did not alter the EGFR expression (Additional file 1: Fig-

ure S4a). Irinotecan induced DNA damage was evaluated 

by monitoring the expression level of γ-H2AX [35]. PIC–

Nal–IRI significantly upregulated γ-H2AX expression at 

72  h post-incubation (Fig.  7d), indicating DNA double-

strand breaks. γ-H2AX expression was found to be simi-

lar across all different groups (i.e., NT, Nal–IRI, PIC, and 

PIC–Nal–IRI) at 48 h post-incubation (Additional file 1: 

Figure S4b). We have recently shown that proteolyzed 

PIC co-localizes to mitochondria after 24 h and induces 

mitochondrial membrane potential (ΔΨm) depolariza-

tion upon light activation in glioma cells [9]. Here, we 

measured ΔΨm depolarization in OVCAR-5 cells at 24 h 

after light activation of PIC-Nal-IRI or controls (Fig. 7e). 

Light activation of PIC, PIC–Nal, or PIC–Nal–IRI all 

induced a high level of ΔΨm depolarization in OVCAR-5 

cells (Fig.  7e). No ΔΨm depolarization was observed 

using Nal–IRI alone (Fig. 7e).

Discussion
PIC is a promising and exciting tool in the armamen-

tarium for cancer treatment, surgery, and imaging 

[1–3, 11]. However, the selectivity-uptake trade-off 

remains the major drawback limiting the application 

of PIC technology. Previous elegant works have shown 

that PIC (Cet-BPD) is highly selective against cancer 

cells overexpressing EGFR with 20-fold less accumula-

tion in low EGFR cells [7, 36, 37]. The Cet-BPD also has 

a high tumor-to-normal tissue ratio (T/N) of 9.2, which 

mitigates bowel phototoxicity [11]. Despite high tumor 

selectivity, we recently discovered that the intracellular 

uptake of Cet-BPD is six fold less than that of free BPD 

in EGFR-overexpressing cancer cells, significantly reduc-

ing the anti-cancer phototoxicity by 20-fold [9]. To break 

through this selectivity-uptake trade-off, we introduced 

an engineering approach that leverages click chemistry 

to covalently tether large amounts of PICs (Cet-BPD) 

onto the surface of a Nal. We demonstrated that PIC–

Nal is not only highly selective to EGFR-overexpressing 

OVCAR-5 cells with 2- to 5-fold less accumulation 

in macrophage cells, but also enhances PIC uptake in 

OVCAR-5 by ~ 20–30%, overcoming the selectivity-

uptake trade-off and improving the overall PIT efficacy.

Similar results were observed by us previously using 

PIC-PLGA nanoparticles (PIC-NP) in OVCAR-5 and 

U87 cells, indicating the generalizability of this approach 

[10]. However, unlike PIC-NP, in this study, PIC–Nal did 

not enhance the PIC accumulation in low EGFR-express-

ing U87 cells. We speculate this discrepancy is attributed 

to the larger size (steric hindrance) and a lower PIC sur-

face density of PIC–Nal (~ 150  nm, ~ 32 PICs per Nal), 

compared to the smaller size PIC-NP (~ 100 nm) with a 

higher PIC surface density (~ 75 PICs per NP). In fact, 

Gonzalez-Rodriguez et  al. [38] have reported that cyto-

plasmic rigidity could limit the internalization of larger 

particles with radii above the optimal radius (typically 

around 50 nm) via receptor-mediated endocytosis. Vácha 

et  al. [39] have also shown that increasing the antibody 

coverage on the surface of nanoparticles or the antibody-

receptor binding affinity can improve receptor-mediated 

endocytosis. Based on these studies and our results, we 

believe that conjugation of PICs onto a nanoplatform 

to boost the cancer-selective PIC uptake is also contin-

gent upon several important parameters, including par-

ticle size, PIC density, and PIC binding affinity of the 

nanoplatforms, which warrants further investigation and 

optimization.

PDT has been shown to reverse chemoresistance, syn-

ergize with chemotherapeutics and biologics, and over-

come compensatory survival pathways used by cancer 

cells to evade treatment [40–44]. We have also shown 

that PDT synergizes with irinotecan to reduce metastatic 

burden and improve survival outcomes in pancreatic 

tumor mouse models via a two-way mechanism, in which 

(i) PDT photodamages ABCG2 drug efflux transporters 

to prevent irinotecan efflux, and (ii) irinotecan alleviates 

PDT-induced tumor hypoxia [21–23]. However, these 

studies utilized ‘non-targeted’ nanoliposomal irinotecan 

and ‘unquenched’ photosensitizers that are at a higher 

risk of normal tissue toxicity. A major advance of this 

study lies in our ability to reproducibly incorporate iri-

notecan into PIC–Nal for synergistic, targeted photoim-

muno-chemotherpy. It has already been shown that the 

therapeutic synergy of combination treatments depends, 

in part, on the delivery of multiple drugs at a fixed molar 

ratio to cancer cells [45]. Here, we showed that PIC–Nal–

IRI, co-delivering a fixed irinotecan-to-BPD molar ratio 

at 7:1, could be activated by light at low light fluences 

(0.5–0.6  J/cm2) for synergistic reduction of cancer cell 

viability (CI < 0.76). Further optimization of the irinote-

can-to-PIC ratio in PIC–Nal–IRI is likely needed to max-

imize treatment outcomes in  vivo. Another important 
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Fig. 7 Multi‑tier cancer targeting. a Schematic of multi‑tier cancer targeting mechanism: (1) EGFR binding, endocytosis, and proteolysis of PIC–

Nal–IRI, (2) PIT‑mediated depolarization of mitochondrial membrane potential, and (3) irinotecan‑induced DNA damage, leading to synergistic 

cell killing. b Immunoblotting of EGFR and γ‑H2AX expression in OVCAR‑5 cells at different time points after treatment. Quantitative analyses 

of normalized c EGFR and d γ‑H2AX expressions in OVCAR‑5 cells. e Mitochondrial membrane depolarization was assessed at 24 h post‑light 

irradiation (0.35 J/cm2, 10 mW/cm2). (n = 3; *P < 0.05; **P < 0.01; ***P < 0.001; n.s.: not significant; one‑way ANOVA, Tukey’s post hoc test)
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finding is that PIC–Nal–IRI exhibits significantly higher 

OVCAR-5 cell phototoxicity by 20% (P < 0.001), com-

pared to using the unconjugated mixtures of ‘PIC + Nal–

IRI,’ which is an often-overlooked control during the 

development of multi-drug nanomedicine. In low EGFR 

expressing U87 cell, PIC–Nal–IRI and unconjugated 

mixtures of ‘PIC + Nal–IRI’ had similar phototoxicity at 

0.35 J/cm2 (viability: 34.9 ± 2.0% vs. 36.5 ± 1.9%; P > 0.05), 

but both are superior to Nal–IRI alone or PIC-PIT 

alone (viability: 75.8 ± 2.8% vs. 53.5 ± 4.3%, respectively; 

P < 0.001). These observations suggest that, while combi-

nation of PIT and Nal–IRI is more effective in reducing 

cancer cell viability compared to their monotherapies, 

the co-packaging of PIC and irinotecan in a single nano-

formulation might not be required in low EGFR-express-

ing tumors.

Combination treatments are most effective when tar-

geting not only non-overlapping signaling pathways but 

also different subcellular components [28, 46]. Here, we 

integrated three mechanistically distinct, clinically used 

agents (Cet, BPD, and irinotecan) into a single nano-

platform to target the EGFR, mitochondria, and DNA, 

cooperatively. Similar to previous observations made by 

others and us using PIC or Cet alone [8, 9], we showed 

that PIC–Nal–IRI downregulates EGFR expression as 

soon as 24  h of administration. This also confirms that 

click conjugation of PIC onto Nal does not impair PIC’s 

ability to inhibit EGFR. It is well established that iri-

notecan-induced up-regulation of γ-H2AX, a prominent 

DNA damage marker, typically occurs at 48–72  h after 

incubation. Here, we showed that PIC–Nal–IRI elicits 

DNA breakage at 50 and 72 h after treatment. However, 

we observed that PIC–Nal–IRI transiently downregulates 

γ-H2AX expression in the first 24  h of incubation. This 

is presumably due to the activation of Cet-induced DNA 

repair pathways (e.g., Eme1) as shown by others [47]. 

Lastly, depolarization of the mitochondrial membrane 

was observed at 24 h after light activation of PIC–Nal–

IRI, PIC-Nal, or PIC, but not with Nal–IRI alone, sug-

gesting cytosolic mitochondrial photodamage is achieved 

primarily by PIC, as reported by us [9].

Conclusion
In summary, the selectivity-uptake trade-off of PICs 

and the need of chemotherapy to enhance treatment 

outcomes are two major hurdles limiting the applica-

tion of PIT for cancer management. This study intro-

duces a light-activatable nanoplatform to overcome 

these challenges via a two-pronged approach. First, suc-

cessful conjugation of PICs onto the surface of nanoli-

posomes overcomes the selectivity-uptake trade-off of 

PIC. Second, PIC–Nal–IRI offers a unique opportunity 

to target multiple major components of a cancer cell for 

synergistic therapeutic outcomes. Our in  vitro results 

also point to valuable parameters (e.g., size, PIC den-

sity, and PIC binding affinity) to be optimized prior to 

advancing PIC–Nal–IRI to animal studies.

Methods
Photoimmunoconjugate (PIC) synthesis 

and characterization

Conjugation of BPD to Cet was achieved via carbo-

diimide chemistry [9, 10]. Briefly, Cet (152 kDa; 2 mg/

mL) was pegylated with mPEG-NHS (40k; 16  mg/

mL) overnight. Pegylated Cet was mixed with BPD 

N-hydroxysuccinimidyl ester (BPD-NHS) and azide-

PEG4-N-hydroxysuccinimidyl ester (azide-PEG-NHS) 

at 1:3:2.5, 1:6:2.5, and 1:9:2.5 molar ratios for 20  h. 

The resulting PIC was purified using a 7  kDa MWCO 

Zeba™ spin desalting column that is pre-equilibrated 

with 30% DMSO, and concentrated with a 30 kDa cen-

trifugal filter tube. The purity of PIC was confirmed to 

be over 99% using SDS-PAGE (Additional file 1: Figure 

S5). BPD concentration was determined by UV–Vis 

spectroscopy using established molar extinction coeffi-

cients (Additional file 1: Table S3). Antibody concentra-

tion was determined using BCA assay.

Nanoliposome (Nal) synthesis and characterization

Nanoliposome (Nal) and nanoliposomal irinote-

can (Nal–IRI) were prepared following freeze–thaw 

extrusion method [21, 22, 48, 49]. Briefly, cholesterol, 

dipalmitoylphosphatidylcholine (DPPC), distearoyl-

phosphatidylethanolamine-methoxy polyethylene 

glycol (DSPE-mPEG2000), distearoyl-glycerophosphoe-

thanolamine-N-dibenzocyclooctyl polyethylene glycol 

(DSPE-mPEG2000-DBCO), and dioleoylglycerophos-

phoglycerol (DOPG; Avanti) were mixed at a molar 

ratio of 2.8:6:0.4:0.2:0.6. For selectivity and uptake stud-

ies, 0.1  mol% of dipalmitoylglycero-phosphoethanol-

amine-N-(lissamine Rhodamine B sulfonyl) (16:0 Liss 

Rhod PE) was added to the lipid film. The dried lipid 

film was hydrated with deionized water with or with-

out irinotecan (3  mM) prior to freeze–thaw cycling 

(4°C –45  °C). Multi-laminar nanoliposomes were then 

extruded through polycarbonate membrane (What-

man; 0.1  μm) at 45  °C and dialyzed against PBS to 

remove free irinotecan. Zetasizer NanoZS (Malvern) 

determined the size and zeta potential of Nals. The 

concentration of irinotecan was determined using UV–

Vis spectroscopy and the established molar extinction 

coefficients (Additional file 1: Table S3) [21, 22, 48].
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Photoimmunoconjugate‑nanoliposome (PIC‑Nal) 

synthesisand characterization

Photoimmunoconjugate-nanoliposomes (PIC–Nal) and 

photoimmunoconjugate-nanoliposomal irinotecan (PIC–

Nal–IRI) were synthesized via cooper-free click chemis-

try. Briefly, azide-containing PICs were mixed overnight 

with DBCO-containing Nal (or DBCO-containing Nal–

IRI) at a molar ratio of 60:1. Sepharose CL-4B size exclu-

sion chromatography was used to purify PIC–Nal and 

PIC–Nal–IRI. Drug concentrations were determined by 

UV–Vis spectroscopy and established molar extinction 

coefficients (Additional file  1: Table  S3). Singlet oxygen 

sensor green (SOSG, 5  μM) was used to detect singlet 

oxygen (1O2) yield upon light irradiation of PIC–Nal–IRI 

or controls. BPD concentration is fixed at 5 μM. A micro-

plate reader (BioTek) was used to acquire SOSG fluores-

cence signals (Ex/Em: 504/525 nm) before and after light 

irradiation (690 nm, 150 mW/cm2, 20 J/cm2). Photoactiv-

ity is defined as the maximal fluorescence intensity (FI) 

of photosensitizer in PBS divided by the maximal FI of 

photosensitizer in DMSO. The stability of the nanofor-

mulations in PBS was determined by monitoring their 

hydrodynamic size and polydispersity index (PdI) over 

time. Irinotecan release from Nal–IRI and PIC–Nal–IRI 

was studied in 1% human serum at 37 °C under constant 

stirring using a dialysis setup described previously [21, 

22].

Selectivity, Uptake, and Phototoxicity 

of Photoimmunoconjugate‑Nanoliposome (PIC–Nal)

Human ovarian cancer (OVCAR-5), human glioma 

(U87), and murine macrophage (J774) cell lines were pur-

chased from ATCC and cultured in a 37 °C, 5%  CO2 incu-

bator with designated media. Cells were confirmed to 

be free of mycoplasma. For selectivity studies, EGFR(+) 

OVCAR-5 cells or EGFR(−) J774 cells were plated (400 k 

cells/35-mm Petri dish) and allowed to grow overnight. 

Cells were incubated with rhodamine-labeled PIC–Nal 

(or rhodamine-labeled Nal) at a fixed rhodamine con-

centration (0.5  μM) for 30  min (37  °C). After incuba-

tion, cells were washed twice with PBS and dissolved in 

Solvable™. The rhodamine fluorescence signals (Ex/Em: 

545/610  nm) were acquired using a microplate reader 

to determine the selective binding of PIC–Nal. For 

uptake and phototoxicity studies, OVCAR-5 cells (200 k 

cells/35-mm dish) were incubated with PIC–Nal or con-

trols (i.e., PIC alone, no-treatment) at a fixed BPD con-

centration (0.25 μM) for 24 h. For the uptake study, cells 

were washed twice with PBS and dissolved in Solvable™. 

The BPD fluorescence signals (Ex/Em: 435/690 nm) were 

acquired using a microplate reader to quantify the uptake 

of PIC–Nal. In another set of experiment, washed cells 

were fixed with 4% paraformaldehyde, and stained with 

DAPI. Cells were imaged with the LionHeart Imager 

(BioTek) using the 10 x objective to visualize the BPD sig-

nal (Ex/Em: 422/690  nm) and the DAPI signal (Ex/Em: 

358/461 nm). BPD fluorescence intensity was quantified 

using ImageJ [50]. For phototoxicity studies, cells were 

irradiated with a 690 nm laser (20  J/cm2, 150 mW/cm2) 

at 24 h post-incubation of PIC–Nal or controls. Cell via-

bility was determined by MTT (3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide) assay (Thermo) 

at 24 h post-light activation.

Photoimmuno‑chemotherapy efficacy

To assess photoimmuno-chemotherapy efficacy, 

OVCAR-5 (5 k cells/well) and U87 cells (7 k cells/well), 

cultured in black-wall flat bottom 96-well plates, were 

incubated with PIC–Nal–IRI or controls at fixed drug 

concentrations (i.e., 1 μM of BPD and 7 μM of irinotecan) 

for 48 h prior to light activation (690 nm, 0–0.6 J/cm2, 10 

mW/cm2; Modulight). Cell viability was determined by 

MTT assay at 24  h post-light activation. Mitochondrial 

membrane potential (ΔΨm) was examined via TMRE 

assay (Abcam). For western blot analyses, cell lysates 

(20  µg) were separated on 4–12% precast Bis–Tris pro-

tein gels and transferred onto a PVDF membrane. Subse-

quent to blocking with 5% BSA or milk in TBST solution, 

proteins were further detected using antibodies against 

EGFR (1:1000, Cell Signaling #2239) and γ-H2AX (1:500, 

EMP #05636). Anti β-actin antibodies (1:5000, Cell 

Signaling #3700) were used for the loading control. Vis-

ualization of protein bands was developed via chemilu-

minescence (SuperSignal) with exposure to a Gel Imager 

(ProteinSimple).

Statistical analysis

All experiments were carried out at least in triplicates. 

Specific tests and number of repeats are indicated in the 

figure captions. Results were shown with mean ± stand-

ard error of the mean (SEM). Statistical analyses were 

performed using GraphPad Prism (GraphPad Software).

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s1295 1‑019‑0560‑5.

Additional file 1: Table S1. Synthesis of photoimmunoconjugates with 

different BPD‑to‑Cetuximab (BPD:Cet) ratios. Table S2. Physical characteri‑

zation of nanoliposome (Nal) and photoimmunoconjugate‑nanoliposome 

(PIC‑Nal) with varying BPD‑to‑Cetuximab (BPD:Cet) ratios of PIC. Table S3. 

Molar extinction coefficients (ε) and equations used to determine the 

irinotecan concentration (CIRI) and BPD concentration (CBPD) of PIC‑Nal‑IRI 

in DMSO using Beer‑Lambert law. Figure S1. Immunoblotting of EGFR in 

human OVCAR‑5 and U87 cells. Whole cell extracts (20 µg) were loaded 

into each lane. β‑actin was used as loading control. OVCAR‑5 cell line has 

a higher EGFR expression compared to U87 cells. Figure S2. Phototoxicity 
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of photoimmunoconjugate‑nanoliposome (PIC‑Nal) at different BPD:Cet 

ratios in human ovarian cancer cells (OVCAR‑5). Cells were incubated with 

PIC or PIC‑Nal at a fixed BPD concentration of 0.25 µM for 24 h before 

light activation at 690 nm (20 J/cm2, 150 mW/cm2, bottom illumination). 

Cell viability was determined by MTT assay at 24 h after photoimmu‑

notherapy (PIT). (n > 3; *P < 0.05; one‑way ANOVA, Tukey’s posthoc test). 

Figure S3. Intracellular BPD fluorescence signals of PIC and PIC‑Nal (at 

different BPD:Cet ratios) were evaluated in human glioma cells (U87) via 

extraction method. Cells were incubated with PIC or PIC‑Nal at a fixed 

BPD concentration of 0.25 µM for 24 h prior to extraction (n > 3; n.s.: not 

significant; one‑way ANOVA, Tukey’s posthoc test). Figure S4. Immunob‑

lotting of EGFR and γ‑H2AX expressions in OVCAR‑5 cells at 24 h and 47 

h after incubation of PIC, Nal‑IRI, and PIC‑Nal‑IRI. Whole cell extracts (20 

µg) were loaded into each lane. β‑actin was used as a loading control. 

(a) Downregulation of EGFR was most pronounced when treated with 

PIC‑Nal‑IRI. (b) The γ‑H2AX expression remained at a similar level across 

different treatment groups. (n = 3; *P < 0.05; **P < 0.01; ***P < 0.001; one‑

way ANOVA, Tukey’s posthoc test). Figure S5. The purity of Cet‑BPD was 

assessed by gel fluorescence imaging analysis following sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS‑PAGE). (a) Coomassie 

blue staining of SDS‑PAGE for visualization of the standards (Ladder), Cet, 

Cet‑BPD (PIC), and BPD. (b) Gel fluorescence imaging (Em: 690 nm) of 

SDS‑PAGE shows < 1% free BPD impurity in PIC; fluorescence intensity was 

quantified using ImageJ.
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