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ABSTRACT

We formulate language modeling as a matrix factorization problem, and show
that the expressiveness of Softmax-based models (including the majority of neu-
ral language models) is limited by a Softmax bottleneck. Given that natural lan-
guage is highly context-dependent, this further implies that in practice Softmax
with distributed word embeddings does not have enough capacity to model nat-
ural language. We propose a simple and effective method to address this issue,
and improve the state-of-the-art perplexities on Penn Treebank and WikiText-2 to
47.69 and 40.68 respectively. The proposed method also excels on the large-scale
1B Word dataset, outperforming the baseline by over 5.6 points in perplexity.1

1 INTRODUCTION

As a fundamental task in natural language processing, statistical language modeling has gone
through significant development from traditional Ngram language models to neural language mod-
els in the last decade (Bengio et al., 2003; Mnih & Hinton, 2007; Mikolov et al., 2010). Despite
the huge variety of models, as a density estimation problem, language modeling mostly relies on a
universal auto-regressive factorization of the joint probability and then models each conditional fac-
tor using different approaches. Specifically, given a corpus of tokens X = (X1, . . . , XT ), the joint
probability P (X) factorizes as P (X) =

∏

t P (Xt | X<t) =
∏

t P (Xt | Ct), where Ct = X<t is
referred to as the context of the conditional probability hereafter.

Based on the factorization, recurrent neural networks (RNN) based language models achieve state-
of-the-art results on various benchmarks (Merity et al., 2017; Melis et al., 2017; Krause et al., 2017).
A standard approach is to use a recurrent network to encode the context into a fixed size vector,
which is then multiplied by the word embeddings (Inan et al., 2016; Press & Wolf, 2017) using dot
product to obtain the logits. The logits are consumed by the Softmax function to give a categorical
probability distribution over the next token. In spite of the expressiveness of RNNs as universal
approximators (Schäfer & Zimmermann, 2006), an unclear question is whether the combination
of dot product and Softmax is capable of modeling the conditional probability, which can vary
dramatically with the change of the context.

In this work, we study the expressiveness of the aforementioned Softmax-based recurrent language
models from a perspective of matrix factorization. We show that learning a Softmax-based recurrent
language model with the standard formulation is essentially equivalent to solving a matrix factoriza-
tion problem. More importantly, due to the fact that natural language is highly context-dependent,
the matrix to be factorized can be high-rank. This further implies that standard Softmax-based lan-
guage models with distributed (output) word embeddings do not have enough capacity to model
natural language. We call this the Softmax bottleneck.

We propose a simple and effective method to address the Softmax bottleneck. Specifically, we
introduce discrete latent variables into a recurrent language model, and formulate the next-token
probability distribution as a Mixture of Softmaxes (MoS). Mixture of Softmaxes is more expressive
than Softmax and other surrogates considered in prior work. Moreover, we show that MoS learns

∗Equal contribution. Ordering determined by dice rolling.
1Code is available at https://github.com/zihangdai/mos.
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matrices that have much larger normalized singular values and thus much higher rank than Softmax
and other baselines on real-world datasets.

We evaluate our proposed approach on standard language modeling benchmarks. MoS substantially
improves over the current state-of-the-art results on benchmarks, by up to 3.6 points in terms of
perplexity, reaching perplexities 47.69 on Penn Treebank and 40.68 on WikiText-2. We further
apply MoS to a dialog dataset and show improved performance over Softmax and other baselines.

Our contribution is two-fold. First, we identify the Softmax bottleneck by formulating language
modeling as a matrix factorization problem. Second, we propose a simple and effective method that
substantially improves over the current state-of-the-art results.

2 LANGUAGE MODELING AS MATRIX FACTORIZATION

As discussed in Section 1, with the autoregressive factorization, language modeling can be reduced
to modeling the conditional distribution of the next token x given the context c. Though one might ar-
gue that a natural language allows an infinite number of contexts due to its compositionality (Pinker,
1994), we proceed with our analysis by considering a finite set of possible contexts. The unbound-
edness of natural language does not affect our conclusions, which will be discussed later.

We consider a natural language as a finite set of pairs of a context and its conditional next-token
distribution2 L = {(c1, P

∗(X|c1)), · · · , (cN , P ∗(X|cN ))}, where N is the number of possible
contexts. We assume P ∗ > 0 everywhere to account for errors and flexibility in natural language.
Let {x1, x2, · · · , xM} denote a set of M possible tokens in the language L. The objective of a
language model is to learn a model distribution Pθ(X|C) parameterized by θ to match the true data
distribution P ∗(X|C).

In this work, we study the expressiveness of the parametric model class Pθ(X|C). In other words,
we are asking the following question: given a natural language L, does there exist a parameter θ
such that Pθ(X|c) = P ∗(X|c) for all c in L?

We start by looking at a Softmax-based model class since it is widely used.

2.1 SOFTMAX

The majority of parametric language models use a Softmax function operating on a context vector
(or hidden state) hc and a word embedding wx to define the conditional distribution Pθ(x|c). More
specifically, the model distribution is usually written as

Pθ(x|c) =
exph⊤

c wx
∑

x′ exph⊤
c wx′

(1)

where hc is a function of c, and wx is a function of x. Both functions are parameterized by θ. Both
the context vector hc and the word embedding wx have the same dimension d. The dot product
h⊤
c wx is called a logit.

To help discuss the expressiveness of Softmax, we define three matrices:

Hθ =









h⊤
c1

h⊤
c2

· · ·
h⊤
cN









; Wθ =









w⊤
x1

w⊤
x2

· · ·
w⊤

xM









; A =









logP ∗(x1|c1), logP ∗(x2|c1) · · · logP ∗(xM |c1)
logP ∗(x1|c2), logP ∗(x2|c2) · · · logP ∗(xM |c2)

...
...

. . .
...

logP ∗(x1|cN ), logP ∗(x2|cN ) · · · logP ∗(xM |cN )









where Hθ ∈ R
N×d, Wθ ∈ R

M×d, A ∈ R
N×M , and the rows of Hθ, Wθ, and A correspond to

context vectors, word embeddings, and log probabilities of the true data distribution respectively.
We use the subscript θ because (Hθ,Wθ) is effectively a function indexed by the parameter θ, from
the joint function family U . Concretely, Hθ is implemented as deep neural networks, such as a
recurrent network, while Wθ is instantiated as an embedding lookup.

We further specify a set of matrices formed by applying row-wise shift to A

F (A) = {A+ΛJN,M |Λ is diagonal and Λ ∈ R
N×N},

2We use capital letters for variables and small letters for constants.
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where JN,M is an all-ones matrix with size N ×M . Essentially, the row-wise shift operation adds
an arbitrary real number to each row of A. Thus, F (A) is an infinite set. Notably, the set F (A) has
two important properties (see Appendix A for the proof), which are key to our analysis.

Property 1. For any matrix A′, A′ ∈ F (A) if and only if Softmax(A′) = P ∗. In other words,
F (A) defines the set of all possible logits that correspond to the true data distribution.

Property 2. For any A1 6= A2 ∈ F (A), |rank(A1)− rank(A2)| ≤ 1. In other words, all matrices
in F (A) have similar ranks, with the maximum rank difference being 1.

Based on the Property 1 of F (A), we immediately have the following Lemma.

Lemma 1. Given a model parameter θ, HθW
⊤
θ ∈ F (A) if and only if Pθ(X|c) = P ∗(X|c) for all

c in L.

Now the expressiveness question becomes: does there exist a parameter θ and A′ ∈ F (A) such that

HθW
⊤
θ = A′.

This is essentially a matrix factorization problem. We want the model to learn matrices Hθ and Wθ

that are able to factorize some matrix A′ ∈ F (A). First, note that for a valid factorization to exist,
the rank of HθW

⊤
θ has to be at least as large as the rank of A′. Further, since Hθ ∈ R

N×d and

Wθ ∈ R
M×d, the rank of HθW

⊤
θ is strictly upper bounded by the embedding size d. As a result,

if d ≥ rank(A′), a universal approximator can theoretically recover A′. However, if d < rank(A′),
no matter how expressive the function family U is, no (Hθ,Wθ) can even theoretically recover A′.
We summarize the reasoning above as follows (see Appendix A for the proof).

Proposition 1. Given that the function family U is a universal approximator, there exists a param-
eter θ such that Pθ(X|c) = P ∗(X|c) for all c in L if and only if d ≥ minA′∈F (A) rank(A′).

Combining Proposition 1 with the Property 2 of F (A), we are now able to state the Softmax Bottle-
neck problem formally.

Corollary 1. (Softmax Bottleneck) If d < rank(A) − 1, for any function family U and any model
parameter θ, there exists a context c in L such that Pθ(X|c) 6= P ∗(X|c).

The above corollary indicates that when the dimension d is too small, Softmax does not have the
capacity to express the true data distribution. Clearly, this conclusion is not restricted to a finite
language L. When L is infinite, one can always take a finite subset and the Softmax bottleneck still
exists. Next, we discuss why the Softmax bottleneck is an issue by presenting our hypothesis that
A is high-rank for natural language.

2.2 HYPOTHESIS: NATURAL LANGUAGE IS HIGH-RANK

We hypothesize that for a natural language L, the log probability matrix A is a high-rank matrix. It
is difficult (if possible) to rigorously prove this hypothesis since we do not have access to the true
data distribution of a natural language. However, it is suggested by the following intuitive reasoning
and empirical observations:

• Natural language is highly context-dependent (Mikolov & Zweig, 2012). For example, the token
“north” is likely to be followed by “korea” or “korean” in a news article on international politics,
which however is unlikely in a textbook on U.S. domestic history. We hypothesize that such
subtle context dependency should result in a high-rank matrix A.

• If A is low-rank, it means humans only need a limited number (e.g. a few hundred) of bases,
and all semantic meanings can be created by (potentially) negating and (weighted) averaging
these bases. However, it is hard to find a natural concept in linguistics and cognitive science that
corresponds to such bases, which questions the existence of such bases. For example, semantic
meanings might not be those bases since a few hundred meanings may not be enough to cover
everyday meanings, not to mention niche meanings in specialized domains.

• Empirically, our high-rank language model outperforms conventional low-rank language models
on several benchmarks, as shown in Section 3. We also provide evidences in Section 3.3 to
support our hypothesis that learning a high-rank language model is important.
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Given the hypothesis that natural language is high-rank, it is clear that the Softmax bottleneck limits
the expressiveness of the models. In practice, the embedding dimension d is usually set at the scale
of 102, while the rank of A can possibly be as high as M (at the scale of 105), which is orders of
magnitude larger than d. Softmax is effectively learning a low-rank approximation to A, and our
experiments suggest that such approximation loses the ability to model context dependency, both
qualitatively and quantitatively (Cf. Section 3).

2.3 EASY FIXES?

Identifying the Softmax bottleneck immediately suggests some possible “easy fixes”. First, as con-
sidered by a lot of prior work, one can employ a non-parametric model, namely an Ngram model
(Kneser & Ney, 1995). Ngram models are not constrained by any parametric forms so it can univer-
sally approximate any natural language, given enough parameters. Second, it is possible to increase
the dimension d (e.g., to match M ) so that the model can express a high-rank matrix A.

However, these two methods increase the number of parameters dramatically, compared to using
a low-dimensional Softmax. More specifically, an Ngram needs (N × M) parameters in order to
express A, where N is potentially unbounded. Similarly, a high-dimensional Softmax requires (M×
M) parameters for the word embeddings. Increasing the number of model parameters easily leads
to overfitting. In past work, Kneser & Ney (1995) used back-off to alleviate overfitting. Moreover,
as deep learning models were tuned by extensive hyper-parameter search, increasing the dimension
d beyond several hundred is not helpful3 (Merity et al., 2017; Melis et al., 2017; Krause et al., 2017).

Clearly there is a tradeoff between expressiveness and generalization on language modeling. Naively
increasing the expressiveness hurts generalization. Below, we introduce an alternative approach that
increases the expressiveness without exploding the parametric space.

2.4 MIXTURE OF SOFTMAXES: A HIGH-RANK LANGUAGE MODEL

We propose a high-rank language model called Mixture of Softmaxes (MoS) to alleviate the Softmax
bottleneck issue. MoS formulates the conditional distribution as

Pθ(x|c) =

K
∑

k=1

πc,k

exph⊤
c,kwx

∑

x′ exph⊤
c,kwx′

; s.t.

K
∑

k=1

πc,k = 1

where πc,k is the prior or mixture weight of the k-th component, and hc,k is the k-th context vec-
tor associated with context c. In other words, MoS computes K Softmax distributions and uses a
weighted average of them as the next-token probability distribution. Similar to prior work on re-
current language modeling (Merity et al., 2017; Melis et al., 2017; Krause et al., 2017), we first
apply a stack of recurrent layers on top of X to obtain a sequence of hidden states (g1, · · · ,gT ).

The prior and the context vector for context ct are parameterized as πct,k =
expw⊤

π,kgt
∑

K

k′=1
expw⊤

π,k′gt
and

hct,k = tanh(Wh,kgt) where wπ,k and Wh,k are model parameters.

Our method is simple and easy to implement, and has the following advantages:

• Improved expressiveness (compared to Softmax). MoS is theoretically more (or at least equally)
expressive compared to Softmax given the same dimension d. This can be seen by the fact that
MoS with K = 1 is reduced to Softmax. More importantly, MoS effectively approximates A by

ÂMoS = log

K
∑

k=1

Πk exp(Hθ,kW
⊤
θ )

where Πk is an (N ×N) diagonal matrix with elements being the prior πc,k. Because ÂMoS is

a nonlinear function (log_sum_exp) of the context vectors and the word embeddings, ÂMoS can
be arbitrarily high-rank. As a result, MoS does not suffer from the rank limitation, compared to
Softmax.

3This is also confirmed by our preliminary experiments.
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• Improved generalization (compared to Ngram). Ngram models and high-dimensional Softmax
(Cf. Section 2.3) improve the expressiveness but do not generalize well. In contrast, MoS does
not have a generalization issue due to the following reasons. First, MoS defines the following
generative process: a discrete latent variable k is first sampled from {1, · · · ,K}, and then the
next token is sampled based on the k-th Softmax component. By doing so we introduce an
inductive bias that the next token is generated based on a latent discrete decision (e.g., a topic),

which is often safe in language modeling (Blei et al., 2003). Second, since ÂMoS is defined by
a nonlinear function and not restricted by the rank bottleneck, in practice it is possible to reduce
d to compensate for the increase of model parameters brought by the mixture structure. As a
result, MoS has a similar model size compared to Softmax and thus is not prone to overfitting.

2.5 MIXTURE OF CONTEXTS: A LOW-RANK BASELINE

Another possible approach is to directly mix the context vectors (or logits) before taking the Soft-
max, rather than mixing the probabilities afterwards as in MoS. Specifically, the conditional distri-
bution is parameterized as

Pθ(x|c) =
exp

(

∑K

k=1 πc,khc,k

)⊤

wx

∑

x′ exp
(

∑K

k=1 πc,khc,k

)⊤

wx′

=
exp

(

∑K

k=1 πc,kh
⊤
c,kwx

)

∑

x′ exp
(

∑K

k=1 πc,kh
⊤
c,kwx′

) , (2)

where hc,k and πc,k share the same parameterization as in MoS. Despite its superficial similarity to
MoS, this model, which we refer to as mixture of contexts (MoC), actually suffers from the same

rank limitation problem as Softmax. This can be easily seen by defining h′
c =

∑K

k=1 πc,khc,k,

which turns the MoC parameterization (2) into Pθ(x|c) =
exph′⊤

c wx∑
x′ exph′⊤

c wx′
. Note that this is equiv-

alent to the Softmax parameterization (1). Thus, performing mixture in the feature space can only
make the function family U more expressive, but does not change the fact that the rank of HθW

⊤
θ

is upper bounded by the embedding dimension d. In our experiments, we implement MoC as a
baseline and compare it experimentally to MoS.

3 EXPERIMENTS

3.1 MAIN RESULTS

We conduct a series of experiments with the following settings:

• Following previous work (Krause et al., 2017; Merity et al., 2017; Melis et al., 2017), we eval-
uate the proposed MoS model on two widely used language modeling datasets, namely Penn
Treebank (PTB) (Mikolov et al., 2010) and WikiText-2 (WT2) (Merity et al., 2016) based on per-
plexity. For fair comparison, we closely follow the regularization and optimization techniques
introduced by Merity et al. (2017). We heuristically and manually search hyper-parameters for
MoS based on the validation performance while limiting the model size (see Appendix B.1 for
our hyper-parameters).

• To investigate whether the effectiveness of MoS can be extended to even larger datasets, we
conduct an additional language modeling experiment on the 1B Word dataset (Chelba et al.,
2013). Specifically, we lower-case the text and choose the top 100K tokens as the vocabulary. A
standard neural language model with 2 layers of LSTMs followed by a Softmax output layer is
used as the baseline. Again, the network size of MoS is adjusted to ensure a comparable number
of parameters. Notably, dropout was not used, since we found it not helpful to either model (see
Appendix B.2 for more details).

• To show that the MoS is a generic structure that can be used to model other context-dependent
distributions, we additionally conduct experiments in the dialog domain. We use the Switch-
board dataset (Godfrey & Holliman, 1997) preprocessed by Zhao et al. (2017)4 to train a
Seq2Seq (Sutskever et al., 2014) model with MoS added to the decoder RNN. Then, a Seq2Seq
model using Softmax and another one augmented by MoC with comparable parameter sizes

4https://github.com/snakeztc/NeuralDialog-CVAE/tree/master/data
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Model #Param Validation Test

Mikolov & Zweig (2012) – RNN-LDA + KN-5 + cache 9M‡ - 92.0
Zaremba et al. (2014) – LSTM 20M 86.2 82.7
Gal & Ghahramani (2016) – Variational LSTM (MC) 20M - 78.6
Kim et al. (2016) – CharCNN 19M - 78.9
Merity et al. (2016) – Pointer Sentinel-LSTM 21M 72.4 70.9

Grave et al. (2016) – LSTM + continuous cache pointer† - - 72.1
Inan et al. (2016) – Tied Variational LSTM + augmented loss 24M 75.7 73.2
Zilly et al. (2016) – Variational RHN 23M 67.9 65.4
Zoph & Le (2016) – NAS Cell 25M - 64.0
Melis et al. (2017) – 2-layer skip connection LSTM 24M 60.9 58.3

Merity et al. (2017) – AWD-LSTM w/o finetune 24M 60.7 58.8
Merity et al. (2017) – AWD-LSTM 24M 60.0 57.3
Ours – AWD-LSTM-MoS w/o finetune 22M 58.08 55.97
Ours – AWD-LSTM-MoS 22M 56.54 54.44

Merity et al. (2017) – AWD-LSTM + continuous cache pointer† 24M 53.9 52.8

Krause et al. (2017) – AWD-LSTM + dynamic evaluation† 24M 51.6 51.1

Ours – AWD-LSTM-MoS + dynamic evaluation† 22M 48.33 47.69

Table 1: Single model perplexity on validation and test sets on Penn Treebank. Baseline results are obtained
from Merity et al. (2017) and Krause et al. (2017). † indicates using dynamic evaluation.

Model #Param Validation Test

Inan et al. (2016) – Variational LSTM + augmented loss 28M 91.5 87.0

Grave et al. (2016) – LSTM + continuous cache pointer† - - 68.9
Melis et al. (2017) – 2-layer skip connection LSTM 24M 69.1 65.9

Merity et al. (2017) – AWD-LSTM w/o finetune 33M 69.1 66.0
Merity et al. (2017) – AWD-LSTM 33M 68.6 65.8
Ours – AWD-LSTM-MoS w/o finetune 35M 66.01 63.33
Ours – AWD-LSTM-MoS 35M 63.88 61.45

Merity et al. (2017) – AWD-LSTM + continuous cache pointer † 33M 53.8 52.0

Krause et al. (2017) – AWD-LSTM + dynamic evaluation† 33M 46.4 44.3

Ours – AWD-LSTM-MoS + dynamical evaluation† 35M 42.41 40.68

Table 2: Single model perplexity over WikiText-2. Baseline results are obtained from Merity et al. (2017) and
Krause et al. (2017). † indicates using dynamic evaluation.

are used as baselines. For evaluation, we include both the perplexity and the precision/recall
of Smoothed Sentence-level BLEU, as suggested by Zhao et al. (2017). When generating re-
sponses, we use beam search with beam size 10, restrict the maximum length to 30, and retain
the top-5 responses.

The language modeling results on PTB and WT2 are presented in Table 1 and Table 2 respectively.
With a comparable number of parameters, MoS outperforms all baselines with or without dynamic
evaluation, and substantially improves over the current state of the art, by up to 3.6 points in per-
plexity.

Model #Param Train Validation Test

Softmax 119M 41.47 43.86 42.77
MoS 113M 36.39 38.01 37.10

Table 3: Perplexity comparison on 1B word dataset. Train perplexity is the average of the last 4,000 updates.

The improvement on the large-scale dataset is even more significant. As shown in Table 3, MoS
outperforms Softmax by over 5.6 points in perplexity. It suggests the effectiveness of MoS is not
limited to small datasets where many regularization techniques are used. Note that with limited
computational resources, we didn’t tune the hyper-parameters for MoS.
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Perplexity BLEU-1 BLEU-2 BLEU-3 BLEU-4
Model prec recall prec recall prec recall prec recall

Seq2Seq-Softmax 34.657 0.249 0.188 0.193 0.151 0.168 0.133 0.141 0.111
Seq2Seq-MoC 33.291 0.259 0.198 0.202 0.159 0.176 0.140 0.148 0.117
Seq2Seq-MoS 32.727 0.272 0.206 0.213 0.166 0.185 0.146 0.157 0.123

Table 4: Evaluation scores on Switchboard.

Further, the experimental results on Switchboard are summarized in Table 45. Clearly, on all metrics,
MoS outperforms MoC and Softmax, showing its general effectiveness.

3.2 ABLATION STUDY

To further verify the improvement shown above does come from the MoS structure rather than
adding another hidden layer or finding a particular set of hyper-parameters, we conduct an ablation
study on both PTB and WT2. Firstly, we compare MoS with an MoC architecture with the same
number of layers, hidden sizes, and embedding sizes, which thus has the same number of parame-
ters. In addition, we adopt the hyper-parameters used to obtain the best MoS model (denoted as MoS
hyper-parameters), and train a baseline AWD-LSTM. To avoid distractive factors and save compu-
tational resources, all ablative experiments excluded the use of finetuing and dynamic evaluation.

The results are shown in Table 5. Compared to the vanilla AWD-LSTM, though being more expres-
sive, MoC performs only better on PTB, but worse on WT2. It suggests that simply adding another
hidden layer or employing a mixture structure in the feature space does not guarantee a better per-
formance. On the other hand, training AWD-LSTM using MoS hyper-parameters severely hurts the
performance, which rules out hyper-parameters as the main source of improvement.

PTB WT2
Model Validation Test Validation Test

AWD-LSTM-MoS 58.08 55.97 66.01 63.33
AWD-LSTM-MoC 59.82 57.55 68.76 65.98
AWD-LSTM (Merity et al. (2017) hyper-parameters) 61.49 58.95 68.73 65.40
AWD-LSTM (MoS hyper-parameters) 78.86 74.86 72.73 69.18

Table 5: Ablation study on Penn Treebank and WikiText-2 without finetuning or dynamical evaluation.

3.3 VERIFY THE ROLE OF RANK

While the study above verifies that MoS is the key to achieving the state-of-the-art performance, it
is still not clear whether the superiority of MoS comes from its potential high rank, as suggested by
our theoretical analysis in Section 2. In the sequel, we take steps to verify this hypothesis.

• Firstly, we verify that MoS does induce a high-rank log-probability matrix empirically, while
MoC and Softmax fail. On the validation or test set of PTB with tokens X = {X1, . . . , XT }, we
compute the log probabilities {logP (Xi | X<i) ∈ R

M}Tt=1 for each token using all three models.
Then, for each model, we stack all T log-probability vectors into a T × M matrix, resulting in

ÂMoS, ÂMoC and ÂSoftmax. Theoretically, the number of non-zero singular values of a matrix is
equal to its rank. However, performing singular value decomposition of real valued matrices using
numerical approaches often encounter roundoff errors. Hence, we adopt the expected roundoff

error suggested by Press (2007) when estimating the ranks of ÂMoS, ÂMoC and ÂSoftmax.

The estimated ranks are shown in Table 6. As predicted by our theoretical analysis, the matrix
ranks induced by Softmax and MoC are both limited by the corresponding embedding sizes. By
contrast, the matrix rank obtained from MoS does not suffer from this constraint, almost reaching
full rank (M = 10000). In appendix C.1, we give additional evidences for the higher rank of
MoS.

5The numbers are not directly comparable to Zhao et al. (2017) since their Seq2Seq implementation and
evaluation scripts are not publicly available.
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Model Validation Test

Softmax 400 400
MoC 280 280
MoS 9981 9981

Table 6: Rank comparison on PTB. To ensure com-
parable model sizes, the embedding sizes of Softmax,
MoC and MoS are 400, 280, 280 respectively. The
vocabulary size, i.e., M , is 10,000 for all models.

#Softmax Rank Perplexity

3 6467 58.62
5 8930 57.36
10 9973 56.33
15 9981 55.97
20 9981 56.17

Table 7: Empirical rank and test perplexity on
PTB with different number of Softmaxes.

• Secondly, we show that, before reaching full rank, increasing the number of mixture components
in MoS also increases the rank of the log-probability matrix, which in turn leads to improved
performance (lower perplexity). Specifically, on PTB, with other hyper-parameters fixed as used
in section 3.1, we vary the number of mixtures used in MoS and compare the corresponding em-
pirical rank and test perplexity without finetuning. Table 7 summarizes the results. This clear
positive correlation between rank and performance strongly supports the our theoretical analysis
in section 2. Moreover, note that after reaching almost full rank (i.e., using 15 mixture compo-
nents), further increasing the number of components degrades the performance due to overfitting
(as we inspected the training and test perplexities).

• In addition, as performance improvement can often come from better regularization, we investi-
gate whether MoS has a better, though unexpected, regularization effect compared to Softmax.
We consider the 1B word dataset where overfitting is unlikely and no explicit regularization tech-
nique (e.g., dropout) is employed. As we can see from the left part of Table 3, MoS and Softmax
achieve a similar generalization gap, i.e., the performance gap between the test set and the train-
ing set. It suggests both models have similar regularization effects. Meanwhile, MoS has a lower
training perplexity compared to Softmax, indicating that the improvement of MoS results from
improved expressiveness.

• The last evidence we provide is based on an inverse experiment. Empirically, we find that when
Softmax does not suffer from a rank limitation, e.g., in character-level language modeling, using
MoS will not improve the performance. Due to lack of space, we refer readers to Appendix C.2
for details.

3.4 ADDITIONAL ANALYSIS

MoS computational time The expressiveness of MoS does come with a computational cost—
computing a K-times larger Softmax. To give readers a concrete idea of the influence on training
time, we perform detailed analysis in Appendix C.3. As we will see, computational wall time of
MoS is actually sub-linear w.r.t. the number of Softmaxes K. In most settings, we observe a two to
three times slowdown when using MoS with up to 15 mixture components.

Qualitative analysis Finally, we conduct a case study on PTB to see how MoS improves the
next-token prediction in detail. Due to lack of space, we refer readers to Appendix C.4 for details.
The key insight from the case study is that MoS is better at making context-dependent predictions.
Specifically, given the same immediate preceding word, MoS will produce distinct next-step predic-
tion based on long-term context in history. By contrast, the baseline often yields similar next-step
prediction, independent of the long-term context.

4 RELATED WORK

In language modeling, Hutchinson et al. (2011; 2012) have previously considered the problem from
a matrix rank perspective. However, their focus was to improve the generalization of Ngram lan-
guage models via a sparse plus low-rank approximation. By contrast, as neural language models
already generalize well, we focus on a high-rank neural language model that improves expressive-
ness without sacrificing generalization. Neubig & Dyer (2016) proposed to mix Ngram and neural
language models to unify and benefit from both. However, this mixture might not generalize well
since an Ngram model, which has poor generalization, is included. Moreover, the fact that the
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two components are separately trained can limit its expressiveness. Levy & Goldberg (2014) also
considered the matrix factorization perspective, but in the context of learning word embeddings.

In a general sense, Mixture of Softmaxes proposed in this work can be seen as a particular instan-
tiation of the long-existing idea called Mixture of Experts (MoE) (Jacobs et al., 1991). However,
there are two core differences. Firstly, MoE has usually been instantiated as mixture of Gaussians
to model data in continuous domains (Jacobs et al., 1991; Graves, 2013; Bazzani et al., 2016). More
importantly, the motivation of using the mixture structure is distinct. For Gaussian mixture models,
the mixture structure is employed to allow for a parameterized multi-modal distribution. By con-
trast, Softmax by itself can parameterize a multi-modal distribution, and MoS is introduced to break
the Softmax bottleneck as discussed in Section 2.

There has been previous work (Eigen et al., 2013; Shazeer et al., 2017) proposing architectures that
can be categorized as instantiations of MoC, since the mixture structure is employed in the feature
space.6 The target of Eigen et al. (2013) is to create a more expressive feed-forward layer through
the mixture structure. In comparison, Shazeer et al. (2017) focuses on a sparse gating mechanism
also on the feature level, which enables efficient conditional computation and allows the training of
a very large neural architecture. In addition to having different motivations from our work, all these
MoC variants suffer from the same rank limitation problem as discussed in Section 2.

Finally, several previous works have tried to introduce latent variables into sequence model-
ing (Bayer & Osendorfer, 2014; Gregor et al., 2015; Chung et al., 2015; Gan et al., 2015; Frac-
caro et al., 2016; Chung et al., 2016). Except for (Chung et al., 2016), these structures all define
a continuous latent variable for each step of the RNN computation, and rely on the SGVB estima-
tor (Kingma & Welling, 2013) to optimize a variational lower bound of the log-likelihood. Since
exact integration is infeasible, these models cannot estimate the likelihood (perplexity) exactly at test
time. Moreover, for discrete data, the variational lower bound is usually too loose to yield a com-
petitive approximation compared to standard auto-regressive models. As an exception, Chung et al.
(2016) utilizes Bernoulli latent variables to model the hierarchical structure in language, where the
Bernoulli sampling is replaced by a thresholding operation at test time to give perplexity estimation.

5 CONCLUSIONS

Under the matrix factorization framework, the expressiveness of Softmax-based language models is
limited by the dimension of the word embeddings, which is termed as the Softmax bottleneck. Our
proposed MoS model improves the expressiveness over Softmax, and at the same time avoids over-
fitting compared to non-parametric models and naively increasing the word embedding dimensions.
Our method improves the current state-of-the-art results on standard benchmarks by a large margin,
which in turn justifies our theoretical reasoning: it is important to have a high-rank model for natural
language.
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A PROOFS

Proof of Property 1

Proof. For any A′ ∈ F (A), let PA′(X|C) denote the distribution defined by applying Softmax on
the logits given by A′. Consider row i column j, by definition any entry in A′ can be expressed as
A′

ij = Aij + Λii. It follows

PA′(xj |ci) =
expA′

ij
∑

k expA
′
ik

=
exp(Aij + Λii)

∑

k exp(Aik + Λii)
=

expAij
∑

k expAik

= P ∗(xj |ci)

For any A′′ ∈ {A′′ | Softmax(A′′) = P ∗}, for any i and j, we have

PA′′(xj |ci) = PA(xj |ci)

It follows that for any i, j, and k,

PA′′(xj |ci)

PA′′(xk|ci)
=

expA′′
ij

expA′′
ik

=
expAij

expAik

=
PA(xj |ci)

PA(xk|ci)

As a result,
A′′

ij −Aij = A′′
ik −Aik

This means each row in A′′ can be obtained by adding a real number to the corresponding row in
A. Therefore, there exists a diagonal matrix Λ ∈ R

N×N such that

A′′ = A+ΛJN,M

It follows that A′′ ∈ F (A).

Proof of Property 2

Proof. For any A1 and A2 in F (A), by definition we have A1 = A + Λ1JN,M , and A2 =
A+Λ2JN,M where Λ1 and Λ2 are two diagonal matrices. It can be rewritten as

A1 = A2 + (Λ1 −Λ2)JN,M

Let S be a maximum set of linearly independent rows in A2. Let eN be an all-ones vector with
dimension N . The i-th row vector a1,i in A1 can be written as

a1,i = a2,i + (Λ1,ii − Λ2,ii)eN

Because a2,i is a linear combination of vectors in S, a1,i is a linear combination of vectors in
S ∪ {eN}. It follows that

rank(A1) ≤ rank(A2) + 1

Similarly, we can derive
rank(A2) ≤ rank(A1) + 1

Therefore,
|rank(A1)− rank(A2)| ≤ 1

Proof of Proposition 1

Proof. If there exists a parameter θ such that Pθ(X|c) = P ∗(X|c) for all c in L, by Lemma 1, we
have HθW

⊤
θ ∈ F (A). As a result, there exists a matrix A′ ∈ F (A) such that HθW

⊤
θ = A′.

Because Hθ and Wθ are of dimensions (N × d) and (M × d) respectively, we have

d ≥ rank(A′) ≥ min
A′′∈F (A)

rank(A′′)

If d ≥ minA′′∈F (A) rank(A′′), there exist matrices A′ ∈ F (A), H′ ∈ R
N×d and W′ ∈ R

M×d,

such that A′ can be factorized as A′ = H′W′⊤. Because U is a universal approximator, there exists
θ such that Hθ = H′ and Wθ = W′. By Lemma 1, Pθ(X|c) = P ∗(X|c) for all c in L.

13



Published as a conference paper at ICLR 2018

B EXPERIMENT SETTING AND HYPER-PARAMETERS

B.1 PTB AND WT2

The hyper-parameters used for MoS in language modeling experiment is summarized below.

Hyper-parameter PTB WT2

Learning rate 20 15
Batch size 12 15
Embedding size 280 300
RNN hidden sizes [960, 960, 620] [1150,1150,650]
Number of mixture components 15 15

Word-level V-dropout 0.10 0.10
Embedding V-dropout 0.55 0.40
Hidden state V-dropout 0.20 0.225
Recurrent weight dropout (Wan et al., 2013) 0.50 0.50
Context vector V-dropout 0.30 0.30

Table 8: Hyper-parameters used for MoS. V-dropout abbreviates variational dropout (Gal & Ghahramani,
2016). See (Merity et al., 2017) for more detailed descriptions.

The hyper-parameters used for dynamic evaluation of MoS is summarized below.

Hyper-parameter PTB WT2
Batch size 100 100
learning rate (η) 0.002 0.002
ǫ 0.001 0.002
λ 0.075 0.02

Table 9: Hyper-parameters used for dynamic evaluation of MoS. See (Krause et al., 2017) for more detailed
descriptions.

B.2 1B WORD DATASET

For training, we use all of the 100 training shards. For validation, we use two shards from the
heldout set, namely [heldout-00, heldout-10]. For test, we use another three shards from
the heldout set, namely [heldout-20, heldout-30, heldout-40].

The hyper-parameters are listed below.

Hyper-parameter Softmax MoS-7

Learning rate 20 20
Batch size 60 60
BPTT langth 35 35
Embedding size 1024 900
RNN hidden sizes [1024, 1024] [1024,1024]
Dropout rate 0 0

Table 10: Hyper-parameters used for Softmax and MoS in experiment on 1B word dataset.

C ADDITIONAL EXPERIMENTS

C.1 HIGHER EMPIRICAL RANK OF MOS COMPARED TO MOC AND SOFTMAX

In section 3, we compute the rank of different models based on the non-zero singular values of the
empirical log-likelihood matrix. Since there can be roundoff mistakes, a less error-prone approach
is to directly study the distribution of singular values. Specifically, if more singular values have
relatively larger magnitude, the rank of the matrix tends to be higher. Motivated from this intuition,
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Figure 1: Cumulative percentage of normalized singulars given a value in [0, 1].

we visualize the distribution of the singular values. To account for the different magnitudes of
singular values from different models, we first normalize all singular values to [0, 1]. Then, we plot
the cumulative percentage of normalized singular values, i.e., percentage of normalized singular
values below a threshold, in Figure 1. As we can see, most of the singular values of Softmax and
MoC concentrate on an area with very low values. In comparison, the concentration area of the MoS
singular values is not only several orders larger, but also spans a much wider region. Intuitively, MoS
utilizes the corresponding singular vectors to capture a larger and more diverse set of contexts.

Model Validation Test

Softmax 4.869 4.763
MoC 4.955 4.864
MoS 5.400 5.284

Table 11: Empirical expected pairwise KLD on PTB.

What’s more, another indicator of high rank is that the model can precisely capture the nuance of dif-
ference contexts. If a model can better capture the distinctions among contexts, we expect the next-
step conditional distributions to be less similar to each on average. Based on this intuition, we use the
expected pairwise Kullback–Leibler divergence (KLD), i.e., Ec,c′∼C [KLD(P (X | c)‖P (X | c′))]
where C denotes all possible contexts, as another metric to evaluate the ranks of the three models
(MoS, MoC and Softmax). Practically, we sample c, c′ from validation or test data of PTB to get
the empirical estimations for the three models, which are shown in the right half of Table 11. As we
expected, MoS achieves higher expected pairwise KLD, indicating its superiority in covering more
contexts of the next-token distribution.

C.2 AN INVERSE EXPERIMENT ON CHARACTER-LEVEL LANGUAGE MODELING

Model #Param Train Validation Test

Softmax (hid1024, emb1024) 8.42M 1.35 1.41 1.49
MoS-7 (hid910, emb510) 8.45M 1.35 1.40 1.49
MoS-7 (hid750, emb750) 8.45M 1.38 1.42 1.50
MoS-10 (hid860, emb452) 8.43M 1.35 1.41 1.49
MoS-10 (hid683, emb683) 8.43M 1.38 1.42 1.50

Table 12: BPC comparison on text8. For MoS, “-n” indicates using n mixtures. “hid” and “emb” denote the
hidden size and embedding size respectively.
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Here, we detail the inverse experiment, which shows that when Softmax does not suffer from a
rank limitation, using MoS will not improve the performance. Notice that character-level language
modeling (CharLM) is exactly such a problem, because the rank of the log-likelihood matrix is
upper bounded by the vocabulary size, and CharLM usually has a very limited vocabulary (tens of
characters). In this case, with the embedding size being hundreds in practice, Softmax is no longer a
bottleneck in this task. Hence, we expect MoS to yield similar performance to Softmax on CharLM.

We conduct experiments of CharLM using the text8 dataset (Mahoney, 2011), which consists of
100M characters including only alphabetical characters and spaces derived from Wikipedia. We
follow Mikolov et al. (2012) and use the first 90M characters for training, the next 5M for validation
and the final 5M for testing. The standard evaluation metric bit-per-character (BPC) is employed.
We employ a 1-layer 1024-unit LSTM followed by Softmax as the baseline. For MoS, we consider
7 or 10 mixtures and reduce the hidden and/or embedding size to match the baseline capacity. When
decreasing the hidden and/or embedding size, we either keep both the same, or make the hidden
size relatively larger. The results are summarized in Table 12. Clearly, the Softmax and MoS
obtain the same BPC on the test set and comparable BPC on the validation set, which well match
our hypothesis. Since the only difference in word-level language modeling is the existence of the
Softmax bottleneck, the distinct behavior of MoS again supports our hypothesis that it is solving the
Softmax bottleneck problem.

C.3 MOS COMPUTATIONAL TIME

Model PTB/bs PTB/best-1 WT2/bs WT2/best-1 WT2/best-3 1B/bs 1B/best-1 1B/best-3

Softmax 1x 1x 1x 1x 1x 1x 1x 1x
MoS-5 1.2x – 1.3x – – – – –
MoS-7 – – – – – 3.8x 5.7x 2.1x
MoS-10 1.6x – 1.9x – – – – –
MoS-15 1.9x 2.8x 2.5x 6.4x 2.9x – – –

Table 13: Training time slowdown compared to Softmax. MoS-K means using K mixture components. “bs”
indicates Softmax and MoS use the same batch sizes on one GPU. “best-1” and “best-3” refer to the settings
where Softmax and MoS obtain their own best perplexity, with 1 and 3 GPUs respectively.

We evaluate the additional computational cost introduced by MoS. We consider two sets of con-
trolled experiments. In the first set, we compare the training time of MoS and Softmax using the
same batch sizes. In the second set, we compare the training time of two methods using the hyper-
parameter settings that achieve the best performance for each model (i.e., the settings in Tables 1, 2,
and 3). In both sets, we control two models to have comparable model sizes.

The results on the three datasets are shown in Table 13. Thanks to the efficiency of matrix multi-
plication on GPU, the computational wall time of MoS is actually sub-linear w.r.t. the number of
Softmaxes K. In most settings, we observe a two to three times slowdown when using MoS. Specif-
ically, the “bs” setting measures the computational cost introduced by MoS given enough memory,
which is 1.9x, 2.5x, and 3.8x slowdown on PTB, WT2, and 1B respectively. The “best-1” setting
is usually slower compared to “bs”, because a single batch does not fit into the memory of a single
GPU using MoS, in which case we have to split one batch into multiple small ones, resulting in
further slowdown. In this sense, the gap between “best-1” and “bs” measures the computational
cost introduced due to the increase of memory consumed by MoS. The “best-3” alleviates this is-
sue by using three GPUs, which allows larger-batch training for MoS. In this case, we reduce the
computational cost to 2.9x on WT2 and 2.1x on 1B with our best performing model.

Note that the computational cost is closely related to the batch size, which is interleaved with opti-
mization. Though how batch sizes affect optimization remains an open question and might be task
dependent, we believe the “best-1” and “best-3” settings well reflect the actual computational cost
brought by MoS on language modeling tasks.
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C.4 QUALITATIVE ANALYSIS

Since MoC shows a stronger performance than Softmax on PTB, the qualitative study focuses on
the comparison between MoC and MoS. Concretely, given the same context (previous tokens), we
search for prediction steps where MoS achieves lower negative log loss than MoC by a margin. We
show some representative cases in Table 14 with the following observations:

• Comparing the first two cases, given the same preceding word “N”, MoS flexibly adjusts its top
predictions based on the different topic quantities being discussed in the context. In comparison,
MoC emits quite similar top choices regardless of the context, suggesting its inferiority in make
context-dependent predictions.

• In the 3rd case, the context is about international politics, where country/region names are likely
to appear. MoS captures this nuance well, and yields top choices that can be used to complete a
country name given the immediate preceding word “south”. Similarly, in the 4th case, MoS is
able to include “ual”, a core entity of discussion in the context, in its top predictions. In contrast,
MoC gives rather generic predictions irrieselevant to the context in both cases.

• For the 5th and the 6th example, we see MoS is able to exploit less common words accurately
according to the context, while MoC fails to yield such choices. This well matches our analysis
that MoS has the capacity of modeling context-dependent language.
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#1 Context managed properly and with a long-term outlook these can become investment-grade quality prop-
erties <eos> canadian <unk> production totaled N metric tons in the week ended oct. N up N N
from the preceding week ’s total of N __?__

MoS top-5 million 0.38 tons 0.24 billion 0.09 barrels 0.06 ounces 0.04

MoC top-5 billion 0.39 million 0.36 trillion 0.05 <eos> 0.04 N 0.03

Reference canadian <unk> production totaled N metric tons in the week ended oct. N up N N from the
preceding week ’s total of N tons statistics canada a federal agency said <eos>

#2 Context the thriving <unk> street area offers <unk> of about $ N a square foot as do <unk> locations
along lower fifth avenue <eos> by contrast <unk> in the best retail locations in boston san fran-
cisco and chicago rarely top $ N __?__

MoS top-5 <eos> 0.36 a 0.13 to 0.07 for 0.07 and 0.06

MoC top-5 million 0.39 billion 0.36 <eos> 0.05 to 0.04 of 0.03

Reference by contrast <unk> in the best retail locations in boston san francisco and chicago rarely top $ N
a square foot <eos>

#3 Context as other <unk> governments particularly poland and the soviet union have recently discovered
initial steps to open up society can create a momentum for radical change that becomes difficult
if not impossible to control <eos> as the days go by the south __?__

MoS top-5 africa 0.15 african 0.15 <eos> 0.14 korea 0.08 korean 0.05

MoC top-5 <eos> 0.38 and 0.08 of 0.06 or 0.05 <unk> 0.04

Reference as the days go by the south african government will be ever more hard pressed to justify the
continued <unk> of mr. <unk> as well as the continued banning of the anc and enforcement of
the state of emergency <eos>

#4 Context shares of ual the parent of united airlines were extremely active all day friday reacting to news
and rumors about the proposed $ N billion buy-out of the airline by an <unk> group <eos>
wall street ’s takeover-stock speculators or risk arbitragers had placed unusually large bets that a
takeover would succeed and __?__

MoS top-5 the 0.14 that 0.07 ual 0.07 <unk> 0.03 it 0.02

MoC top-5 the 0.10 <unk> 0.06 that 0.05 in 0.02 it 0.02

Reference wall street ’s takeover-stock speculators or risk arbitragers had placed unusually large bets that a
takeover would succeed and ual stock would rise <eos>

#5 Context the government is watching closely to see if their presence in the <unk> leads to increased <unk>
protests and violence if it does pretoria will use this as a reason to keep mr. <unk> behind bars
<eos> pretoria has n’t forgotten why they were all sentenced to life <unk> in the first place for
sabotage and __?__

MoS top-5 <unk> 0.47 violence 0.11 conspiracy 0.03 incest 0.03 civil 0.03

MoC top-5 <unk> 0.41 the 0.03 a 0.02 other 0.02 in 0.01

Reference pretoria has n’t forgotten why they were all sentenced to life <unk> in the first place for sabotage
and conspiracy to <unk> the government <eos>

#6 Context china ’s <unk> <unk> program has achieved some successes in <unk> runaway economic growth
and stabilizing prices but has failed to eliminate serious defects in state planning and an <unk>
drain on state budgets <eos> the official china daily said retail prices of <unk> foods have n’t
risen since last december but acknowledged that huge government __?__

MoS top-5 subsidies 0.15 spending 0.08 officials 0.04 costs 0.04 <unk> 0.03

MoC top-5 officials 0.04 figures 0.03 efforts 0.03 <unk> 0.03 costs 0.03

Reference the official china daily said retail prices of <unk> foods have n’t risen since last december but ac-
knowledged that huge government subsidies were a main factor in keeping prices down <eos>

Table 14: Compaison of next-token prediction on Penn Treebank test data. N stands for a number as the result
of preprocessing (Mikolov et al., 2010). The context shown only includes the previous sentence and the current
sentence the prediction step resides in.
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