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Bacterial pathogens have evolved ex-

traordinary mechanisms to efficiently in-

fect host organisms. A majority of these

pathogens do so by delivering virulence

factors into host cells, which act to

dampen host defenses or utilize the host

as a niche for replication. Although

regulation of virulence factor expression

by bacterial pathogens is a well known

pathogenic mechanism [1], the concept of

host-protective virulence factors is emerg-

ing. Recently, several strategies by which

pathogens appear to be attenuating their

own lethality towards host cells have been

documented, suggesting that increased

hostility and damage of host cells is not

necessarily beneficial to the pathogen.

Virulence is often defined as the ability

of a pathogen to inflict damage on host

cells, and the following discussion address-

es the concept that increased virulence is

not always beneficial to the pathogen, and

moderating it to preserve host cells is a

mechanism several pathogens use as part

of their overall pathogenic strategy. This

strategy is well known for obligate intra-

cellular pathogens, but has become an

emerging theme in extracellular and

facultative intracellular bacteria.

Yersinia spp., Shigella flexneri, Helicobacter

pylori, and diarrheagenic Escherichia coli are

well known for their ability to kill host

cells. For Yersinia, death of infected mac-

rophages dampens cytokine release and

enables the pathogen to propagate with

minimal challenges from the immune

system [2]. Two recent studies suggest

that cytotoxicity caused by Yersinia species

is tightly regulated. Yersinia pestis, the

etiologic agent of plague, and gastroenter-

itis-inducing Yersinia pseudotuberculosis and

Yersinia enterocolitica all encode a cytotoxic

virulence factor called YopJ/P (YopJ in

the two former species and YopP in the

latter), which are translocated into infected

cells via a type III secretion system (T3SS)

[2,3]. Altering the cytotoxicity of Y.

pseudotuberculosis affects its virulence. De-

creased secretion of YopJ was shown to

enhance Y. pseudotuberculosis pathogenesis in

vivo [4]. Similarly for Y. pestis, enhanced

cytotoxicity results in decreased incidence

of pneumonic plague in vivo [5]. Tight

regulation of cytotoxicity by pathogenic

Yersinia is an efficient virulence strategy.

Increased apoptosis of infected immune

cells decreases production of proinflam-

matory cytokines; however, some inflam-

mation at the early stages of infection is

thought to facilitate tissue damage neces-

sary for movement of bacteria and infected

cells to other sites of replication within the

host [4].

Enteropathogenic Escherichia coli, enter-

ohaemorrhagic E. coli (EPEC and EHEC,

respectively), and Citrobacter rodentium are

attaching and effacing (A/E) pathogens

that cause severe diarrheagenic disease

[6]. The ability of A/E pathogens to kill

intestinal epithelial cells has been well

documented [7–14]. The type III secreted

(T3S) effector EspF has a role in host cell

death by causing mitochondrial-depen-

dent apoptosis [11,15]. We recently found

that the T3S effector EspZ modulates

cytotoxicity towards host cells. An EPEC

espZ mutant (DespZ) caused enhanced

cytotoxicity in host cells when compared

to the wild-type strain [16], which was

surprising since the DespZ strain is severely

attenuated for virulence in vivo [17]. EspZ

acts in part through the host transmem-

brane glycoprotein CD98 to activate focal

adhesion kinase (FAK)-based survival

pathways (Figure 1) [16]. Others found

that the T3S effector NleH also dampens

apoptosis of EPEC-infected cells, but via

interaction with a Bcl-2-related protein

involved in the mitochondrial death path-

way (Figure 1) [18]. Unlike EspZ, NleH is

not essential for EPEC colonization and

only moderately impacts on A/E patho-

gen disease in vivo [19,20]; however, there

are likely other host-protective virulence

factors that act redundantly to NleH

during EPEC infection.

H. pylori causes apoptosis of infected

gastric epithelial cells [21]. Apoptosis

induction by H. pylori has been linked to

a secreted toxin called VacA, which

induces cytochrome c release from mito-

chondria (Figure 1) [22]. Recently, it was

determined that VacA-mediated apoptosis

is counteracted by a type IV secreted

(T4S) protein called CagA by both block-

ing pinocytosis of VacA and inhibiting

VacA-mediated cytochrome c release from

mitochondria [23] (Figure 1). Interesting-

ly, loss of CagA in a VacA+ H. pylori strain

decreases bacterial colonization and the

incidence of gastric hyperplasia, adeno-

carcinoma, and inflammation [24]. Simi-

lar to the aforementioned pathogens, H.

pylori has evolved a delicate interplay

between host-protective and -detrimental

virulence factors that are able to fine-

tune virulence while promoting their

propagation.

S. flexneri, the etiologic agent of bacilliary

dysentery, causes death of infected mac-

rophages and epithelial cells [25]. Despite

this, several host-protective strategies are

employed by S. flexneri. The T3S effector

OspE was recently found to enhance

adhesion of infected host cells to the

underlying extracellular matrix [26].

Whether OspE activates host cell survival

pathways directly is unknown; however, its

interaction with integrin-linked kinase
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inhibits sloughing of infected cells into the

intestinal lumen [26], consequently pre-

venting anoikis of Shigella-infected cells. An

ospE mutant does not colonize as efficiently

as wild-type S. flexneri in vivo; thus, OspE

may enhance colonization by preventing

premature release of infected cells [26].

Epithelial cells succumb to S. flexneri

infection via necrotic cell death, which

functions to release intracellular bacteria

and enhance inflammation [25]. Interest-

ingly, survival pathways involving Rip2/

IKKb/NFkB are activated early during

infection, followed by mitochondrial dys-

function and necrotic cell death (Figure 1)

[25]. The early expression of pro-survival

genes may enable S. flexneri to postpone

cell death in a similar manner to EPEC,

thus ensuring greater bacterial load prior

to dissemination. The mechanism(s) by

which S. flexneri enhances NFkB-mediated

pro-survival signals are unknown.

All of the above pathogens have evolved

strategies to attenuate their own host-

damaging virulence factors. In many of

these scenarios, removal of host-protective

mediators actually reduces pathogenicity

of the bacteria. The observation that

EPEC encodes a host-protective virulence

factor that is essential for its pathogenesis

suggests that protecting host cells may be a

key to the pathogenic strategies of other

bacterial pathogens. The concept of host-

protective virulence factors is only just

emerging, and we believe host-protective

virulence factors will become more appar-

ent in other pathogenic strategies and may

become interesting targets to combat

bacterial disease. Importantly, virulence

phenotypes that appear counterintuitive

should not be ignored. Future studies into

pathogenic mechanisms of virulent bacte-

ria will likely reveal important roles for

effectors or regulatory mechanisms that

help the host cell and promote bacterial

pathogenesis.
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