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Abstract

Many schools in large urban districts have more applicants than seats. Central-
ized school assignment algorithms ration seats at over-subscribed schools using
randomly assigned lottery numbers, non-lottery tie-breakers like test scores, or
both. The New York City public high school match illustrates the latter, using
test scores and other criteria to rank applicants at “screened” schools, combined
with lottery tie-breaking at unscreened “lottery” schools. We show how to iden-
tify causal effects of school attendance in such settings. Our approach generalizes
regression discontinuity methods to allow for multiple treatments and multiple
running variables, some of which are randomly assigned. The key to this general-
ization is a local propensity score that quantifies the school assignment probabil-
ities induced by lottery and non-lottery tie-breakers. The local propensity score
is applied in an empirical assessment of the predictive value of New York City’s
school report cards. Schools that receive a high grade indeed improve SAT math
scores and increase graduation rates, though by much less than OLS estimates
suggest. Selection bias in OLS estimates is egregious for screened schools.
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1 Introduction

Large school districts increasingly use sophisticated centralized assignment mechanisms to

match students and schools. In addition to producing fair and transparent admissions deci-

sions, centralized assignment offers a unique resource for research on schools: the data these

systems generate can be used to construct unbiased estimates of school value-added. This

research dividend arises from the tie-breaking embedded in centralized assignment. Many

school assignment schemes rely on the deferred acceptance (DA) algorithm, which takes as

input information on applicant preferences and school priorities. In settings where seats are

scarce, DA rations seats at oversubscribed schools using tie-breaking variables, producing

quasi-experimental assignment of students to schools.

Many districts break ties with a uniformly distributed random variable, often described

as a lottery number. Abdulkadiroğlu et al. (2017a) show that DA with lottery tie-breaking

assigns students to schools as if in a stratified randomized trial. That is, conditional on

preferences and priorities, the assignments generated by such systems are randomly assigned

and therefore independent of potential outcomes. In practice, however, preferences and

priorities, which we call applicant type, are too finely distributed for full non-parametric

conditioning to be useful. We must therefore pool applicants of different types, while avoiding

any omitted variables bias that might arise from the fact that type predicts outcomes.

The key to type pooling is the DA propensity score, defined as the probability of school

assignment conditional on applicant type. In a mechanism with lottery tie-breaking, condi-

tioning on the scalar DA propensity score is sufficient to make school assignment independent

of potential outcomes. Moreover, the distribution of the scalar propensity score turns out to

be much coarser than the distribution of types.1

This paper generalizes the propensity score to DA-based assignment mechanisms in which

tie-breaking variables are not limited to randomly assigned lottery numbers. Selective exam

schools, for instance, admit students with high test scores, and students with higher scores

tend to have better achievement and graduation outcomes regardless of where they enroll.

We refer to such scenarios as involving general tie-breaking.2 Matching markets with general

1The propensity score theorem says that for research designs in which treatment status, Di, is indepen-
dent of potential outcomes conditional on covariates, Xi, treatment status is also independent of potential
outcomes conditional on the propensity score, that is, conditional on E[Di|Xi]. In work building on Abdulka-
diroğlu et al. (2017a), the DA propensity score has been used to study schools (Bergman, 2018), management
training (Abebe et al., 2019), and entrepreneurship training (Pérez Vincent and Ubfal, 2019).

2Non-lottery tie-breaking embedded in centralized assignment schemes has been used in econometric
research on schools in Chile (Hastings et al., 2013; Zimmerman, 2019), Ghana (Ajayi, 2014), Italy (Fort
et al., 2020), Kenya (Lucas and Mbiti, 2014), Norway (Kirkeboen et al., 2016), Romania (Pop-Eleches
and Urquiola, 2013), Trinidad and Tobago (Jackson, 2010, 2012; Beuermann et al., 2016), and the U.S.
(Abdulkadiroğlu et al., 2014; Dobbie and Fryer, 2014; Barrow et al., 2016). These studies treat individual



tie-breaking raise challenges beyond those addressed in the Abdulkadiroğlu et al. (2017a)

study of DA with lottery tie-breaking.

The most important complication raised by general tie-breaking arises from the fact that

seat assignment is no longer independent of potential outcomes conditional on applicant type.

This problem is intimately entwined with the identification challenge raised by regression

discontinuity (RD) designs, which typically compare candidates for treatment on either side

of a qualifying test score cutoff. In particular, non-lottery tie-breakers play the role of an

RD running variable and are likewise a source of omitted variables bias. The setting of

interest here, however, is far more complex than the typical RD design: DA may involve

many treatments, tie-breakers, and cutoffs.

A further barrier to causal inference comes from the fact that the propensity score in

this general tie-breaking setting depends on the unknown distribution of non-lottery tie-

breakers conditional on type. Consequently, the propensity score under general tie-breaking

may be no coarser than the underlying high-dimensional type distribution. When the score

distribution is no coarser than the type distribution, score conditioning is pointless.

These problems are solved here by introducing a local DA propensity score that quanti-

fies the probability of school assignment induced by a combination of non-lottery and lottery

tie-breakers. This score is “local” in the sense that it is constructed using the fact that con-

tinuously distributed non-lottery tie-breakers are locally uniformly distributed. Combining

this property with the (globally) known distribution of lottery tie-breakers yields a formula

for the assignment probabilities induced by any DA match. Conditional on the local DA

propensity score, school assignments are shown to be asymptotically randomly assigned.

Moreover, like the DA propensity score for lottery tie-breaking, the local DA propensity

score has a distribution far coarser than the underlying type distribution.

Our analytical approach builds on Hahn et al. (2001) and other pioneering econometric

contributions to the development of non-parametric RD designs. We also build on the

more recent local random assignment interpretation of nonparametric RD.3 The resulting

theoretical framework allows us to quantify the probability of school assignment as a function

of a few features of student type and tie-breakers, such as proximity to the admissions

cutoffs determined by DA and the identity of key cutoffs for each applicant. By integrating

nonparametric RD with Rosenbaum and Rubin (1983)’s propensity score theorem and large-

market matching theory, our theoretical results provide a framework suitable for causal

schools and tie-breakers in isolation, without exploiting centralized assignment. Related methodological work
exploring regression discontinuity designs with multiple assignment variables and multiple cutoffs includes
Papay et al. (2011); Zajonc (2012); Wong et al. (2013a); Cattaneo et al. (2016a).

3See, among others, Frolich (2007); Cattaneo et al. (2015, 2017); Frandsen (2017); Sekhon and Titiunik
(2017); Frolich and Huber (2019); and Arai et al. (2019).
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inference in a wide variety of applications.

The research value of the local DA propensity score is demonstrated through an analysis

of New York City (NYC) high school report cards. Specifically, we ask whether schools

distinguished by “Grade A” on the district’s school report card indeed signify high quality

schools that boost their students’ achievement and improve other outcomes. Alternatively,

the good performance of most Grade A students may reflect omitted variables bias. The

distinction between causal effects and omitted variables bias is especially interesting in light

of an ongoing debate over access to New York’s academically selective schools, also called

screened schools, which are especially likely to be graded A (see, e.g., Brody (2019) and Veiga

(2018)). We identify the causal effects of Grade A school attendance by exploiting the NYC

high school match. NYC employs a DA mechanism integrating non-lottery screened school

tie-breaking with a common lottery tie-breaker at lottery schools. In fact, NYC screened

schools design their own tie-breakers based on middle school transcripts, interviews, and

other factors.

The effects of Grade A school attendance are estimated here using instrumental variables

constructed from the school assignment offers generated by the NYC high school match.

Specifically, our two-stage least squares (2SLS) estimators use assignment offers as instru-

mental variables for Grade A school attendance, while controlling for the local DA propensity

score. The resulting estimates suggest that Grade A attendance boosts SAT math scores

modestly and may increase high school graduation rates a little. But these effects are much

smaller than those the corresponding ordinary least squares (OLS) estimates of Grade A

value-added would suggest.

We also compare 2SLS estimates of Grade A effects computed separately for NYC’s

screened and lottery schools, a comparison that shows the two sorts of schools to have

similar effects. This finding therefore implies that OLS estimates showing a large Grade

A screened school advantage are especially misleading. The distinction between screened

and lottery schools has been central to the ongoing debate over NYC school access and

quality. Our comparison suggests that the public concern with this sort of treatment effect

heterogeneity may be misplaced. Treatment effect heterogeneity may be limited, supporting

our assumption of constant treatment effects conditional on observables.4

The next section shows how DA can be used to identify causal effects of school attendance.

Section 3 illustrates key ideas in a setting with a single non-lottery tie-breaker. Section 4

derives a formula for the local DA propensity score in a market with general tie-breaking.

4The analysis here allows for treatment effect heterogeneity as a function of observable student and school
characteristics. Our working paper shows how DA in markets with general tie-breaking identifies average
causal affects for applicants with tie-breaker values away from screened-school cutoffs (Abdulkadiroğlu et al.
(2019)). We leave other questions related to unobserved heterogeneity for future work.
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This section also derives a consistent estimator of the local propensity score. Section 5 uses

these theoretical results to estimate causal effects of attending Grade A schools.5

2 Using Centralized Assignment to Eliminate Omitted

Variables Bias

The NYC school report cards published from 2007-13 graded high schools on the basis of

student achievement, graduation rates, and other criteria. These grades were part of an ac-

countability system meant to help parents choose high quality schools. In practice, however,

report card grades computed without extensive control for student characteristics reflect

students’ ability and family background as well as school quality. Systematic differences in

student body composition are a powerful source of bias in school report cards. It’s therefore

worth asking whether a student who is randomly assigned to a Grade A high school indeed

learns more and is more likely to graduate as a result.

We answer this question using instrumental variables derived from NYC’s DA-based

assignment of high school seats. The NYC high school match generates a single school

assignment for each applicant as a function of applicants’ preferences over schools, school-

specific priorities, and a set of tie-breaking variables that distinguish between applicants who

share preferences and priorities.6 Because they’re a function of student characteristics like

preferences and test scores, NYC assignments are not randomly assigned. We show, however,

that conditional on the local DA propensity score, DA-generated assignments of a seat at

school s provide credible instruments for enrollment at school s. This result motivates a

two-stage least squares (2SLS) specification where the endogenous treatment is enrollment

at any Grade A school while the instrument is DA-generated assignment of a seat at any

Grade A school.

Our identification strategy builds on the large-market “continuum” model of DA detailed

in Abdulkadiroğlu et al. (2017a). The large-market model is extended here to allow for

multiple and non-lottery tie-breakers. To that end, let s = 0, 1, ..., S index schools, where

5Our theoretical analysis covers any mechanism that can be computed by student-proposing DA. This
DA class includes student-proposing DA, serial dictatorship, the immediate acceptance (Boston) mechanism
(Ergin and Sönmez, 2006), China’s parallel mechanisms (Chen and Kesten, 2017), England’s first-preference-
first mechanisms (Pathak and Sönmez, 2013), and the Taiwan mechanism (Dur et al., 2018). In large
markets satisfying regularity conditions that imply a unique stable matching, the relevant DA class also
includes school-proposing as well as applicant-proposing DA (these conditions are spelled out in Azevedo
and Leshno (2016)). The DA class omits the Top Trading Cycles (TTC) mechanism defined for school choice
by Abdulkadiroğlu and Sönmez (2003).

6Seat assignment at some of NYC’s selective enrollment “exam schools” is determined by a separate
match. NYC charter schools use school-specific lotteries. Applicants are free to seek exam school and
charter school seats as well as an assignment in the traditional sector.
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s = 0 represents an outside option. Applicants are assumed to be identified by an index,

i, drawn from the unit interval [0, 1]. The large market model is “large” by virtue of this

assumption.

Applicant i’s preferences over schools constitute a strict partial ordering, ≻i, where a ≻i b

means that i prefers school a to school b. Each applicant is also granted a priority at every

school. For example, schools may prioritize applicants who live nearby or with currently

enrolled siblings. Let ρis ∈ {1, ..., K,∞} denote applicant i’s priority at school s, where

ρis < ρjs means school s prioritizes i over j. We use ρis = ∞ to indicate that i is ineligible

for school s. The vector ρi = (ρi1, ..., ρiS) records applicant i’s priorities at each school.

Applicant type is then defined as θi = (≻i, ρi), that is, the combination of an applicant’s

preferences and priorities at all schools. Let Θs denote the set of types, θ, that ranks s.

In addition to applicant type, DA matches applicants to seats as a function of a set of

tie-breaking variables. We leave DA mechanics for Section 4; at this point, it’s enough to

establish notation for DA inputs. Most importantly, our analysis of markets with general tie-

breaking requires notation to keep track of tie-breakers. Let v ∈ {1, ..., V } index tie-breakers

and let Sv be the set of schools using tie-breaker v. We assume that each school uses a single

tie-breaker. Scalar random variable Riv denotes applicant i’s tie-breaker v. Some of these

are uniformly distributed lottery numbers. The set of non-lottery Riv used at schools ranked

by applicant i are collected in the vector Ri. Without loss of generality, we assume that ties

are broken in favor of applicants with the smaller tie-breaker value. DA uses θi, Ri, and the

set of lottery tie-breakers for all i to assign applicants to schools.

We are interested in using the assignment variation resulting from DA to estimate the

causal effect of Ci, a variable indicating student i’s attendance at (or years of enrollment in)

any Grade A school. Outcome variables, denoted Yi, include SAT scores and high school

graduation status. In a DA match like the one in NYC, Ci is not randomly assigned, but

rather reflects student preferences, school priorities, tie-breaking variables, as well as deci-

sions whether or not to enroll at school s when offered a seat there through the match. The

potential for omitted variables bias induced by the process determining Ci can be eliminated

by an instrumental variables strategy that exploits our understanding of the structure of

matching markets.

The instruments used for this purpose are a function of individual school assignments,

indicated byDi(s) for the assignment of student i to a seat at school s. Because DA generates

a single assignment for each student, a dummy for any Grade A assignment, denoted DAi, is

the sum of dummies indicating all assignments to individual Grade A schools. DAi provides

a natural instrument for Ci. In particular, we show below that 2SLS consistently estimates

the effect of Ci on Yi in the context of a linear constant-effects causal model that can be

5



written as:

Yi = βCi + f2(θi,Ri, δ) + ηi, (1)

where β is the causal effect of interest and the associated first stage equation is

Ci = γDAi + f1(θi,Ri, δ) + νi. (2)

The terms f1(θi,Ri, δ) and f2(θi,Ri, δ) are functions of type and non-lottery tie-breakers, as

well as a bandwidth, δ ∈ R, that’s integral to the local DA propensity score.

Our goal is to specify f1(θi,Ri, δ) and f2(θi,Ri, δ) so that 2SLS estimates of β are consis-

tent. Because (1) is seen as a model for potential outcomes rather than a regression equation,

consistency requires that DAi and ηi be uncorrelated. The relevant identification assumption

can be written:

E[ηiDAi] ≈ 0, (3)

where ≈ means asymptotic equality as δ → 0, in a manner detailed below. Briefly, our

main theoretical result establishes limiting local conditional mean independence of school

assignments from applicant characteristics and potential outcomes, yielding (3). This result

specifies f1(θi,Ri, δ) and f2(θi,Ri, δ) to be easily-computed functions of the local propensity

score and elements of Ri.

Abdulkadiroğlu et al. (2017a) derive the relevant DA propensity score for a scenario with

lottery tie-breaking only. Lottery tie-breaking obviates the need for a bandwidth and control

for components of Ri. Many applications of DA use non-lottery tie-breaking, however.

The task here is to derive the propensity score for elaborate matches like that in NYC,

which combines lottery tie-breaking with many school-specific non-lottery tie-breakers. The

resulting estimation strategy integrates propensity score methods with the nonparametric

approach to RD (introduced by Hahn et al. (2001)), and the local random assignment model

of RD (discussed by Frolich (2007); Cattaneo et al. (2015, 2017); Frandsen (2017), among

others). Our theoretical results can also be seen as generalizing nonparametric RD to allow

for many schools (treatments), many tie-breakers (running variables), and many cutoffs.

3 From Non-Lottery Tie-Breaking to Random Assign-

ment in Serial Dictatorship

An analysis of a market with a single non-lottery tie-breaker and no priorities illuminates

key elements of our approach. DA in this case is known as serial dictatorship. Like the

6



general local DA score, the local DA score for serial dictatorship depends only on a handful

of statistics, including admissions cutoffs for schools ranked, and whether applicant i’s tie-

breaker is close to cutoffs for schools using non-lottery tie-breakers. Conditional on this local

propensity score, school offers are asymptotically randomly assigned.

Serial dictatorship can be described as follows:

Order applicants by tie-breaker. Proceeding in order, assign each applicant to

his or her most preferred school among those with seats remaining.

Seating is constrained by a capacity vector, q = (q0, q1, q2, ..., qS), where qs ∈ [0, 1] is defined

as the proportion of the unit interval that can be seated at school s. We assume q0 = 1.

Serial dictatorship is used in Boston and New York City to allocate seats at selective public

exam schools.

Because serial dictatorship relies on a single tie-breaker, notation for the set of non-

lottery tie-breakers, Ri, can be replaced by a scalar, Ri. As in Abdulkadiroğlu et al.

(2017a), tie-breakers for individuals are modelled as stochastic, meaning they are drawn

from a distribution for each applicant. Although Ri is not necessarily uniform, we assume

that it’s distributed with positive density over [0, 1], with continuously differentiable cu-

mulative distribution function, F i
R. These common support and smoothness assumptions

notwithstanding, tie-breakers may be correlated with type, so that Ri and Rj for applicants

i and j are not necessarily identically distributed, though they’re assumed to be independent

of one another. The probability that type θ applicants have a tie-breaker below any value r

is FR(r|θ) ≡ E[F i
R(r)|θi = θ], where F i

R(r) is F
i
R evaluated at r.

The serial dictatorship allocation is characterized by a set of tie-breaker cutoffs, denoted

τs for school s. For any school s that’s filled to capacity, τs is given by the tie-breaker of the

last (highest tie-breaker value) student assigned to s. Otherwise, τs = 1, a non-binding cutoff

reflecting excess capacity. We say an applicant qualifies at s when they have a tie-breaker

value that clears τs. Under serial dictatorship, students are assigned to s if and only if they:

• qualify at s (since seats are assigned in tie-breaker order)

• fail to qualify at any school they prefer to s (since serial dictatorship assigns available

seats at preferred schools first)

In large markets, cutoffs are constant, so stochastic variation in seat assignments arises solely

from the distribution of tie-breakers.
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3.1 The Serial Dictatorship Propensity Score

Which cutoffs matter? Under serial dictatorship, the assignment probability faced by an

applicant of type θ at school s is determined by the cutoff at s and by cutoffs at schools

preferred to s. By virtue of single tie-breaking, it’s enough to know only one of the latter. In

particular, an applicant who fails to clear the highest cutoff among those at schools preferred

to s surely fails to do better than s. This leads us to define most informative disqualification

(MID), a scalar parameter for each applicant type and school. MID tells us how the tie-

breaker distribution among type θ applicants to s is truncated by disqualification at the

schools type θ applicants prefer to s.

Because MID for type θ at school s is defined with reference to the set of schools θ prefers

to s, we define:

Bθs = {s′ 6= s | s′ ≻θ s} for each θ ∈ Θs, (4)

the set of schools type θ prefers to s. For each type and school, MIDθs is a function of

tie-breaker cutoffs at schools in Bθs, specifically:

MIDθs ≡

{

0 if Bθs = ∅

max{τb | b ∈ Bθs} otherwise.
(5)

MIDθs is zero when school s is ranked first since all who rank s first compete for a seat

there. The second line reflects the fact that an applicant who ranks s second is seated there

only when disqualified at the school they’ve ranked first, while applicants who rank s third

are seated there when disqualified at their first and second choices, and so on. Moreover,

anyone who fails to clear cutoff τb is surely disqualified at schools with less forgiving cutoffs.

For example, applicants who fail to qualify at a school with a cutoff of 0.6 are disqualified

at a school with cutoff 0.4.

Note that an applicant of type θ cannot be seated at s when MIDθs > τs. This is the

scenario sketched in the top panel of Figure 1, which illustrates the forces determining SD

assignment rates. On the other hand, assignment rates when MIDθs ≤ τs are given by the

probability that:

MIDθs < Ri ≤ τs,

an event described in the middle panel of Figure 1. These facts are collected in the following

proposition, which is implied by a more general result for DA proved in the online appendix.

Proposition 1 (Propensity Score in Serial Dictatorship). Suppose seats in a large market

are assigned by serial dictatorship. Let ps(θ) = E[Di(s)|θi = θ] denote the type θ propensity

8



score for assignment to s. For all schools s and θ ∈ Θs, we have:

ps(θ) = max {0, FR(τs|θ)− FR(MIDθs|θ)} .

Proposition 1 says that the serial dictatorship assignment probability, positive only when

the tie-breaker cutoff at s exceeds MIDθs, is given by the size of the group with Ri between

MIDθs and τs. This is

FR(τs|θ)− FR(MIDθs|θ).

With a uniformly distributed lottery number, the serial dictatorship propensity score sim-

plifies to τs −MIDθs, a scenario noted in Figure 1. In this case, the assignment probability

for each applicant is determined by τs and MIDθs alone. Given these two cutoffs, seats at

s are randomly assigned.

3.2 Serial Dictatorship Goes Local

With non-lottery tie-breaking, the serial dictatorship propensity score depends on the con-

ditional distribution function, FR(·|θ) evaluated at τs and MIDθs, rather than the cutoffs

themselves. This dependence leaves us with two econometric challenges. First, FR(·|θ) is

unknown. This precludes computation of the propensity score by repeatedly sampling from

FR(·|θ). Second, FR(·|θ), is likely to depend on θ, so the score in Proposition 1 need not have

coarser support than does θ. This is in spite of the fact many applicants with different values

of θ share the same MIDθs. Finally, although controlling for ps(θ) eliminates confounding

from type, assignments are a function of tie-breakers as well as type. Confounding from

non-lottery tie-breakers remains even after conditioning on ps(θ).

These challenges are met here by focusing on assignment probabilities for applicants

with tie-breaker realizations close to key cutoffs. Specifically, for each τs, define an interval,

(τs−δ, τs+δ], where parameter δ is a bandwidth analogous to that used for nonparametric RD

estimation. A local propensity score treats the qualification status of applicants inside this

interval as randomly assigned. This assumption is justified by the fact that, given continuous

differentiability of tie-breaker distributions, non-lottery tie-breakers have a limiting uniform

distribution as the bandwidth shrinks to zero.

The following Proposition uses this fact to characterize the local serial dictatorship

propensity score:

Proposition 2 (Local Serial Dictatorship Propensity Score). Suppose seats in a large market

are assigned by serial dictatorship. Also, let Wi be any applicant characteristic other than

9



Figure 1: Assignment Probabilities under Serial Dictatorship

0

Assigned 𝑠′ ≻ 𝑠 Rejected at s

Ri

0 τs MIDθs 1

Assigned 𝑠′ ≻ 𝑠 Offered a seat at s Rejected at s

Ri

0 MIDθs τs 1

Local Propensity Score is 0.5

Ri

0
MIDθs- 𝛿 MIDθs MIDθs+ 𝛿 𝜏! − 𝛿 τ! 𝜏! + 𝛿 1

τ! < 𝑀𝐼𝐷"!

𝑀𝐼𝐷"! < τ!
τ! −𝑀𝐼𝐷"! when Ri is uniform

FR(τ!|𝜃) − 𝐹R(𝑀𝐼𝐷"!|𝜃) when Ri has distribution F

0 if Ri ≤ 𝑀𝐼𝐷"! − 𝛿 or  Ri > 𝜏! + δ

1 if Ri ∈ (𝑀𝐼𝐷𝜃𝑠 + 𝛿, 𝜏𝑠 − 𝛿]

0.5 if Ri ∈ 𝜏! − δ, 𝜏! + δ or  Ri ∈ (𝑀𝐼𝐷𝜃𝑠 − 𝛿,𝑀𝐼𝐷𝜃𝑠 + 𝛿]

𝑀𝐼𝐷"! < τ!

Assignment Probability

C. Local Propensity Score at s

B. Propensity Score at s

A. Never seated at s

Notes: This figure illustrates the assignment probability at school s under serial dictatorship. Ri is the
tie-breaker. MIDθs is the most forgiving cutoff at schools preferred to s and τs is the cutoff at s.

type that is unchanged by school assignment.7 Finally, assume τs 6= τs′ for all s 6= s′ unless

both are 1. Then,

E[Di(s)|θi = θ,Wi = w] = 0 if τs < MIDθs.

Otherwise,

lim
δ→0

E[Di(s)|θi = θ,Wi = w,Ri ≤MIDθs − δ] = lim
δ→0

E[Di(s)|θi = θ,Wi = w,Ri > τs + δ)] = 0,

lim
δ→0

E[Di(s)|θi = θ,Wi = w,Ri ∈ (MIDθs + δ, τs − δ]] = 1,

lim
δ→0

E[Di(s)|θi = θ,Wi = w,Ri ∈ (MIDθs − δ,MIDθs + δ]]

= lim
δ→0

E[Di(s)|θi = θ,Wi = w,Ri ∈ (τs − δ, τs + δ]] = 0.5.

This follows from a more general result for DA presented in the next section.

Proposition 2 describes a key conditional independence result: the limiting local prob-

ability of seat assignment in serial dictatorship takes on only three values and is unre-

7Let Wi = ΣsDi(s)Wi(s), where Wi(s) is the potential value of Wi revealed when Di(s) = 1. We say
Wi is unchanged by school assignment when Wi(s) = Wi(s

′) for all s 6= s′. Examples include demographic
characteristics and potential outcomes.
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lated to applicant characteristics. Note that the cases enumerated in the proposition (when

τs > MIDθs) partition the tie-breaker line as sketched in Figure 1. Applicants with tie-

breaker values above the cutoff at s are disqualified at s and so cannot be seated there, while

applicants with tie-breaker values below MIDθs are qualified at a school they prefer to s

and so will be seated elsewhere. Applicants with tie-breakers strictly between MIDθs and

τs are surely assigned to s. Finally, type θ applicants with tie-breakers near either MIDθs

or the cutoff at s are seated with probability approximately equal to one-half. Nearness in

this case means inside the interval defined by bandwidth δ.

The driving force behind Proposition 2 is the assumption that the tie-breaker distribu-

tion is continuously differentiable. In a shrinking window, the tie-breaker density there-

fore approaches that of a uniform distribution, so the limiting qualification rate is one-half

(See Abdulkadiroğlu et al. (2017b) or Bugni and Canay (2018) for formal proof of this

claim). The assumption of a continuously differentiable tie-breaker distribution is analo-

gous to the continuous running variable assumption invoked in Lee (2008) and to a local

smoothness assumption in Dong (2018). Continuity of tie-breaker distributions implies a

weaker smoothness condition asserting continuity at cutoffs of the conditional expectation

functions of potential outcomes given running variables. We favor the stronger continuity

assumption because the implied local random assignment provides a scaffold for construction

of assignment probabilities in more complicated matching scenarios.8

4 The Local DA Propensity Score

Many school districts assign seats using a version of student-proposing DA, which can be

described like this:

Each applicant proposes to his or her most preferred school. Each school ranks

these proposals, first by priority then by tie-breaker within priority groups, provi-

sionally admitting the highest-ranked applicants in this order up to its capacity.

Other applicants are rejected.

Each rejected applicant proposes to his or her next most preferred school. Each

school ranks these new proposals together with applicants admitted provision-

ally in the previous round, first by priority and then by tie-breaker. From this

8The connection between continuity of running variable distributions and conditional expectation func-
tions is noted by Dong (2018) and Arai et al. (2019). Antecedents for the local random assignment idea
include an unpublished appendix to Frolich (2007) and an unpublished draft of Frandsen (2017), which
shows something similar for an asymmetric bandwidth. See also Cattaneo et al. (2015) and Frolich and
Huber (2019).
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pool, the school again provisionally admits those ranked highest up to capacity,

rejecting the rest.

The algorithm terminates when there are no new proposals (some applicants may

remain unassigned).

Different schools may use different tie-breakers. For example, the NYC high school

match includes a diverse set of screened schools (Abdulkadiroğlu et al., 2005, 2009). These

schools order applicants using school-specific tie-breakers that are derived from interviews,

auditions, or GPA in earlier grades, as well as test scores. The NYC match also includes

many unscreened schools, referred to here as lottery schools, that use a uniformly distributed

lottery number as tie-breaker. Lottery numbers are distributed independently of type and

potential outcomes, but non-lottery tie-breakers like entrance exam scores almost certainly

depend on these variables.

4.1 Key Assumptions and Main Theorem

We adopt the convention that tie-breaker indices are ordered such that lottery tie-breakers

come first. That is, v ∈ {1, ..., U}, where U ≤ V , indexes U lottery tie-breakers. Each lottery

tie-breaker, Riv for v = {1, ...U}, is uniformly distributed over [0, 1]. Non-lottery tie-breakers

are indexed by v ∈ {U + 1, ..., V }. The assumptions employed with general tie-breaking are

summarized as follows:

Assumption 1.

(i) For any tie-breaker indexed by v ∈ {1, ..., V } and applicants i 6= j, tie-breakers Riv and

Rjv are independent, though not necessarily identically distributed.

(ii) The unconditional joint distribution of non-lottery tie-breakers {Riv; v = U + 1, ..., V }

for applicant i is continuously differentiable with positive density over [0, 1].

Let v(s) be a function that returns the index of the tie-breaker used at school s. By

definition, s ∈ Sv(s). To combine applicants’ priority status and tie-breaking variables into a

single number for each school, we define applicant position at school s as:

πis = ρis +Riv(s).

Since the difference between any two priorities is at least 1 and tie-breaking variables are

between 0 and 1, applicant order by position at s is lexicographic, first by priority then by tie-

breaker. As noted in the discussion of serial dictatorship, we distinguish between tie-breakers

and priorities because the latter are fixed, while the former are random variables.

12



We also generalize cutoffs to incorporate priorities; these DA cutoffs are denoted ξs. For

any school s that ends up filled to capacity, ξs is given by maxi{πis|Di(s) = 1}. Otherwise,

we set ξs = K + 1 to indicate that s has slack (recall that K is the lowest possible priority).

DA assigns a seat at school s to any applicant i ranking s who has

πis ≤ ξs and πib > ξb for all b ≻i s. (6)

This is a consequence of the fact that the student-proposing DA is stable.9 In large markets,

ξs is fixed as tie breakers are drawn and re-drawn. DA-induced school assignment rates are

therefore determined by the distribution of stochastic tie-breakers evaluated at fixed school

cutoffs. Condition (6) nests our characterization of seat assignment under serial dictatorship

since we can set ρis = 0 for all applicants and use a single tie-breaker to determine position.

Statement (6) then says that Ri ≤ τs and Ri > MIDθs for applicants with θi = θ.

The DA propensity score is the probability of the event described by (6). This probability

is determined in part by marginal priority at school s, denoted ρs and defined as int(ξs), the

integer part of the DA cutoff. Conditional on rejection by all preferred schools, applicants to

s are assigned s with certainty if ρis < ρs, that is, if they clear marginal priority. Applicants

with ρis > ρs have no chance of finding a seat at s. Applicants for whom ρis = ρs are marginal:

these applicants are seated at s when their tie-breaker values fall below tie-breaker cutoff τs.

This quantity can therefore be written as the decimal part of the DA cutoff:

τs = ξs − ρs.

Applicants with marginal priority have ρis = ρs, so πis ≤ ξs ⇔ Riv(s) ≤ τs.

In addition to marginal priority, the local DA propensity score is conditioned on applicant

position relative to screened school cutoffs. To describe this conditioning, define a set of

variables, tis(δ), as follows:

tis(δ) =











n if ρθs > ρs or, if v(s) > U, ρθs = ρs and Riv(s) > τs + δ

a if ρθs < ρs or, if v(s) > U, ρθs = ρs and Riv(s) ≤ τs − δ

c if ρθs = ρs and, if v(s) > U, Riv(s) ∈ (τs − δ, τs + δ],

where the mnemonic value labels n, a, c stand for never seated, always seated, and condition-

9In particular, if an applicant is seated at s but prefers b, she must be qualified at s and not have been
assigned to b. Moreover, since DA-generated assignments at b are made in order of position, applicants not
assigned to b must be disqualified there.
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ally seated. It’s convenient to collect these variables in a vector,

Ti(δ) = [ti1(δ), ..., tis(δ), ..., tiS(δ)].

Elements of Ti(δ) for unscreened schools are a function only of the partition of types

determined by marginal priority. For screened schools, however, Ti(δ) also encodes the

relationship between tie-breakers and cutoffs. Never-seated applicants to s cannot be seated

there, either because they fail to clear marginal priority at s or because they’re too far above

the cutoff when s is screened. Always-seated applicants to s are assigned s for sure when

they can’t do better, either because they clear marginal priority at s or because they’re well

below the cutoff at s when s is screened. Finally, conditionally-seated applicants to s are

randomized marginal priority applicants. Randomization is by lottery number when s is a

lottery school or by non-lottery tie-breaker within the bandwidth when s is screened.

With this machinery in hand, the local DA propensity score is defined as follows:

ψs(θ, T ) = lim
δ→0

E[Di(s)|θi = θ, Ti(δ) = T ],

for T = [t1, ..., ts, ..., tS] where ts ∈ {n, a, c} for each s. This describes assignment probabil-

ities as a function of type and cutoff proximity at each school. As in Proposition 2, formal

characterization of ψs(θ, T ) requires cutoffs be distinct:

Assumption 2. τs 6= τs′ for all s 6= s′ unless both are 1.

The formula characterizing ψs(θ, T ) builds on an extension of the MID idea to a general

tie-breaking regime. First, the set of schools θ prefers to s, Bθs, is partitioned by tie-breakers

by defining Bv
θs ≡ {b ∈ Sv | b ≻θ s} for each v. We then have:

MIDv
θs =











0 if ρθb > ρb for all b ∈ Bv
θs or if B

v
θs = ∅

1 if ρθb < ρb for some b ∈ Bv
θs

max{τb | b ∈ Bv
θs and ρθb = ρb} otherwise.

MIDv
θs quantifies the extent to which qualification at schools using tie-breaker v(s) and that

type θ applicants prefer to s truncates the tie-breaker distribution among those contending

for seats at s.

Next, define:

ms(θ, T ) = |{v > U :MIDv
θs = τb and tb = c for some b ∈ Bv

θs}|.

This quantity counts the number of RD-style experiments created by the screened schools
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that type θ prefers to s.

The last preliminary to a formulation of local DA assignment scores uses MIDv
θs and

ms(θ, T ) to compute disqualification rates at all schools preferred to s. We break this into two

pieces: variation generated by screened schools and variation generated by lottery schools.

As the bandwidth shrinks, the limiting disqualification probability at screened schools in Bθs

converges to

σs(θ, T ) = 0.5ms(θ,T ). (7)

The disqualification probability at lottery schools in Bθs is

λs(θ) =
U
∏

v=1

(1−MIDv
θs), (8)

without regard to bandwidth.

To recap: the local DA score for type θ applicants is determined in part by the screened

schools θ prefers to s. Relevant screened schools are those determiningMIDv
θs, and at which

applicants are close to tie-breaker cutoffs. The variable ms(θ, T ) counts the number of tie-

breakers involved in such close encounters. Applicants drawing screened school tie-breakers

close to τb for some b ∈ Bv
θs face qualification rates of 0.5 for each tie-breaker v. Since

screened school disqualification is locally independent over tie-breakers, the term σs(θ, T )

computes the probability of not being assigned a screened school preferred to s. Likewise,

since the qualification rate at preferred lottery schools is MIDv
θs, the term λs(θ) computes

the probability of not being assigned a lottery school preferred to s.

The following theorem combines these in a formula for the local DA propensity score:

Theorem 1 (Local DA Propensity Score with General Tie-breaking). Suppose seats in a

large market are assigned by DA with tie-breakers indexed by v, and suppose Assumptions 1

and 2 hold. For all schools s, θ, T and w, we have

ψs(θ, T ) = lim
δ→0

E[Di(s)|θi = θ, Ti(δ) = T,Wi = w] = 0,

if (a) ts = n; or (b) tb = a for some b ∈ Bθs. Otherwise,

ψs(θ, T ) =























σs(θ, T )λs(θ) if ts = a

σs(θ, T )λs(θ)max

{

0,
τs −MID

v(s)
θs

1−MID
v(s)
θs

}

if ts = c and v(s) ≤ U

σs(θ, T )λs(θ)× 0.5 if ts = c and v(s) > U.

(9)
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Theorem 1 starts with a scenario where applicants to s are either disqualified there or

assigned to a preferred school for sure.10 In this case, we need not worry about whether

s is a screened or lottery school. In other scenarios where applicants are surely qualified

at s, the probability of assignment to s is determined entirely by disqualification rates at

preferred screened schools and by truncation of lottery tie-breaker distributions at preferred

lottery schools. These sources of assignment risk combine to produce the first line of (9).

The conditional assignment probability at any lottery s, described on the second line of (9),

is determined by the disqualification rate at preferred schools and the qualification rate at

s, where the latter is given by τs −MID
v(s)
θs (to see this, note that λs(θ) includes the term

1−MIDv(s) in the product over lottery tie-breakers). Similarly, the conditional assignment

probability at any screened s, on the third line of (9), is determined by the disqualification

rate at preferred schools and the qualification rate at s, where the latter is given by 0.5.

The Theorem covers the non-lottery tie-breaking serial dictatorship scenario in the pre-

vious section. With a single non-lottery tie-breaker, λs(θ) = 1. When ts = n or tb = a

for some b ∈ Bθs, the local propensity score at s is zero. Otherwise, suppose tb = n for all

b ∈ Bθs, so that ms(θ, T ) = 0. If ts = a, then the local propensity score is 1. If ts = c, then

the local propensity score is 0.5. Suppose, instead, that MIDθs = τb for some b ∈ Bθs, so

that ms(θ, T ) = 1. In this case, ts 6= c because cutoffs are distinct. If ts = a, then the local

propensity score is 0.5. Online Appendix B uses an example to illustrate the Theorem in

other scenarios.

4.2 Score Estimation

Theorem 1 characterizes the theoretical probability of school assignment in a large market

with a continuum of applicants. In reality, of course, the number of applicants is finite

and propensity scores must be estimated. We show here that, in an asymptotic sequence

that increases market size with a shrinking bandwidth, a sample analog of the local DA

score described by Theorem 1 converges uniformly to the corresponding local score for a

finite market. Our empirical application establishes the relevance of this asymptotic result

by showing that applicant characteristics are balanced by assignment status conditional on

estimates of the local DA propensity score.

The asymptotic sequence for the estimated local DA score works as follows: randomly

sample N applicants from a continuum economy. The applicant sample (of size N) includes

information on each applicant’s type and the vector of large-market school capacities, qs,

which give the proportion of N seats that can be seated at s. We observe realized tie-breaker

10See the appendix for proof of the Theorem, along with other theoretical results, including derivation of
a non-limit form of the DA propensity score.
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values for each applicant, but not the underlying distribution of non-lottery tie-breakers. The

set of finitely many schools is unchanged along this sequence.

Fix the number of seats at school s in a sampled finite market to be the integer part of

Nqs and run DA with these applicants and schools. We consider the limiting behavior of an

estimator computed using the estimated ˆMID
v

θis
, τ̂s, and marginal priorities generated by

this single realization. Also, given a bandwidth δN > 0, we compute tis(δN) for each i and

s, collecting these in vector Ti(δN). These statistics then determine:

m̂s(θi, Ti(δN)) = |{v > U : ˆMID
v

θis
= τ̂b and tib(δN) = c for some b ∈ Bv

θis
}|.

Our local DA score estimator, denoted ψ̂s(θi, Ti(δN)), is constructed by plugging these

ingredients into the formula in Theorem 1. That is, if (a) t̂is(δN) = n; or (b) t̂ib(δN) =

a for some b ∈ Bθis, then ψ̂s(θi, Ti(δN)) = 0. Otherwise,

ψ̂s(θi, Ti(δN)) =


















σ̂s(θi, Ti(δN))λ̂s(θi) if tis(δN) = a

σ̂s(θi, Ti(δN))λ̂s(θi)max

{

0,
τ̂s− ˆMID

v(s)
θis

1− ˆMID
v(s)
θis

}

if tis(δN) = c and v(s) ≤ U

σ̂s(θi, Ti(δN))λ̂s(θi)× 0.5 if tis(δN) = c and v(s) > U,

(10)

where

σ̂s(θi, Ti(δN)) = 0.5m̂s(θi,Ti(δN ))

and

λ̂s(θi) =
U
∏

v=1

(1− ˆMID
v

θis
).

As a theoretical benchmark for the large-sample performance of ψ̂s, consider the true

local DA score for a finite market of size N . This is

ψNs(θ, T ) = lim
δ→0

EN [Di(s)|θi = θ, Ti(δ) = T ], (11)

where EN is the expectation induced by the joint tie-breaker distribution for applicants in

the finite market. This quantity is defined by fixing the distribution of types and the vector

of proportional school capacities, as well as market size. ψNs(θ, T ) is then the limit of the

average of Di(s) across infinitely many tie-breaker draws in ever-narrowing bandwidths for

this finite market. Because tie-breaker distributions are assumed to have continuous density

in the neighborhood of any cutoff, the finite-market local propensity score is well-defined for

any positive δ.
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We’re interested in the gap between the estimator ψ̂s(θ, T (δN)) and the true local score

ψNs(θ, T ) as N grows and δN shrinks. We show below that ψ̂s(θ, T (δN)) converges uniformly

to ψNs(θ, T ) in our asymptotic sequence.

This result uses a regularity condition:

Assumption 3. (Rich support) In the population continuum market, for every school s and

every priority ρ held by a positive mass of applicants who rank s, the proportion of applicants

i with ρis = ρ who rank s first is also positive.

Uniform convergence of ψ̂s(θ, T (δN)) is formalized below:

Theorem 2 (Consistency of the Estimated Local DA Propensity Score). In the asymptotic

sequence described above, and maintaining Assumptions 1-3, the estimated local DA propen-

sity score ψ̂s(θ, T (δN)) is a consistent estimator of ψNs(θ, T ) in the following sense: For any

δN such that δN → 0, NδN → ∞, and T (δn) → T ,

sup
θ,s,T

|ψ̂s(θ, T (δN))− ψNs(θ, T )|
p

−→ 0,

as N → ∞.

This result (proved in the online appendix) justifies conditioning on an estimated local

propensity score to eliminate omitted variables bias in school attendance effect estimates.

4.3 Treatment Effect Estimation

Theorems 1 and 2 provide a foundation for causal inference. In combination with an ex-

clusion restriction discussed below, these results imply that a dummy variable indicating

Grade A assignments is asymptotically independent of potential outcomes (represented by

the residuals in a equation (1)), conditional on an estimate of the Grade A local propensity

score. Let SA denote the set of Grade A schools. Because DA generates a single offer, the

local propensity score for Grade A assignment can be computed as:

ψ̂A(θi, Ti(δN)) =
∑

s∈SA

ψ̂s(θi, Ti(δN)).

In other words, the local score for Grade A assignment is the sum of the scores for all Grade

A schools in the match.

These considerations lead to a 2SLS estimator with second and first stage equations that
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can be written in stylized form as:

Yi = βCi +
∑

x

α2(x)di(x) + g2(Ri; δN) + ηi (12)

Ci = γDAi +
∑

x

α1(x)di(x) + g1(Ri; δN) + νi, (13)

where di(x) = 1{ψ̂A(θi, Ti(δN)) = x} and the set of parameters denoted α2(x) and α1(x)

provide saturated control for the local propensity score. As detailed in the next section,

functions g2(Ri; δN) and g1(Ri; δN) implement local linear control for screened school tie-

breakers for applicants to these schools with t̂is(δN) = c. Linking this with the empirical

strategy sketched at the outset, equation (12) is a version of of equation (1) that sets

f2(θi,Ri, δ) =
∑

x

α2(x)di(x) + g2(Ri; δN).

Likewise, equation (13) is a version of equation (2) with f1(θi,Ri, δ) defined similarly.

Our implementation of score-controlled instrumental variables is inspired by the Calonico

et al. (2019) analysis of RD designs with covariates. Using a mix of simulation evidence and

theoretical reasoning, Calonico et al. (2019) argues that additive control for covariates in a

local linear regression model requires fewer assumptions and is likely to have better finite-

sample behavior than more elaborate procedures. The covariates of interest to us are a full

set of dummies for values in the support of the Grade A local propensity score. We’d like to

control for these while also benefiting from the good performance of local linear regression

estimators of conditional mean functions near cutoffs.11

Note that saturated regression-conditioning on the local propensity score eliminates appli-

cants with score values of zero or one. This is apparent from an analogy with a fixed-effects

panel model. In panel data with multiple annual observations on individuals, estimation

with individual fixed effects is equivalent to estimation after subtracting person means from

regressors. Here, the “fixed effects” are coefficients on dummies for each possible score value.

When the score value is 0 or 1 for applicants of a given type, assignment status is constant

and observations on applicants of this type drop out. We therefore say an applicant has

Grade A risk when ψ̂A(θi, Ti(δN)) ∈ (0, 1). The sample with risk contributes to parameter

estimation in models with saturated score control.

11Calonico et al. (2019) discuss both sharp and fuzzy RD designs. The conclusions for sharp design carry
over to the fuzzy case in which cutoff clearance is used as an instrument. Equations (12) and (13) are said
to be stylized because they omit a number of implementation details supplied in the following section.
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Propensity score conditioning facilitates control for applicant type in the sample with

risk. In practice, local propensity score conditioning yields considerable dimension reduction

compared to full-type conditioning, as we would hope. The 2014 NYC high school match, for

example, involved 52,124 applicants of 47,074 distinct types. Of these, 42,461 types listed

a Grade A school on their application to the high school match. By contrast, the local

propensity score for Grade A school assignment takes on only 2,054 values.

5 A Brief Report on NYC Report Cards

5.1 Doing DA in the Big Apple

Since the 2003-04 school year, the NYC Department of Education (DOE) has used DA to

assign rising ninth graders to high schools. Many high schools in the match host multiple

programs, each with their own admissions protocols. Applicants are matched to programs

rather than schools. Each applicant for a ninth grade seat can rank up to twelve programs.

All traditional public high schools participate in the match, but charter schools and NYC’s

specialized exam high schools have separate admissions procedures.12

The NYC match is structured like the general DA match described in Section 4: lottery

programs use a common uniformly distributed lottery number, while screened programs use

a variety of non-lottery tie-breaking variables. Screened tie-breakers are mostly distinct, with

one for each school or program, though some screened programs share a tie-breaker. In any

case, our theoretical framework accommodates all of NYC’s many tie-breaking protocols.13

Our analysis uses Theorems 1 and 2 to compute propensity scores for programs rather

than schools since programs are the unit of assignment. For our purposes, a lottery school

is a school hosting any lottery program. Other schools are defined as screened.14

In 2007, the NYC DOE launched a school accountability system that graded schools

from A to F. This mirrors similar accountability systems in Florida and other states. NYC’s

school grades were determined by achievement levels and, especially, achievement growth, as

12Some special needs students are also matched separately. The centralized NYC high school match is
detailed in Abdulkadiroğlu et al. (2005, 2009). Abdulkadiroğlu et al. (2014) describe NYC exam school
admissions.

13Screened tie-breakers are reported as an integer variable encoding the underlying tie-breaker order such
as a test score or portfolio summary score. We scale these so as to lie in (0, 1] by computing [Riv−minj Rjv+
1]/[maxj Rjv−minj Rjv+1] for each tie-breaker v. This transformation produces a positive cutoff at s when
only one applicant is seated at s and a cutoff of 1 when all applicants who rank s are seated there.

14Some NYC high schools sort applicants on a coarse screening tie-breaker that allows ties, breaking
these ties using the common lottery number. Schools of this type are treated as lottery schools, with priority
groups defined by values of the screened tie-breaker. Seats for NYC’s ed-opt programs are allocated to
two groups, one of which screens applicants using a single non-lottery tie-breaker and the other using the
common lottery number. The online appendix explains how ed-opt programs are handled by our analysis.
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Figure 2: Sample NYC School Report Card
                                                                                
                                                                                
                                     
                                     
                                     
                                     
                                     
                                                                                
                                                                                
                                

                       
                         

                                                                                 
 

    
 

 
    

 
 

    
 

 
    

 
 

    
 

 
    

 
 

    
                               
 

 
    

 
 

 

        
   

 
 

 
  

 
 

 
 

  
 

   
  

 
   

  
 

   
  

 
 

 
   

  
 

 
 

   
  

 
 

 
   

   
   

     
 

 
 

       
  

   
  

 
          

    
   

                                    
   

   
 

 
                

 
 

                
                                           
                                           
                                           
                                           
                                           
                                           
 

  
               

 
   

  
  

       
  

 
                            

   
                        

   
                    

  
 
 
 

          
                
                               

                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
  

                               
        

                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

College and    

Career Readiness

7.3
out of 10 A

College and Career Readiness measures how well students are prepared for life 

after high school on the basis of passing advanced courses, meeting English and 

math standards, and enrolling in a post-secondary institution.

*See p. 7 for more details on Peer Index.

of schools

School 
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Each school's Progress Report (1) measures student year-to-year progress, (2) compares the school to peer schools, and (3) rewards success in moving all

children forward, especially children with the greatest needs.

Student Performance measures how many students graduated within 4 and 6 years 

of starting high school, and the types of diplomas they earned.
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A school that receives a Well Developed rating earned the 

highest grade for highly effective teaching and learning 

practice, strategic school management, and an excellent 

quality learning environment. For more information, see:of schools
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School Environment measures student attendance and a survey of the school 

community rating academic expectations, safety and respect, communication, and 

engagement.out of 15
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Closing the 

Achievement Gap
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The Progress Report is a one-year snapshot of a school’s performance. The 

 
Schools receive additional credit for exceptional graduation and college/career

readiness outcomes of students with disabilities, English Language Learners, and

students who enter high school at a low performance level.(16 max)

Overall Score 73.6 A
The overall grade is based on the total of all scores above. Category scores may not 

add up to total score because of rounding.
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Student 

Progress
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Student Progress measures the annual progress students make toward meeting the

state's graduation requirements by earning course credits and passing state

Regents exams.

http://schools.nyc.gov/Accountability/tools/review

Progress Report 2011-12
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overall score is 
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Progress Report Grades - High School

 47  -  71

73.6
For high schools, grades are based on cut scores determined prior to the

release of the Progress Report. Further, schools with a four year graduation

rate in the top third citywide cannot receive a grade lower than a C. Schools

in their first year, without a graduating class or in phase out receive a report

with no grade or score.
 25  -  46

The rating is based on three major categories of school 

performance: instruction that prepares students for 

college and careers, school organization and 

management, and quality of the learning environment.

PROGRESS REPORT QUALITY REVIEW

WD
Well Developed ( 2007-08 )

                RATING                        SCORE RANGE

Well Developed

Proficient

Developing

Underdeveloped

or higher 35%

of schools

Notes: This figure shows the 2011/12 progress report for East Side Community School. Source:
www.crpe.org

well as by survey- and attendance-based features of the school environment. Growth looked

at credit accumulation, Regents test completion and pass rates; performance measures were

derived mostly from four- and six-year graduation rates. Some schools were ungraded. Figure

2 reproduces a sample letter-graded school progress report.15

The 2007 grading system was controversial. Proponents applauded the integration of mul-

tiple measures of school quality while opponents objected to the high-stakes consequences of

low school grades, such as school closure or consolidation. Rockoff and Turner (2011) provide

a partial validation of the system by showing that low grades seem to have sparked school

improvement. In 2014, the DOE replaced the 2007 scheme with school quality measures

15Walcott (2012) details the NYC grading methodology used in this period. Note that the computation of
the grade of a school for a particular year uses only information from past years, so that there is no feedback
between school grades and the school’s current outcomes.

21



that place less weight on test scores and more on curriculum characteristics and subjective

assessments of teaching quality. The relative merits of the old and new systems continue to

be debated.

The results reported here use application data from the 2011-12, 2012-13, and 2013-14

school years (students in these application cohorts enrolled in the following school years).

Our sample includes first-time applicants seeking 9th grade seats, who submitted preferences

over programs in the main round of the NYC high school match. We obtained data on school

capacities and priorities, lottery numbers, and screened school tie-breakers, information that

allows us to replicate the match. Details related to match replication appear in the online

appendix.16

All Screened Lottery

(1) (2) (3) (4) (5) 

SAT Math (200-800) 531 618 481 464 440

SAT Reading (200-800) 522 598 479 465 449

Graduation rate 0.78 0.93 0.71 0.64 0.41

College- and career-prepared index 0.65 0.86 0.54 0.39 0.27

College-ready index 0.59 0.84 0.45 0.34 0.24

Black 0.20 0.10 0.25 0.32 0.39

Hispanic 0.35 0.24 0.42 0.40 0.43

Special education 0.12 0.06 0.15 0.17 0.27

Free lunch 0.68 0.53 0.76 0.77 0.75

In Manhattan 0.27 0.49 0.14 0.16 0.28

Number of grade 9 students 420 454 401 413 86

Number of grade 12 students 374 439 337 351 53

High school size 1596 1798 1481 1509 426

Inexperienced teachers 0.11 0.09 0.12 0.11 0.28

Advanced degree teachers 0.53 0.60 0.49 0.50 0.30

New school 0.00 0.00 0.01 0.00 0.21

School-year observations 355 101 254 694 715

Panel B. Student Body and Teacher Characteristics

Notes. This table reports student-weighted averages of means by school and year. Estimates are for cohorts

enrolled in ninth grade in 2012-13, 2013-14. A screened school is defined as any school without lottery

programs. Specialized and charter high schools admit applicants in a separate process and are considered

screened and lottery schools, respectively. The college-and-career-prepared and college-ready indices are on a

scale of 0 to 1. Graduation and college outcomes condition on ninth grade enrollment in the year following the

match; college outcomes are available for the first and second cohort only. Inexperienced teachers are defined

as those having 3 or fewer years of experience; advanced degree teachers are defined as those with a Masters

or higher degree. New schools are those that opened 1 or 2 years prior to the relevant cohort's ninth grade

enrollment.

Table 1.  New York City High School Performance and Characteristics

Grade A Schools Grade B-F 

Schools

Ungraded 

Schools

Panel A. Outcome Variable Means

16Our analysis assigns report card grades to a cohort’s schools based on the report cards published in the
previous year. For the 2011/12 application cohort, for instance, we used the grades published in 2010/11.
On the other hand, applicant SAT scores from tests taken before 9th grade are dropped.
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Students at Grade A schools have higher average SAT scores and higher graduation rates

than do students at other schools. Differences in graduation rates across schools feature in

popular accounts of socioeconomic differences in school access (see, e.g., Harris and Fessenden

(2017) and Disare (2017)). Grade A students are also more likely than students attending

other schools to be deemed “college- and career-prepared” or “college-ready.”17 These and

other school characteristics are documented in Table 1, which reports statistics separately by

school grade and admissions regime. Achievement gaps between screened and lottery Grade

A schools are especially large, likely reflecting selection bias induced by test-based screening.

Screened Grade A schools have a majority white and Asian student body, the only group

of schools described in the table to do so (the table reports shares black and Hispanic).

These schools are also over-represented in Manhattan, a borough that includes most of

New York’s wealthiest neighborhoods (though average family income is higher on Staten

Island). Teacher experience is similar across school types, while screened Grade A schools

have somewhat more teachers with advanced degrees.

The first two columns of Table 2 describe the roughly 180,000 ninth graders enrolled

in the 2012-13, 2013-14, and 2014-15 school years. Students enrolled in a Grade A school,

including those enrolled in the Grade A schools assigned outside the match, are less likely

to be black or Hispanic and have higher baseline scores than the general population of 9th

graders. The 153,000 eighth graders who applied for ninth grade seats are described in

column 3 of the table. Roughly 130,000 listed a Grade A school for which seats are assigned

in the match on their application form and a little over a third of these were assigned to

a Grade A school.18 Applicants in the match have baseline scores (from tests taken in 6th

grade) above the overall district mean (baseline scores are standardized to the population of

test-takers). As can be seen by comparing columns 3 and 4 in Table 2, however, the average

characteristics of Grade A applicants are mostly similar to those of the entire applicant

population.

The statistics in column 5 of Table 2 show that applicants enrolled in a Grade A school

(among schools participating in the match) are somewhat less likely to be black and have

higher baseline scores than the total applicant pool. These gaps likely reflect systematic

differences in offer rates by race at screened Grade A schools. Column 5 of Table 2 also

shows that most of those attending a Grade A school were assigned there, and that most

Grade A students ranked a Grade A school first. Grade A students are about twice as likely

17These composite variables are determined as a function of Regents and AP scores, course grades,
vocational or arts certification, and college admission tests.

18The difference between total 9th grade enrollment and the number of match participants is accounted
for by special education students outside the main match, direct-to-charter enrollment, and a few schools
that straddle 9th grade.
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to go to a lottery school as to a screened school. Interestingly, enthusiasm for Grade A

schools is far from universal: just under half of all applicants in the match ranked a Grade

A school first.

(1) (2) (3) (4) (5) (6) 

Black 30.7 19.5 29.1 29.3 22.4 21.7

Hispanic 40.2 33.6 38.9 39.3 38.2 38.7

Female 49.2 53.2 51.5 52.5 54.1 51.7

Special education 19.0 5.6 7.6 7.3 6.4 5.7

English language learners 7.5 4.3 6.0 5.7 5.1 4.7

Free lunch 78.6 69.5 77.3 77.2 73.2 74.4

Math (standardized) 0.056 0.547 0.207 0.233 0.348 0.392

English (standardized) 0.022 0.484 0.168 0.196 0.301 0.327

Grade A school 85.0 29.4 34.6 91.3 48.2

Grade A screened school 26.9 9.0 10.5 25 15.3

Grade A lottery school 58.1 20.4 24.0 66.3 32.9

Listed Grade A first 83.9 47.3 55.6 85.9 77.8

Grade A school 29.5 100 31.1 35.8 100 49.1

Grade A screened school 10.4 38.3 12.1 13.7 26.1 19

Grade A lottery school 19.1 61.7 18.9 22.1 73.9 30.2

Students 182,249 46,682 153,211 130,242 38,156 35,132

Schools 603 175 569 567 159 523

School-year observations 1672 355 1584 1562 319 1420

Demographic variables

Baseline scores

Offer rates at a …

9th grade enrollment at a …

Notes. This table describes NYC 9th graders and high school match participants. Columns 1 and 2 show statistics for

students enrolled in ninth grade in the 2012-13, 2013-14 and 2014-15 school years with non-missing demographics and

baseline test scores. Columns 3-6 show statistics for ninth grade applicants who participated in the NYC high school

match one year earlier. In columns 4-6, "Grade A" refers to Grade A schools that participate in the main NYC high

school match. The sample used for column 6 is limited to applicants with an estimated propensity score strictly between

0 and 1. Baseline scores are from sixth grade and demographic variables from eighth grade.

Table 2. High School Student Characteristics

Ninth Grade Students Eighth Grade Applicants in the Match 

All
Enrolled in 

Grade A
All

Listed 

Grade A

Enrolled in 

Grade A

At Risk at 

Grade A

5.2 Balance and 2SLS Estimates

Because NYC has a single lottery tie-breaker, the disqualification probability at lottery

schools in Bθs described by equation (8) simplifies to

λs(θ) = (1−MID1
θs),

where MID1
θs is most informative disqualification at schools using the common lottery tie-

breaker, R1i. The local DA score described by equation (9) therefore also simplifies, in this
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case to:

ψs(θ, T ) =











σs(θ, T )(1−MID1
θs) if ts = a,

σs(θ, T )max {0, τs −MID1
θs} if ts = c and v(s) = 1,

σs(θ, T )(1−MID1
θs)× 0.5 if ts = c and v(s) > 1.

(14)

Estimates of the local DA score based on (14) reveal that roughly 35,000 applicants have

Grade A risk, that is, an estimated local DA score value strictly between 0 and 1. As can

be seen in column 6 of Table 2, applicants with Grade A risk have mean baseline scores

and demographic characteristics much like those of the sample enrolled at a Grade A school.

The ratio of screened to lottery enrollment among those with Grade A risk is also similar to

the corresponding ratio in the sample of enrolled students (compare 32.9/15.3 in the former

group to 66.3/25.0 in the latter). Online Appendix Figure D1 plots the distribution of Grade

A assignment probabilities for applicants with risk. The modal probability is 0.5, reflecting

the fact that roughly 25% of those with Grade A risk rank a single Grade A school and that

this school is screened.

The balancing property of local propensity score conditioning is evaluated using score-

controlled differences in covariate means for applicants who do and don’t receive Grade A

assignments. Score-controlled differences by Grade A assignment status are estimated in

a model that includes a dummy indicating assignments at ungraded schools as well as a

dummy for Grade A assignments, controlling for the propensity scores for both. We account

for ungraded school attendance to ensure that estimated Grade A effects compare schools

with high and low grades, omitting the ungraded.19 Specifically, let DAi denote Grade A

assignments as before, and let D0i indicate assignments at ungraded schools. Assignment

risk for each type of school is controlled using sets of dummies denoted dAi(x) and d0i(x),

respectively, for score values indexed by x.

The covariates of interest here, denoted by Wi, are those that are unchanged by school

assignment and should therefore be mean-independent of DAi in the absence of selection bias.

The balance test results reported in Table 3 are estimates of parameter γA in regressions of

Wi on DAi of the form:

Wi = γADAi + γ0D0i +
∑

x

αA(x)dAi(x) +
∑

x

α0(x)d0i(x) + g(Ri; δN) + νi. (15)

19Ungraded schools were mostly new when grades were assigned or had data insufficient to determine a
grade.
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Local piecewise linear control for screened tie-breakers is parameterized as:

g(Ri; δN) =
∑

s∈S\S0

ω1sais + kis[ω2s + ω3s(Riv(s) − τs) + ω4s(Riv(s) − τs)1(Riv(s) > τs)], (16)

where S\S0 is the set of screened programs, ais indicates whether applicant i applied to

screened program s, and kis = 1[t̂is(δN) = c]. The sample used to estimate (15) is limited to

applicants with Grade A risk.

Parameters in (15) and (16) vary by application cohort (three cohorts are stacked in the

estimation sample). Bandwidths are estimated two ways, as suggested by Imbens and Kalya-

naraman (2012) (IK) using a uniform kernel, and using methods and software described in

Calonico et al. (2017) (CCFT). These bandwidths are computed separately for each program

(the notation ignores this), for the set of applicants in the relevant marginal priority group.20

As can be seen in column 2 of Table 3, which reports raw differences in means by Grade

A assignment status, applicants assigned to a Grade A school are much more likely to have

ranked a Grade A school first, and ranked more Grade A schools highly than did other

applicants. These applicants are also more likely to rank a Screened Grade A school first

and among their top three. Minority and free-lunch-eligible applicants are less likely to be

assigned to a Grade A school, while those assigned to a Grade A school have much higher

baselines scores, with gaps of 0.3 − 0.4 in favor of those assigned. These raw differences

notwithstanding, our theoretical results suggest that estimates of γA in equation (15) should

be close to zero.

This is borne out by the estimates reported in column 4 of the table, which shows small,

mostly insignificant differences in covariates by assignment status when estimated using using

Imbens and Kalyanaraman (2012) bandwidths. The estimated covariate gaps in column 6,

computed using Calonico et al. (2017) bandwidths, are similar. These estimates establish

the empirical relevance of both the large-market model of DA and the local DA propensity

score derived from it.21

20The IK bandwidths used here are identical to those yielded by the IK implementation referenced in
Armstrong and Kolesár (2018) and distributed via the RDhonest package. Bandwidths are computed sepa-
rately for each outcome variable; we use the smallest of these for each program. The bandwidth for screened
programs is set to zero when there are fewer than five in-bandwidth observations on one or the other side of
the relevant cutoff. The control function g(Ri; δN ) is unweighted and can therefore be said to use a uniform
kernel. We also explored bandwidths designed to produce balance as in Cattaneo et al. (2016b). These
results proved to be sensitive to implementation details such as the p-value used to establish balance.

21Our balance assessment relies on linear models to estimate mean differences rather than comparisons
of distributions. The focus on means is justified because the IV reduced form relationships we aspire to
validate are themselves regressions. Recall that in a regression context, reduced form causal effects are
unbiased provided omitted variables are mean-independent of the instrument, DAi. Since treatment variable
DAi is a dummy, the regression of omitted control variables on it is given by the difference in conditional
control variable means computed with DAi switched on and off.
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(1) (2) (3) (4) (5) (6) 

Grade A listed first 0.393 0.483 0.736 0.020 0.787 0.017

(0.002) (0.005) (0.006)

Grade A listed in top 3 0.777 0.211 0.967 0.004 0.973 0.003

(0.002) (0.002) (0.003)

Screened Grade A listed first 0.163 0.191 0.254 0.014 0.139 0.006 

(0.003) (0.005) (0.005)

Screened Grade A listed in top 3 0.322 0.143 0.419 0.008 0.259 0.001

(0.003) (0.005) (0.006)

Black 0.339 -0.130 0.225 -0.001 0.255 0.001 

(0.003) (0.006) (0.008)

Hispanic 0.406 -0.055 0.389 -0.001 0.451 0.001 

(0.003) (0.007) (0.009)

Female 0.527 0.003 0.519 -0.001 0.507 -0.010 

(0.003) (0.007) (0.009)

Special education 0.078 -0.019 0.057 -0.000 0.075 -0.006 

(0.001) (0.004) (0.005)

English language learners 0.061 -0.014 0.046 0.003 0.061 0.000

(0.001) (0.003) (0.005)

Free lunch 0.807 -0.100 0.768 -0.010 0.795  -0.013 

(0.003) (0.007) (0.008)

Baseline scores

Math (standardized) 0.109 0.379 0.330 0.004 0.118 -0.005 

(0.005) (0.010) (0.012)

English (standardized) 0.080 0.349 0.258 0.014 0.075 0.014

(0.006) (0.011) (0.014)

N 130,160 35,102 22,203

Number of program-year combinations 999 976

Average number of students in bandwidth 196 58

Notes. This table reports balance statistics computed by regressing covariates on dummies indicating Grade A and ungraded school

offers. Column 2 reports uncontrolled Grade A offer gaps. Estimates in columns 4 and 6 are from models that control for saturated

Grade A and ungraded offer propensity scores, year effects, and running variables. Estimates in column 4 were computed using

screened program bandwidths calculated as suggested by Imbens and Kalyanaraman (2012); estimates in column 6 use the Calonico

et al.  (2019) bandwidth formula. The sample is limited to applicants with non-missing demographic variables and baseline test scores. 

Robust standard errors are reported in parenthesis.

Panel A. Application Covariates

Panel B. Baseline Covariates

Non-offered 

mean 
Offer gap

Non-offered

mean 
Offer gap

Non-offered

mean 
Offer gap

Table 3. Statistical Tests for Balance

All Applicants
Applicants with Grade A Risk

IK bandwidth CCFT bandwidth

Causal effects of Grade A attendance are estimated by 2SLS using assignment dummies

as instruments for years of exposure to schools of a particular type, as suggested by equations

(1) and (2). As in the setup used to establish covariate balance, however, the 2SLS estimating

equations include two endogenous variables, CAi for Grade A exposure and C0i measuring

exposure to an ungraded school. Exposure is measured in years for SAT outcomes; otherwise,

CAi and C0i are enrollment dummies. As in equation (15), local propensity score controls

consist of saturated models for Grade A and ungraded propensity scores, with local linear

control for screened tie-breakers as described by equation (16). These equations also control

for baseline math and English scores, free lunch, special education, and English language

learner dummies, and gender and race dummies (estimates without these controls are similar,
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though less precise).22

OLS estimates of Grade A effects, reported as a benchmark in the second column of Table

4, indicate that Grade A attendance is associated with higher SAT scores and graduation

rates, as well as increased college and career readiness. The OLS estimates in Table 4 are

from models that omit local propensity score controls, computed in a sample that includes

all participants in the high school match without regard to assignment probability. OLS

estimates of the SAT gains associated with Grade A enrollment are around 6-7 points.

Estimated graduation gains are similarly modest at 2.4 points, but effects on college and

career readiness are substantial, running 7-10 points on a base rate around 40.

The first stage effects of Grade A assignments on Grade A enrollment, shown in columns

4 and 6 of Panel A in Table 4, show that Grade A offers boost Grade A enrollment by

about 1.8 years between the time of application and SAT test-taking. Grade A assignments

boost the likelihood of any Grade A enrollment by about 67 percentage points. This can

be compared with Grade A enrollment rates of 16-19 percent among those not assigned a

Grade A seat in the match.23

In contrast with the OLS estimates in column 2, the 2SLS estimates shown in columns

4 and 6 of Table 4 suggest that most of the SAT gains associated with Grade A attendance

reflect selection bias. Computed with either bandwidth, 2SLS estimates of SAT math gains

are around 2 points, though still (marginally) significant. 2SLS estimates of SAT reading ef-

fects are even smaller and not significantly different from zero, though estimated with similar

precision. At the same time, the 2SLS estimate for graduation status shows a statistically

significant gain of 3-4 percentage points, exceeding the corresponding OLS estimate. The

estimated standard error of 0.009 associated with the graduation estimate in column 4 seems

especially noteworthy, as this suggests that our research design has the power to uncover

even modest improvements in high school completion rates.24

22Replacing Wi on the left hand side of (15) with outcome variable Yi, equations (15) and (16) describe
the reduced form for our 2SLS estimator. In an application with lottery tie-breaking, Abdulkadiroğlu et al.
(2017a) compare score-controlled 2SLS estimates with semiparametric instrumental variables estimates based
on Abadie (2003). The former are considerably more precise than the latter.

23The gap between assignment and enrollment arises from several sources. Applicants remaining in the
public system may attend charter or non-match exam schools. Applicants may also reject a match-based
assignment, turning instead to an ad hoc administrative assignment process later in the year.

24Estimates reported in Online Appendix Table D5 show little difference in follow-up rates between
applicants who are and aren’t offered a Grade A seat. The 2SLS estimates in Table 4 are therefore unlikely
to be compromised by differential attrition.
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(1) (2) (3) (4) (5) (6) 

Years enrolled 0.547 1.79 0.453 1.84

(SAT outcomes) (0.021) (0.027)

0.186 0.644 0.158 0.666

(dummy outcomes) (0.006) (0.007)

474 7.44 521 1.74 490 2.33

(200-800) (103) (0.153) (111) (0.669) (98) (0.847)

474 5.88 515 -0.056 489 0.804

(200-800) (90) (0.139) (94) (0.617) (85) (0.775)

N 124,902 26,526 15,635

0.739 0.024 0.831 0.030 0.790 0.038

(0.002) (0.009) (0.013)

N 183,526 34,191 21,474

0.429 0.101 0.608 0.083 0.501 0.114

(0.003) (0.013) (0.019)

0.374 0.070 0.562 0.054 0.447 0.049

(0.003) (0.013) (0.017)

N 121,416 22,168 13,550

Graduated

College- and career-

prepared

College-ready

Notes. This table reports estimates of the effects of Grade A enrollment on the outcomes indicated at left. Estimated effects

on college outcomes use the first two application cohorts only. OLS estimates are from models that omit propensity score

and running variable controls and include all students in the match. 2SLS estimates treat Grade A and ungraded school

enrollment as endogenous, limiting the sample to students with Grade A assignment risk. These estimates are from models

that include propensity score and running variable controls. Bandwidths are as described in the note to Table 3. Enrollment

is measured in years for SAT outcomes, and as a dummy variable for graduation and college outcomes. All models include

controls for baseline math and English scores, free lunch status, SPED and ELL status, gender, and race/ethnicity indicators.

Standard deviations are shown in parenthesis below control means; robust standard errors are reported in parentheses below

OLS and 2SLS estimates. 

Panel A. First Stage Estimates

Ever enrolled

Panel B. Second Stage Estimates

SAT Math

SAT Reading

2SLS

Table 4. Estimates of the Effect of Attending a Grade A School

All Applicants
Applicants with Grade A risk

IK bandwidth CCFT bandwidth

Non-

enrolled
OLS

Non-offered 

mean
2SLS

Non-offered 

mean

The strongest Grade A effects appear in estimates of effects on college and career pre-

paredness and college readiness. This may in part reflect the fact that Grade A schools are

especially likely to offer advanced courses, the availability of which contributes to the college-

and career-related composite outcome variables (the online appendix details the construc-

tion of these variables). 2SLS estimates of effects on these outcomes are mostly close to the

corresponding OLS estimates (three out of four are smaller). Here too, switching bandwidth

matters little for magnitudes. Throughout Table 4, however, 2SLS estimates computed with

an IK bandwidth are more precise than those computed using CCFT.

5.3 Screened vs. Lottery Grade A Effects

In New York, education policy discussions often focus on access to academically selective

screened schools such as Townsend Harris in Queens, a school consistently ranked among
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the top American high schools by U.S. News and World Report. Public interest in screened

schools motivates an analysis that distinguishes screened from lottery Grade A effects. The

possibility of different effects within the Grade A sector also raises concerns related to the

exclusion restriction underpinning a causal interpretation of 2SLS estimates. In the context

of our causal model of Grade A effects, the exclusion restriction fails when the offer of

a Grade A seat moves applicants between schools of different quality within the Grade A

sector. We therefore explore multi-sector models that distinguish causal effects of attendance

at different sorts of Grade A schools, focusing on differences by admissions regime since this

is widely believed to matter for school quality.

The multi-sector estimates reported in Table 5 are from models that include separate

endogenous variables for screened and lottery Grade A schools, along with a third endogenous

variable for the ungraded sector. Instruments in this just-identified set-up are two dummies

indicating each sort of Grade A offer, as well as a dummy indicating the offer of a seat at an

ungraded school. 2SLS models include separate saturated local propensity score controls for

screened Grade A offer risk, unscreened Grade A offer risk, and ungraded offer risk. These

multi-sector estimates are computed in a sample limited to applicants at risk of assignment

to either a screened or lottery Grade A school. In view of the relative precision of estimates

using IK bandwidth, multi-sector estimates using CCFT bandwidths are omitted.

OLS estimates again provide an interesting benchmark. As can be seen in the first two

columns of Table 5, screened Grade A students appear to reap a large SAT advantage even

after controlling for baseline achievement and other covariates. In particular, OLS estimates

of Grade A effects for schools in the screened sector are on the order of 14-18 points. At

the same time, Grade A lottery schools appear to generate achievement gains of only about

2 points. Yet the corresponding 2SLS estimates, reported in columns 3 and 4 of the table,

suggest the achievement gains yielded by enrollment in both sorts of Grade A schools are

equally modest. The 2SLS estimates here run less than 2 points for math scores, with smaller

(not significant) negative estimates for reading. The sole statistically significant SAT effect

is that for the lottery Grade A school impact on math scores.

The remaining 2SLS estimates in the table likewise show similar screened-school and

lottery-school effects. With one marginal exception, p-values in the table reveal estimates

for the two sectors to be statistically indistinguishable. As in Table 4, the 2SLS estimates in

Table 5 suggest that screened and lottery Grade A schools boost graduation rates by about

3 points. Effects on college and career preparedness are larger for lottery schools than for

screened, but this impact ordering is reversed for effects on college readiness. On the whole,

Table 5 leads us to conclude that OLS estimates showing a large screened Grade A advantage

are driven by selection bias.
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(1) (2) (3) (4) 

SAT Math 17.6 2.47   0.578 1.87

(200-800) (0.235) (0.165) (1.11) (0.715)

p-value

SAT Reading 14.3 1.80 -0.277 -0.169 

(200-800) (0.216) (0.15) (1.03) (0.656)

p-value

N

Graduated 0.029 0.021 0.034 0.025

(0.002) (0.002) (0.013) (0.010)

p-value

N 

College- and career- 0.138 0.085 0.067 0.092

prepared (0.004) (0.003) (0.019) (0.014)

p-value

College-ready 0.136 0.043 0.081 0.046

(0.004) (0.003) (0.019) (0.014)

p-value

N 

183,526 36,907

Notes. This table reports OLS and 2SLS estimates of Grade A enrollment effects in models that 

distinguish between screened and lottery Grade A effects. These estimates were computed using models 

similar to those used to computee the estimates in Table 4. Here, however, Grade  enrollment is interacted 

with a dummy for admissions regime and offer instruments are regime-specific. Propensity score controls 

likewise distinguish between Grade A risk at screened and lottery schools.  P-values in the table are for 

tests of the equality of screened and lottery Grade A effects.   Robust standard errors appear in 

parenthesis.

121,416 23,861

0.076

0.220

0.486

28,944124,902

0.919

0.264

Lottery

Grade A

Screened

Grade A

Screened

Grade A

Lottery

Grade A

OLS 2SLS

Table 5. Grade A Effects by Admissions Regime

6 Summary and Next Steps

Centralized student assignment opens new opportunities for the measurement of school qual-

ity. The research potential of matching markets is enhanced here by marrying the conditional

random assignment generated by lottery tie-breaking with RD-style variation at screened

schools. The key to this intermingled empirical framework is a local propensity score that

controls for differential assignment rates in DA matches with general tie-breakers. This

new tool allows us to exploit all sources of quasi-experimental variation arising from any

mechanism in the DA class.

Our analysis of NYC school report cards suggests Grade A schools boost SAT math

scores and high school graduation rates by a few points. OLS estimates, by contrast, show

considerably larger effects of Grade A attendance on test scores. Grade A screened schools
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enroll some of the city’s highest achievers, but large OLS estimates of achievement gains from

attendance at these schools appear to be an artifact of selection bias. Concerns about access

to such schools (expressed, for example, in Harris and Fessenden (2017)) may therefore be

overblown. On the other hand, Grade A attendance increases measures of college and career

preparedness. These results may reflect the greater availability of advanced courses in Grade

A schools, a feature that should be replicable at other schools.

In principle, Grade A assignments may act to move applicants between schools within

the Grade A sector as well as to boost overall Grade A enrollment. Offer-induced movement

between screened and lottery Grade A schools may violate the exclusion restriction that

underpins our 2SLS results if schools within the Grade A sector vary in quality. It’s therefore

worth asking whether screened and lottery schools should indeed be treated as having the

same effect. Perhaps surprisingly, our analysis supports the idea that screened and lottery

Grade A schools can be pooled and treated as having a common average causal effect.

Our provisional agenda for further research prioritizes an investigation of econometric

implementation strategies for DA-founded research designs. This work is likely to build on

the asymptotic framework in Bugni and Canay (2018) and the study of RD designs with

multiple tie-breakers in Papay et al. (2011), Zajonc (2012), Wong et al. (2013b) and Cattaneo

et al. (2019). It may be possible to extend the reasoning behind doubly robust nonparametric

estimators, such as discussed by Rothe and Firpo (2019) and Rothe (2020), to our setting.

Statistical inference in Section 5 relies on conventional large sample reasoning of the

sort widely applied in empirical RD applications. It seems natural to consider permutation

or randomization inference along the lines suggested by Cattaneo et al. (2015, 2017), and

Canay and Kamat (2017), along with optimal inference and estimation strategies such as

those introduced by Armstrong and Kolesár (2018) and Imbens and Wager (2019). Also

on the agenda, Narita (2020) suggests a path toward generalization of the large-market

model of DA assignment risk. Finally, we look forward to a more detailed investigation of

the consequences of heterogeneous treatment effects for identification strategies of the sort

considered here.
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Appendix

A Proof of Theorem 1

Let F i
v(r) denote the cumulative distribution function (CDF) of Riv evaluated at r and define

Fv(r|θ) = E[F i
v(r)|θi = θ]. (17)

This is the fraction of type θ applicants with tie-breaker v below r (set to zero when type θ

ranks no schools using tie-breaker v). We may condition on additional events.

Recall that the joint distribution of tie-breakers for applicant i is assumed to be contin-

uously differentiable with positive density. This assumption has the following implication:

The conditional distribution of tie-breaker v, Fv(r|e), is continuously differentiable, with

F ′
v(r|e) > 0 at any r = τ1, ..., τS. Here, the conditioning event e is any event of the form that

θi = θ, Riu > ru for u = 1, ..., v − 1, and Ti(δ) = T .

Take any large market with the general tie-breaking structure in Section 4. For each

δ > 0 and each tie-breaker v = U + 1, ..., V + 1, let e(v) be short-hand notation for “θi =

θ, Riu > MIDu
θs for u = 1, ..., v − 1, Ti(δ) = T, and Wi = w.” Similarly, e(1) is short-hand

notation for “θi = θ, Ti(δ) = T, and Wi = w.” Let ψs(θ, T, δ, w) ≡ E[Di(s)|e(1)] be the

assignment probability for an applicant with θi = θ, Ti(δ) = T, and characteristics Wi = w.

Our proofs use a lemma that describes this assignment probability. To state the lemma, for

v > U , let

Φδ(v) ≡











Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))

Fv(MIDv
θs|e(v))− Fv(MIDv

θs − δ|e(v))
if tb(δ) = c for some b ∈ Bv

θs

1 otherwise.

We use this object to define Φδ ≡
∏U

v=1(1−MIDv
θs)

∏V
v=U+1Φδ(v). Finally, let

Φ′
δ ≡



















max

{

0,
Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

}

if v(s) > U

max

{

0,
τs −MID

v(s)
θs

1−MID
v(s)
θs

}

if v(s) ≤ U.

Lemma 1. In the general tie-breaking setting of Section 4, for any fixed δ > 0 such that
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δ < minθ,s,v |τs −MIDv
θ,s|, we have:

ψs(θ, T, δ, w) =











0 if ts(δ) = n or tb(δ) = a for some b ∈ Bθs,

Φδ otherwise and ts(δ) = a,

Φδ × Φ′
δ otherwise and ts(δ) = c.

Proof of Lemma 1. We start verifying the first line in ψs(θ, T, δ, w). Applicants who don’t

rank s have ψs(θ, T, δ, w) = 0. Among those who rank s, those of ts(δ) = n have ρθs >

ρs or, if v(s) 6= 0, ρθs = ρs and Riv(s) > τs + δ. If ρθs > ρs, then ψs(θ, T, δ, w) = 0. Even if

ρθs ≤ ρs, as long as ρθs = ρs and Riv(s) > τs + δ, student i never clears the cutoff at school

s so ψs(θ, T, δ, w) = 0.

To show the remaining cases, take as given that it is not the case that ts(δ) = n or tb(δ) =

a for some b ∈ Bθs. Applicants with tb(δ) 6= a for all b ∈ Bθs and ts(δ) = a or c may be

assigned b ∈ Bθs, where ρθb = ρb. Since the (aggregate) distribution of tie-breaking variables

for type θ students is F̂v(·|θ) = Fv(·|θ), conditional on Ti(δ) = T , the proportion of type θ

applicants not assigned any b ∈ Bθs where ρθb = ρb is Φδ =
∏U

v=1(1−MIDv
θs)

∏V

v=U+1 Φδ(v)

since each Φδ(v) is the probability of not being assigned to any b ∈ Bv
θs. To see why Φδ(v)

is the probability of not being assigned to any b ∈ Bv
θs, note that if tb(δ) 6= c for all b ∈ Bv

θs,

then tb(δ) = n for all b ∈ Bv
θs so that applicants are never assigned to any b ∈ Bv

θs. Otherwise,

i.e., if tb(δ) = c for some b ∈ Bv
θs, then applicants are assigned to s if and only if their values

of tie-breaker v clear the cutoff of the school that produces MIDv
θs, where applicants have

ts(δ) = c. This event happens with probability

Fv(MIDv
θs|e(v))− Fv(MIDv

θs − δ|e(v))

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))
,

implying that Φδ(v) is the probability of not being assigned to any b ∈ Bv
θs.

Given this fact, to see the second line, note that every applicant of type ts(δ) = a who

is not assigned a higher choice is assigned s for sure because ρθs < ρs or ρθs + Riv(s) < ξs.

Therefore, we have

ψs(θ, T, δ, w) = Φδ.

Finally, consider applicants with ts(δ) = c. The fraction of those who are not assigned a

higher choice is Φδ, as explained above. Also, for tie-breaker v(s), the tie-breaker values of

these applicants are larger (worse) than MID
v(s)
θs . If τs < MID

v(s)
θs , then no such applicant

is assigned s. If τs ≥MID
v(s)
θs , then the fraction of applicants who are assigned s conditional
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on τs ≥MID
v(s)
θs is given by

max

{

0,
Fv(s)(τs|e(V + 1))−max{Fv(s)(MID

v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

Fv(s)(τs + δ|e(V + 1))−max{Fv(s)(MID
v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))}

}

if v(s) > U

and

max

{

0,
τs −MID

v(s)
θs

1−MID
v(s)
θs

}

if v(s) ≤ U.

If MID
v(s)
θs < τs, then δ < minθ,s,v |τs −MIDv

θ,s| implies MID
v(s)
θs < τs − δ. This in turn

implies

max{Fv(s)(MID
v(s)
θs |e(V + 1)), Fv(s)(τs − δ|e(V + 1))} = Fv(s)(τs − δ|e(V + 1)).

If MID
v(s)
θs > τs, then δ < minθ,s,v |τs−MIDv

θ,s| implies MID
v(s)
θs > τs+ δ. By the definition

of e(V + 1), Riu > MIDu
θs for u = 1, ..., V . Therefore, there is no applicant with Riv(s) >

MID
v(s)
θs and Riv(s) ∈ [τs − δ, τs + δ].

Hence, conditional on ts(δ) = c and not being assigned a choice preferred to s, the

probability of being assigned s is given by Φ′
δ. Therefore, for students with ts(δ) = c, we

have ψs(θ, T, δ, w) = Φδ × Φ′
δ.

Lemma 2. In the general tie-breaking setting of Section 4, for all s, θ, and sufficiently small

δ > 0, we have:

ψs(θ, T, δ, w) =



























































0 if ts(0) = n or tb(0) = a for some b ∈ Bθs,

Φ∗
δ otherwise and ts(0) = a,

Φ∗
δ×

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

otherwise and ts(0) = c and v(s) > U.

Φ∗
δ× max{0,

τs −MID
v(s)
θs

1−MID
v(s)
θs

}

otherwise and ts(0) = c and v(s) ≤ U.

(18)

where

Φ∗
δ(v) ≡











Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs|e(v))

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))
if MIDv

θs = τb and tb = c for some b ∈ Bv
θs,

1 otherwise

and
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Φ∗
δ ≡

U
∏

v=1

(1−MIDv
θs)

V
∏

v=U+1

Φ∗
δ(v).

Proof of Lemma 2. The first line follows from Lemma 1 and the fact that ts(0) = n or tb(0) =

a for some b ∈ Bθs imply ts(δ) = n or tb(δ) = a for some b ∈ Bθs for sufficiently small δ > 0.

For the remaining lines, first note that conditional on ts(0) 6= n and tb(0) 6= a for all b ∈

Bθs, we have Φ∗
δ(v) = Φδ(v) and so Φ∗

δ = Φδ holds for small enough δ. Φ∗
δ therefore is the

probability of not being assigned to a school preferred to s in the last three cases.

The second line is then by the fact that ts(0) = a implies ts(δ) = a for small enough

δ > 0. The third line is by the fact that for small enough δ > 0,

Φ′
δ = max

{

0,
Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

}

=
Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))
,

where we invoke Assumption 2, which implies MIDv
θs 6= τs. The last line directly follows

from Lemma 1.

We use Lemma 2 to derive Theorem 1. We characterize limδ→0 ψs(θ, T, δ, w) and show

that it coincides with ψs(θ, T ) in the main text. In the first case in Lemma 2, ψs(θ, T, δ, w)

is constant (0) for any small enough δ. The constant value is also limδ→0 ψs(θ, T, δ, w) in this

case.

To characterize limδ→0 ψs(θ, T, δ, w) in the remaining cases, note that by the differentia-

bility of Fv(·|e(v)) (recall the continuous differentiability of F i
v(r|e)), L’Hopital’s rule implies:

lim
δ→0

Fv(s)(τs|e(V + 1))− Fv(s)(τs − δ|e(V + 1))

Fv(s)(τs + δ|e(V + 1))− Fv(s)(τs − δ|e(V + 1))
=

F ′
v(s)(τs|e(V + 1))

2F ′
v(s)(τs|e(V + 1))

= 0.5

and

lim
δ→0

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs|e(v))

Fv(MIDv
θs + δ|e(v))− Fv(MIDv

θs − δ|e(v))
=

F ′
v(MIDv

θs|e(v))

2F ′
v(MIDv

θs|e(v))
= 0.5.

This implies limδ→0 Φ
∗
δ(v) = 0.51{MIDv

θs
=τb and tb=c for some b∈Bv

θs
} since 1{MIDv

θs = τb and tb =

c for some b ∈ Bv
θs} does not depend on δ. Therefore

lim
δ→0

Φ∗
δ =

U
∏

v=1

(1−MIDv
θs)0.5

ms(θ,T )

where ms(θ, T ) = |{v > U :MIDv
θs = τb and tb = c for some b ∈ Bv

θs}|.
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Combining these limiting facts with the fact that the limit of a product of functions equals

the product of the limits of the functions, we obtain the following: limδ→0 ψs(θ, T, δ, w) = 0

if (a) ts = n or (b) tb = a for some b ∈ Bθs. Otherwise,

ψs(θ, T ) =



















σs(θ, T )λs(θ) if ts = a

σs(θ, T )λs(θ)max

{

0,
τs−MID

v(s)
θs

1−MID
v(s)
θs

}

if ts = c and v(s) ≤ U

0.5σs(θ, T )λs(θ) if ts = c and v(s) > U.

This expression coincides with ψs(θ, T ), completing the proof of Theorem 1.
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Online Appendices

B Understanding Theorem 1

Figure B1 illustrates Theorem 1 for an applicant who ranks screened schools 1, 3, 5 and 6

and lottery schools 2 and 4, where school k is applicant’s k-th choice. The line next to each

school represents applicant position (priority plus tie-breaker) for each school. Schools with

the same colored lines have the same tie-breaker. Schools 1 and 5 use screened tie-breaker

2. Schools 2 and 4 use lottery tie-breaker 1. Schools 3 and 6 use screened tie-breaker 3.

Since school 1 has only one priority, positions run from 1 to 2. School 2 has two priority

groups, so positions run from 1 to 3. Figure B1 indicates the applicants position π by an

arrow. At screened schools, the brackets around the DA cutoff ξ represent the δ-neighborhood

around the cutoff.
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Figure B1: Illustrating Theorem 1

0.5max{0, t4 - t2 }
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1
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0n/a n/a
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1 32
t2∅∅ 11

3

1 2
0.5(1 - t2 )2 11 - t2 ∅

4

1 42 3
2 31 - t2 0.5

5

1 32
2, 4 3 (0.5)2 (1 - max{t2, t4})0.5

6

1 2
2, 4 3, 50.52 (0.5)2 (1 - max{t2, t4})

Tie-breaker

Screened

Lottery

Screened

Lottery

Screened

Screened

v(s)

2

1

3
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3
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c

c
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a

pi,1

pi,2

pi,3

pi,4

pi,5

pi,6

x1

x2

x3

x4

x5

x6

x1  - 1

x2  - 1

x3  - 1

x4  - 3

x5  - 1

x6  - 1

ts = xs - rs 

1 - max{t2, t4}

1 - max{t2, t4}

Notes: This figure illustrates Theorem 1 for one applicant listing six schools. The applicant has marginal priority (shown in bold) at each. Dashes mark
intervals in which offer risk is strictly between 0 and 1. The set of applicants subject to random assignment includes everyone with marginal priority at
lottery schools and applicants with tie-breakers inside the relevant bandwidth at screened schools. Same-color tie-breakers are shared. Schools 1, 3, 5,
and 6 are screened, while 2 and 4 have lottery tie-breakers. The applicant’s preferences are 1 ≻i 2 ≻i 3 ≻i 4 ≻i 5 ≻i 6. Arrows mark πis = ρis+Riv(s),
the applicant’s position at each school s. Lower πis is better. Integers indicate priorities ρs, and tick marks indicate the DA cutoff, ξs = ρs + τs.
Note that t6 = a, so this applicant is sure to be seated somewhere. The assignment probability therefore sums to 1: if τ2 ≥ τ4 , the probability of any
assignment is τ2 +0.5× (1− τ2 )+0+2×0.52× (1− τ2 ) = 1; if τ2 < τ4 , this probability is τ2 +0.5× (1− τ2 )+0.5× (τ4 − τ2 )+2×0.52× (1− τ4 ) = 1.
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The applicant is never seated at school 1 since his position is to the right of the δ-

neighborhood, conditionally seated at schools 2 and 4 since his priority is equal to the

marginal priority at each school, conditionally seated at schools 3 and 5 since his position is

within the δ-neighborhood at each school, and always seated at school 6 since his position

is to the left of the δ-neighborhood.

The columns next to the lines record tie-breaker cutoff, τ , disqualification probability

at lottery schools, λ, schools contributing to λ, the disqualification probability at screened

schools, σ, schools contributing to σ, and assignment probability.

The local score at each school is computed as follows:

School 1 : The local score at school 1 is zero because ti1 (δ) = n.

School 2 : MID at school 2 is zero because this applicant ranks no other lottery school higher.

Hence, the second line of (9) applies and probability is given by the tie-breaker cutoff

at school 2, which is τ2 .

School 3 : Since ti3 (δ) = c, the third line of (9) applies. The local score at school 3 is the

probability of not being assigned to school 2, that is, 1− τ2 , times 0.5. This last term

is the probability associated with being local to the cutoff at school 3.

School 4 : MID at school 4 is determined by the tie-breaker cutoff at school 2. When MID

exceeds the tie-breaker cutoff at school 4, then school 4 assignment probability is zero.

Otherwise, since ti3 (δ) = c and school 4 is a lottery school, the second line of (9)

applies. The probability is therefore 0.5 times the difference between the cutoff at

school 4 and MID.

School 5 : MID at school 5 is determined by the larger of the tie-breaker cutoffs at school 2

and school 4. Since ti5 (δ) = c, the third line of (9) applies, and the probability is

determined by (0.5)2 times λ, the disqualification probability at lottery schools.

School 6 : Finally, since ti6 (δ) = a, the first line of (9) applies and the local score becomes (0.5)2

times λ.

Since ti6 (δ) = a, the probabilities sum to 1. If τ2 ≥ τ4 , the probability of any assignment

is τ2 +0.5× (1− τ2 )+ 2× (0.5)2 × (1− τ2 ) = 1. If τ2 < τ4 , the probability is τ2 +0.5× (1−

τ4 ) + 0.5× (τ4 − τ2 ) + 2× 0.52 × (1− τ4 ) = 1.
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C Additional Results and Proofs

C.1 The DA Propensity Score

This appendix derives the DA propensity score defined as the probability of assignment con-

ditional on type for all applicants, without regard to cutoff proximity. The serial dictatorship

propensity score discussed in Section 3.1 is a special case of this.

MIDv
θs and priority status determine DA propensity score with general tie-breakers. For

this proposition, we assume that tie-breakers Riv and Riv′ are independent for v 6= v′.

Proposition 3 (The DA Propensity Score with General Tie-breaking). Consider DA with

multiple tie-breakers indexed by v, distributed independently of one another according to

Fv(r|θ). For all s and θ in this match,

ps(θ) =























0 if ρθs > ρs
∏

v(1− Fv(MIDv
θs|θ)) if ρθs < ρs

∏

v 6=v(s)(1− Fv(MIDv
θs|θ))

×max
{

0, Fv(s)(τs|θ)− Fv(s)(MID
v(s)
θs |θ)

}

if ρθs = ρs

where Fv(s)(τs|θ) = τs and Fv(s)(MID
v(s)
θs |θ) =MID

v(s)
θs when v(s) ∈ {1, ..., U}.

Proposition 3, which generalizes an earlier multiple lottery tie-breaker result in Abdulka-

diroğlu et al. (2017a), covers three sorts of applicants. First, applicants with less-than-

marginal priority at s have no chance of being seated there. The second line of the theorem

reflects the likelihood of qualification at schools preferred to s among applicants surely seated

at s when they can’t do better. Since tie-breakers are assumed independent, the probability

of not doing better than s is described by a product over tie-breakers,
∏

v(1−Fv(MIDv
θs|θ)).

If type θ is sure to do better than s, then MIDv
θs = 1 and the probability at s is zero.

Finally, the probability for applicants with ρθis = ρs multiplies the term

∏

v 6=v(s)

(1− Fv(MIDv
θs|θ))

by

max
{

0, Fv(s)(τs|θ)− Fv(s)(MID
v(s)
θs |θ)

}

.

The first of these is the probability of failing to improve on s by virtue of being seated at

schools using a tie-breaker other than v(s). The second parallels assignment probability in

single-tie-breaker serial dictatorship: to be seated at s, applicants in ρθis = ρs must have

Riv(s) between MID
v(s)
θs and τs.
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Proposition 3 allows for single tie-breaking, lottery tie-breaking, or a mix of non-lottery

and lottery tie-breakers as in the NYC high school match. With a single tie-breaker, the

propensity score formula simplifies, omitting product terms over v:

Corollary 3 (Abdulkadiroğlu et al. (2017a)). Consider DA using a single tie-breaker, Ri,

distributed according to FR(r|θ) for type θ. For all s and θ in this market, we have:

ps(θ) =



















0 if ρθs > ρs,

1− FR(MIDθs|θ) if ρθs < ρs,

(1− FR(MIDθs|θ))×max

{

0,
FR(τs|θ)− FR(MIDθs|θ)

1− FR(MIDθs|θ)

}

if ρθs = ρs,

where ps(θ) = 0 when MIDθs = 1 and ρθs = ρs, and MIDθs is as defined in Section 3,

applied to a single tie-breaker.

Common lottery tie-breaking for all schools further simplifies the DA propensity score.

When v(s) = 1 for all s, FR(MIDθs) = MIDθs and FR(τs|θ) = τs, as in the Denver

match analyzed by Abdulkadiroğlu et al. (2017a). In this case, the DA propensity score

is a function only of MIDθs and the classification of applicants into being never, always,

and conditionally seated. This contrasts with the scores in Propositions 3 and 3, which

depend on the unknown and unrestricted conditional distributions of tie-breakers given type

(FR(τs|θ) and FR(MIDθs|θ) with a single tie-breaker; Fv(τs|θ) and Fv(MIDθs|θ) with general

tie-breakers). We therefore turn again to the local propensity score to isolate assignment

variation that is independent of type and potential outcomes.

Proof of Proposition 3

We prove Proposition 3 using a strategy to that used in the proof of Theorem 1 in Abdulka-

diroğlu et al. (2017a). Note first that admissions cutoffs ξ in a large market do not depend

on the realized tie-breakers riv’s: DA in the large market depends on the riv’s only through

G(I0), defined as the fraction of applicants in set I0 = {i ∈ I | θi ∈ Θ0, riv ≤ rv for all v}

with various choices of Θ0 and rv. In particular, G(I0) doesn’t depend on tie-breaker real-

izations in the large market. For the empirical CDF of each tie-breaker conditional on each

type, F̂v(·|θ), the Glivenko-Cantelli theorem for independent but non-identically distributed

random variables implies F̂v(·|θ) = Fv(·|θ) for any v and θ (Wellner, 1981). Since cutoffs ξ

are constant, marginal priority ρs is also constant for every school s.

Now, consider the propensity score for school s. First, applicants who don’t rank s have
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ps(θ) = 0. If ρθs > ρs, then ρθs > ρs. Therefore,

ps(θ) = 0 if ρθs > ρs or θ does not rank s.

Second, if ρθs ≤ ρs, then the type θ applicant may be assigned a preferred school s̃ ∈ Bθs,

where ρθs̃ = ρs̃. For each tie-breaker v, the proportion of type θ applicants assigned some

s̃ ∈ Bv
θs where ρθs̃ = ρs̃ is Fv(MIDv

θs|θ). This means that for each v, the probability of not

being assigned any s̃ ∈ Bv
θs where ρθs̃ = ρs̃ is 1−Fv(MIDv

θs|θ). Since tie-breakers are assumed

to be distributed independently of one another, the probability of not being assigned any

s̃ ∈ Bθs where ρθs̃ = ρs̃ for a type θ applicant is Πv(1 − Fv(MIDv
θs|θ)). Every applicant of

type ρθs < ρs who is not assigned a preferred choice is assigned s because ρθs < ρs. So

ps(θ) = Πv(1− Fv(MIDv
θs|θ)) if ρθs < ρs.

Finally, consider applicants of type ρθs = ρs who are not assigned a choice preferred

to s. The fraction of applicants ρθs = ρs who are not assigned a preferred choice is

Πv(1 − Fv(MIDv
θs|θ)). Also, the values of the tie-breaking variable v(s) of these appli-

cants are larger than MID
v(s)
θs . If τs < MID

v(s)
θs , then no such applicant is assigned s. If

τs ≥ MID
v(s)
θs , then the fraction of applicants who are assigned s within this set is given

by
Fv(s)(τs|θ)−Fv(s)(MID

v(s)
θs

|θ)

1−Fv(s)(MID
v(s)
θs

|θ)
. Hence, conditional on ρθs = ρs and not being assigned a choice

higher than s, the probability of being assigned s is given by max{0,
Fv(s)(τs|θ)−Fv(s)(MID

v(s)
θs

|θ)

1−Fv(s)(MID
v(s)
θs

|θ)
}.

Therefore,

ps(θ) =
∏

v 6=v(s)

(1− Fv(MIDv
θs|θ))×max

{

0, Fv(s)(τs|θ)− Fv(s)(MID
v(s)
θs |θ)

}

if ρθs = ρs.

C.2 Proof of Theorem 2

The proof uses lemmas established below. The first lemma shows that the vector of DA

cutoffs computed for the sampled market, ξ̂N , converges to the vector of cutoffs in the

continuum.

Lemma 3. (Cutoff almost sure convergence) ξ̂N
a.s.
−→ ξ where ξ denotes the vector of contin-

uum market cutoffs.

This result implies that the estimated score converges to the large-market local score as

market size grows and bandwidth shrinks.

Lemma 4. (Estimated local propensity score almost sure convergence) For all θ ∈ Θ, s ∈ S,

and T ∈ {a, c, n}S, we have ψ̂s(θ, T (δN))
a.s.
−→ ψs(θ, T ) as N → ∞ and δN → 0.
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The next lemma shows that the true finite market score with a fixed bandwidth, defined

as ψNs(θ, T ; δN) ≡ EN [Di(s)|θi = θ, Ti(δN) = T ], also converges to ψs(θ, T ) as market size

grows and bandwidth shrinks.

Lemma 5. (Bandwidth-specific propensity score almost sure convergence) For all θ ∈ Θ, s ∈

S, T ∈ {a, c, n}S, and δN such that δN → 0 and NδN → ∞ as N → ∞, we have

ψNs(θ, T ; δN)
p

−→ ψs(θ, T ) as N → ∞.

Finally, the definitions of ψNs(θ, T ; δN) and ψNs(θ, T ) imply that |ψNs(θ, T ; δN)−ψNs(θ, T )|
a.s.
−→

0 as δN → 0. Combining these results shows that for all θ ∈ Θ, s ∈ S, and T , as N → ∞

and δN → 0 with NδN → ∞, we have

|ψ̂s(θ, T (δN))− ψNs(θ, T )|

=|ψ̂s(θ, T (δN))− ψNs(θ, T ; δN) + ψNs(θ, T ; δN)− ψNs(θ, T )|

≤|ψ̂s(θ, T (δN))− ψNs(θ, T ; δN)|+ |ψNs(θ, T ; δN)− ψNs(θ, T )|
p

−→|ψs(θ, T )− ψs(θ, T )|+ 0

=0.

This yields the theorem since Θ, S, and {n, c, a}S are finite.

Proof of Lemma 3

The proof of Lemma 3 is analogous to the proof of Lemma 3 in Abdulkadiroğlu et al. (2017a)

and available upon request. The main difference is that to deal with multiple non-lottery

tie-breakers, the proof of Lemma 3 needs to invoke the continuous differentiability of F i
v(r|e)

and the Glivenko-Cantelli theorem for independent but non-identically distributed random

variables (Wellner, 1981).

Proof of Lemma 4

ψ̂s(θ, T (δN)) is almost everywhere continuous in finite sample cutoffs ξ̂N , finite sample MIDs

(MIDv
θs), and bandwidth δN . Since every MIDv

θs is almost everywhere continuous in finite

sample cutoffs ξ̂N , ψ̂s(θ, T (δN)) is almost everywhere continuous in finite sample cutoffs ξ̂N

and bandwidth δN . Recall δN → 0 by assumption while ξ̂N
a.s.
−→ ξ by Lemma 3. Therefore,

by the continuous mapping theorem, as N → ∞, ψ̂s(θ, T (δN)) almost surely converges to

ψ̂s(θ, T (δN)) with ξ replacing ξ̂N , which converges to ψs(θ, T ) as δN → 0.

50



Proof of Lemma 5

We use the following fact, which is implied by Example 19.29 in van der Vaart (2000).

Lemma 6. Let X be a random variable distributed according to some CDF F over [0, 1].

Let F (·|X ∈ [x − δ, x + δ]) be the conditional version of F conditional on X being in a

small window [x − δ, x + δ] where x ∈ [0, 1] and δ ∈ (0, 1]. Let X1, ..., XN be iid draws

from F . Let F̂N be the empirical CDF of X1, ..., XN . Let F̂N(·|X ∈ [x − δ, x + δ]) be

the conditional version of F̂N conditional on a subset of draws falling in [x − δ, x + δ], i.e.,

{Xi|i = 1, ..., n,Xi ∈ [x−δ, x+δ]}. Suppose (δN) is a sequence with δN ↓ 0 and δN×N → ∞.

Then F̂N(·|X ∈ [x− δN , x+ δN ]) uniformly converges to F (·|X ∈ [x− δN , x+ δN ]), i.e.,

sup
x′∈[0,1]

|F̂N(x
′|X ∈ [x−δN , x+δN ])−F (x

′|X ∈ [x−δN , x+δN ])| →p 0 as N → ∞ and δN → 0.

Proof of Lemma 6. We first prove the statement for x ∈ (0, 1). Let P be the probability

measure of X and P̂N be the empirical measure of X1, ..., XN . Note that

sup
x′∈[0,1]

|F̂N(x
′|X ∈ [x− δN , x+ δN ])− F (x′|X ∈ [x− δN , x+ δN ])|

= sup
t∈[−1,1]

|F̂N(x+ tδN |X ∈ [x− δN , x+ δN ])− F (x+ tδN |X ∈ [x− δN , x+ δN ])|

= sup
t∈[−1,1]

|
P̂N [x− δN , x+ tδN ]

P̂N [x− δN , x+ δN ]
−
PX [x− δN , x+ tδN ]

PX [x− δN , x+ δN ]
|

=
1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ]PX [x− δN , x+ δN ]− P̂N [x− δN , x+ δN ]PX [x− δN , x+ tδN ]|

=
1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ](PX [x− δN , x+ δN ]− P̂N [x− δN , x+ δN ])

+ P̂N [x− δN , x+ δN ](P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ])|

≤
1

P̂N [x− δN , x+ δN ]PX [x− δN , x+ δN ]

× { sup
t∈[−1,1]

P̂N [x− δN , x+ tδN ]|P̂N [x− δN , x+ δN ]− PX [x− δN , x+ δN ]|

+ sup
t∈[−1,1]

P̂N [x− δN , x+ δN ]|P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ]|}

=
1

PX [x− δN , x+ δN ]
× {|P̂N [x− δN , x+ δN ]− PX [x− δN , x+ δN ]|
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+ sup
t∈[−1,1]

|P̂N [x− δN , x+ tδN ]− PX [x− δN , x+ tδN ]|}

=
AN

PX [x− δN , x+ δN ]
,

where

AN = |P̂N [x−δN , x+δN ]−PX [x−δN , x+δN ]|+ sup
t∈[−1,1]

|P̂N [x−δN , x+tδN ]−PX [x−δN , x+tδN ]|.

The above inequality holds by the triangle inequality and the second last equality holds

because supt∈[−1,1] P̂N [x− δN , x+ tδN ] = P̂N [x− δN , x+ δN ].

We show that AN/PX [x−δN , x+δN ]
p

−→ 0. Example 19.29 in van der Vaart (2000) implies

that the sequence of processes {
√

n/δN(P̂N [x−δN , x+tδN ]−PX [x−δN , x+tδN ]) : t ∈ [−1, 1]}

converges in distribution to a Gaussian process in the space of bounded functions on [−1, 1]

as N → ∞. We denote this Gaussian process by {Gt : t ∈ [−1, 1]}. We then use the

continuous mapping theorem to obtain

√

n/δNAN
d

−→ |G1|+ sup
t∈[−1,1]

|Gt|

as N → ∞. Since {Gt : t ∈ [−1, 1]} has bounded sample paths, it follows that |G1| < ∞

and supt∈[−1,1] |Gt| < ∞ for sure. By the continuous mapping theorem, under the condition

that NδN → ∞,

(1/δN)AN = (1/
√

NδN)×
√

n/δNAN

d
−→ 0× (|G1|+ sup

t∈[−1,1]

|Gt|)

= 0.

This implies that (1/δN)AN
p

−→ 0, because for any ǫ > 0,

Pr(|(1/δN)AN | > ǫ) = Pr((1/δN)AN < −ǫ) + Pr((1/δN)AN > ǫ)

≤ Pr((1/δN)AN ≤ −ǫ) + 1− Pr((1/δN)AN ≤ ǫ)

→ Pr(0 ≤ −ǫ) + 1− Pr(0 ≤ ǫ)

= 0,

where the convergence holds since (1/δN)AN
d

−→ 0. To show that AN/PX [x−δN , x+δN ]
p

−→
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0, it is therefore enough to show that limN→∞(1/δN)PX [x− δN , x+ δN ] > 0. We have

(1/δN)PX [x− δN , x+ δN ] = (1/δN)(FX(x+ δN)− FX(x− δN))

= (1/δN)(2f(x)δN + o(δN))

= 2f(x) + o(1)

→ 2f(x)

> 0,

where we use Taylor’s theorem for the second equality and the assumption of f(x) > 0 for

the last inequality.

We next prove the statement for x = 0. Note that

sup
x′∈[0,1]

|F̂N(x
′|X ∈ [−δN , δN ])− F (x′|X ∈ [−δN , δN ])|

= sup
t∈[0,1]

|F̂N(tδN |X ∈ [0, δN ])− F (tδN |X ∈ [0, δN ])|

= sup
t∈[0,1]

|
F̂N(tδN)

F̂N(δN)
−
FX(tδN)

FX(δN)
|

=
1

F̂N(δN)FX(δN)
sup
t∈[0,1]

|F̂N(tδN)FX(δN)− F̂N(δN)FX(tδN)|

=
1

F̂N(δN)FX(δN)
sup
t∈[0,1]

|F̂N(tδN)(FX(δN)− F̂N(δN)) + F̂N(δN)(F̂N(tδN)− FX(tδN))|

≤
1

F̂N(δN)FX(δN)
{ sup
t∈[0,1]

F̂N(tδN)|F̂N(δN)− FX(δN)|+ sup
t∈[0,1]

F̂N(δN)|F̂N(tδN)− FX(tδN)|}

=
1

FX(δN)
{|F̂N(δN)− FX(δN)|+ sup

t∈[0,1]

|F̂N(tδN)− FX(tδN)|} =
A0

N

FX(δN)
,

where A0
N = |F̂N(δN) − FX(δN)| + supt∈[0,1] |F̂N(tδN) − FX(tδN)|. By the argument used in

the above proof for x ∈ (0, 1), we have (1/δN)A
0
N

p
−→ 0. It also follows that

(1/δN)FX(δN) = (1/δN)(f(0)δN + o(δN))

= f(0) + o(1)

→ f(0)

> 0.

Thus,
A0

N

FX(δN )

p
−→ 0, and hence supx′∈[0,1] |F̂N(x

′|X ∈ [−δN , δN ])− F (x′|X ∈ [−δN , δN ])|
p

−→

0. The proof for x = 1 follows from the same argument.
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Consider any deterministic sequence of economies {gN} such that gN ∈ G for all N

and gN → G in the (G, d) metric space. Let (δN) be an associated sequence of positive

numbers (bandwidths) such that δN → 0 and NδN → ∞ as N → ∞. Let ψNs(θ, T ; δN) ≡

EN [Di(s)|θi = θ, Ti(δN) = T ] be the (finite-market, deterministic) bandwidth-specific propen-

sity score for particular gN and δN .

For Lemma 5, it is enough to show deterministic convergence of this finite-market score,

that is, ψNs(θ, T ; δN) → ψs(θ, T ) as gN → G and δN → 0. To see this, let GN be the

distribution over I(Θ0, r0, r1)’s induced by randomly drawing N applicants from G, where

I(Θ0, r0, r1) ≡ {i|θi ∈ Θ0, r0 < ri ≤ r1}. Note that GN is random and that GN
a.s.
→ G by

Wellner (1981)’s Glivenko-Cantelli theorem for independent but non-identically distributed

random variables. GN
p
→ G and ψNs(θ, T ; δN) → ψs(θ, T ) allow us to apply the Ex-

tended Continuous Mapping Theorem (Theorem 18.11 in van der Vaart (2000)) to obtain

ψ̃Ns(θ, T ; δN)
p

−→ ψs(θ, T ) where ψ̃Ns(θ, T ; δN) is the random version of ψNs(θ, T ; δN) defined

for GN .

For notational simplicity, consider the single-school RD case, where there is only one

school s making assignments based on a single non-lottery tie-breaker v(s) (without using

any priority). A similar argument with additional notation shows the result for DA with

general tie-breaking.

For any δN > 0, whenever Ti(δN) = a, it is the case that Di(s) = 1. As a result,

ψNs(θ, a; δN) ≡ EN [Di(s)|θi = θ, Ti(δN) = a] = 1 ≡ ψs(θ, a).

Therefore, ψNs(θ, a; δN) → ψs(θ, a) as N → ∞. Similarly, for any δN > 0, whenever Ti(δN) =

n, it is the case that Di(s) = 0. As a result,

ψNs(θ, n; δN) ≡ EN [Di(s)|θi = θ, Ti(δN) = n] = 0 ≡ ψs(θ, n).

Therefore, ψNs(θ, n; δN) → ψs(θ, n) as N → ∞. Finally, when Ti(δN) = c, let

FN,v(s)(r|θ) ≡

∑N

i=1 1{θi = θ}F i
v(s)(r)

∑N

i=1 1{θi = θ}

be the aggregate tie-breaker distribution conditional on each applicant type θ in the finite

market. ξ̃Ns denotes the random cutoff at school s in a realized economy gN . For any ǫ,

there exists N0 such that for any N > N0, we have

ψNs(θ, c; δN) ≡ EN [Di(s)|θi = θ, Ti(δN) = c]
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= PN [Riv(s) ≤ ξ̃Ns|θi = θ, Riv(s) ∈ (ξ̃Ns − δN , ξ̃Ns + δN ]]

∈ (P [Riv(s) ≤ ξs|θi = θ, Riv(s) ∈ (ξs − δN , ξs + δN ]]− ǫ/2,

P [Riv(s) ≤ ξs|θi = θ, Riv(s) ∈ (ξs − δN , ξs + δN ]] + ǫ/2),

where ξs is school s’s continuum cutoff, P is the probability induced by the tie-breaker

distributions in the continuum economy, and the inclusion is by Assumption 2 and Lemmata

3 and 6. Again for any ǫ, there exists N0 such that for any N > N0, we have

(P [Riv(s) ≤ ξs|θi = θ, Riv(s) ∈ (ξs − δN , ξs + δN ]]− ǫ/2,

P [Riv(s) ≤ ξs|θi = θ, Riv(s) ∈ (ξs − δN , ξs + δN ]] + ǫ/2)

= (
Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)

Fv(s)(ξs + δN |θ)− Fv(s)(ξs − δN |θ)
− ǫ/2,

Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)

Fv(s)(ξs + δN |θ)− Fv(s)(ξs − δN |θ)
+ ǫ/2)

= (
{Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)}/δN

{Fv(s)(ξs + δN |θ)− Fv(s)(ξs|θ)}/δN + {Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)}/δN
− ǫ/2,

{Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)}/δN
{Fv(s)(ξs + δN |θ)− Fv(s)(ξs|θ)}/δN + {Fv(s)(ξs|θ)− Fv(s)(ξs − δN |θ)}/δN

+ ǫ/2)

∈ (0.5− ǫ, 0.5 + ǫ)

= (ψs(θ, c)− ǫ, ψs(θ, c) + ǫ),

completing the proof.
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D Empirical Appendix

D.1 Data

The NYC DOE provided data on students, schools, the rank-order lists submitted by match

participants, school assignments, and outcome variables. Applicants and programs are

uniquely identified by a number that can be used to merge data sets. Students with a

record in assignment files who cannot be matched to other files are omitted.

D.1.1 Applicant Data

We focus on first-time applicants to the NYC public (unspecialized) high school system who

live in NYC and attended a public middle school in eighth grade. The NYC high school

match is conducted in three rounds. The data used for the present analyses are from the first

assignment round, which uses DA and we refer to as main round. Applicants who were not

assigned after the main round apply to the remaining seats in a subsequent supplementary

round. Students who remain unassigned in the supplementary round are then assigned on a

case-by-case basis in the final administrative round.

Assignment, Priorities, and Ranks

Data on the assignment system come from the DOE’s enrollment office, and report assign-

ments for our two cohorts. The main application data set details applicant program choices,

eligibility, priority group and rank, as well as the admission procedure used at the respec-

tive program. Lottery numbers and details on assignments at Educational Option (Ed-Opt)

programs are provided in separate data sets.

Student Characteristics

NYC DOE students files record grade, gender, ethnicity, and whether students attended a

public middle school. Separate files include (i) student scores on middle school standardized

tests, (ii) English language learner and special education status, and (iii) subsidized lunch

status. Our baseline middle school scores are from 6th grade math and English exams. If a

student re-took a test, the latest result is used. Our demographic characteristics come from

the DOE’s snapshot for 8th grade.

D.1.2 School-level Data

School Letter Grades
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School grades are drawn from NYC DOE School Report Cards for 2010/11, 2011/12 and

2012/13. For each application cohort, we grade schools based on the report cards published

in the school year prior to the application school year: for the 2011/12 application cohort,

for instance, schools are assigned grades published in 2010/11, and similarly for the other

two cohorts.

School Characteristics

School characteristics were taken from report card files provided by the DOE. These data

provide information on enrollment statistics, racial composition, attendance rates, suspen-

sions, teacher numbers and experience, and graduating class Regents Math and English

performance. A unique identifier for each school allows these data to be merged with data

from other sources. The analyses on teacher experience and education reported in Table 2

of this publication are based on the School-Level Master File 1996-2016, a dataset compiled

by the Research Alliance for NYC Schools at New York University’ Steinhardt School of

Culture, Education, and Human Development (www.ranycs.org). All data in the School-

Level Master File are publicly available. The Research Alliance takes no responsibility for

potential errors in the dataset or the analysis. The opinions expressed in this publication

are those of the authors and do not represent the views of the Research Alliance for NYC

Schools or the institutions that posted the original publicly available data.25

Defining Screened and Lottery Schools

We define lottery schools as any school hosting at least one program for which the lottery

number is used as the tie-breaker. Screened schools are the remaining schools. Some schools

allow students to share a screened tie-breaker rank, breaking screening-variable ties with

lottery numbers. Propensity scores for such schools are computed using the lottery tie breaker

and schools are considered lottery in any analysis that makes this substantive distinction.

Specialized high schools are considered screened schools. The remaining schools, mostly

charters that conduct a separate lottery process, are considered lottery schools.

D.1.3 SAT and Graduation Outcomes

SAT Tests

The NYC DOE has data on SAT scores for test-takers from 2006-17. These data originate

with the College Board. We use the first test for multiple takers. For applicants tested in

the same month, we use the highest score. During our sample period, the SAT has been

25Research Alliance for New York City Schools (2017). School-Level Master File 1996-2016 [Data file and
code book]. Unpublished data
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redesigned. We re-scale scores of SAT exams taken prior to the reform according to the

official re-scaling scheme provided by CollegeBoard.26

Graduation

The DOE Graduation file records the discharge status for public school students enrolled

from 2005-17. Because data on graduation results are not yet available for the youngest

(2013/14) cohort, graduation results are for the two older cohorts only.

College- and Career-preparedness and College-readiness

The DOE provided us with individual-level indicators for college- and career-preparedness

as well as college-readiness for public school students enrolled from 2005-17. Since these

data are not yet available for the youngest (2013/14) cohort, the results are for the two older

cohorts only. Table D1 gives an overview on the criteria for the two indicators.

College- and Career-preparedness

Any of the following:

-        Scored 65+ on the Algebra II, Math B, Chemistry, or Physics Regents exam

-        Scored 3+ on any Advanced Placement (AP) or 4+ on any International Baccalaureate (IB) exam

-        Earned “C” or higher in a college credit-bearing course or passed another course certified by the DOE

-        Earned a diploma with a Career and Technical Education (CTE) endorsement

-        Earned a diploma with an Arts endorsement; or passed an industry-recognized technical assessment

College-readiness

For ELA, any of the following:

-        SAT Evidence-Based Reading and Writing (EBRW) section score of 480+

-        ACT English score of 20+ or NY State English Regents score of 75+

For Math, any of the following:

-        SAT Math Section score of 530+

-        ACT Math score of 21+

-        Common Core Regents: Score of 70+ in Algebra I or 70+ in Geometry or 65+ in Algebra 2

-        Other Regents: Score of 80+ in Integrated Algebra or Geometry or Algebra 2/Trigonometry                        

and successful completion of the Algebra 2/Trigonometry or higher-level course

-        Score of 75+ in Regents Math A or Math B, or Sequential II or Sequential III

Table D1. Criteria for College- and Career-preparedness and College-readiness Indicators

D.1.4 Replicating the NYC Match

NYC uses the student-proposing DA algorithm to determine assignments. The three ingre-

dients for this algorithm are: student’s ranking of up to 12 programs, program capacities

and priorities, and tie-breakers.

26See https://collegereadiness.collegeboard.org/educators/higher-ed/scoring/concordance

for the conversion scale.
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Program Assignment Rules

Programs use a variety of assignment rules. Lottery, Limited Unscreened, and Zoned pro-

grams order students first by priority group, and within priority group by lottery number.

Screened and Audition programs order students by priority group and then by a non-lottery

tie-breaker, referred to as running or rank variable. We observe these in the form of an an

ordering of applicants provided by Screened and Audition programs. Ed-Opt programs use

two tie-breakers, which is described into more detail below. Finally, as mentioned above,

some schools allow students to share a screened tie-breaker rank, breaking screening-variables

ties with lottery numbers.

Program Capacities and Priorities

Program capacities must be imputed. We assume program capacity equals the number of

assignments extended. Program type determines priorities. The priority group is a number

assigned by the NYC DOE depending on addresses, program location, siblings, among other

considerations, including, in some cases, whether applicants attended an information session

or open house (for Limited Unscreened programs).

Lottery Numbers

The lottery numbers are provided by the NYC DOE in a separate data set. Lottery tie-

breakers are reported as unique alphanumeric string and scaled to [0, 1]. Lottery numbers

are missing for some; we assign these applicants a randomly drawn lottery number and use

it in our replicated match. It is this replicated match that is used to construct assignment

instruments and their associated propensity scores.

Ranks

Screened, Audition, and half of the seats at Ed-Opt programs assign students a rank, based

on various diverging criteria, such as former test performance. Ranks are reported as an inte-

ger reflecting raw tie-breaker order in this group. We scale these so as to lie in (0, 1] by trans-

forming raw tie-breaking realizations Riv into [Riv −minj Rjv +1]/[maxj Rjv −minj Rjv +1]

for each tie-breaker v. At some screened programs, the rank numbers of applicants have

gaps, i.e. the distribution of running variable values is discontinuous. Potential reasons

include i) human error when school principals submit applicant rankings to the NYC DOE,

and ii) while running variables are assigned at the program level, applications at Ed-Opt

programs are treated as six separate buckets (i.e. distinct application choices), leading to

artificial gaps in rank distributions (see discussion of assignment at Ed-Opt programs below).
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Assignment at Educational Option programs

Ed-Opt programs use two tie-breakers. Applicants are first categorized into high performers,

middle performers, and low performers by scores on a seventh grade reading test. Ed-Opt

programs aim to have an enrollment distribution of 16% high performers, 68% middle per-

formers and 16% low performers. Half of Ed-Opt seats are assigned using the lottery tie-

breaker. These seats are called “random.” The other half uses a rank variable such as those

used by other screened programs. These seats are called “select.”

We refer to the resulting six combinations as “buckets.” Ed-Opt applicants are treated as

applying to all six. A separate data set details which bucket applicants were offered. Buck-

ets have their own priorities and capacities. The latter are imputed based on the observed

assignments to buckets.

Tables D2 and D3 show applicants’ choice order of and priorities at Ed-Opt buckets, respec-

tively. Both are based on consultations with the NYC DOE and our simulations of the match.

High performers rank high buckets first, while medium and low performers apply to medium

and low buckets first, respectively.

Choice 

order High performers Middle performers Low performers

1 High Select Middle Select Low Select

2 High Random Middle Random Low Random

3 Middle Select High Select High Select

4 Middle Random High Random High Random

5 Low Select Low Select Middle Select

6 Low Random Low Random Middle Random

Table D2. Applicants' Choice Order of EdOpt Buckets

High performers have highest priority (priority group 1) at high buckets, while medium and

low performers receive highest priority at medium and low buckets, respectively.

Priority High Middle Low 

Group Random or Select Random or Select Random or Select

1 High performers Middle performers Low performers

2 Middle performers Low performers Middle performers

3 Low performers High performers High performers

Table D3. Priorities at EdOpt Buckets

Miscellaneous Sample Restrictions The analysis sample is limited to first-time eighth
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grade applicants for ninth grade seats. Ineligible applications (as indicated in the main

application data set) are dropped. Applicants with special education status compete for a

different set of seats and are thus dropped in the analysis.

Students in the top 2% of scorers on the seventh grade reading are automatically admitted

into any Ed-Opt program they rank first. We gather these assignments in a separate Ed-Opt

bucket, thereby leaving the admission process to the other six unaffected.

Table D4 records the proportion of applicants for which our match replication was success-

ful.

2011/2012 2012/2013 2013/2014

(1) (2) (3) 

All schools 0.967 0.959 0.967

Grade A schools 0.971 0.962 0.974

Grade A screened schools 0.990 0.988 0.990

Grade A lottery schools 0.965 0.956 0.965

Table D4. Replication Rates

Application Cohort

Notes: This table shows replication rates for the New York City match for 

the three application cohorts in the analysis sample. A replicated offer is one 

where the offer generated by our run of the match coincides the offer 

received.

D.2 Additional Empirical Results

Grade A risk has a mode at 0.5, but takes on many other values as well. A probability

of 0.5 arises when the overall Grade A propensity score is generated by a single Grade A

screened school. This can be seen in Figure D1, which tabulates the estimated probability of

assignment to a Grade A school for applicants in all cohorts (2012-2014) with a probability

strictly between 0 and 1 calculated using the formula in Theorem 1. There are 24,966

students with the estimated assignment probability equal to 1, 86,494 students with the

propensity score equal to 0, and 41,647 students with Grade A risk. The propensity score

of 0.5 arises when the overall Grade A propensity score is generated by a single Grade A

screened school.

Table D5 reports estimates of the effect of Grade A assignments on attrition, computed

by estimating models like those used to gauge balance. Applicants who receive Grade A

school assignments have a slightly higher likelihood of taking the SAT. Decomposing Grade

A schools into screened and lottery schools, applicants who receive lottery Grade A school
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Figure D1: Distribution of Grade A Risk

Notes: This figure shows the histogram of the estimated probability of assignment to a Grade A
school for at-risk applicants in all sample cohorts (2012-2014), calculated using Theorem 1. The
full sample includes 24,966 applicants with a Grade A propensity score equal to 1, 86,494 applicants
with propensity score equal to 0, and 35,102 students with Grade A risk. The at-risk sample is
used to compute the balance estimates reported in Table 3.
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assignments are 1.6 percent more likely to have SAT scores, while assignments to Grade A

screened schools do not correspond to a statistically significant difference in the likelihood of

having follow-up SAT scores. This modest difference seems unlikely to bias the 2SLS Grade

A estimates reported in Tables 4 and 5.

Table D6 reports estimates of the effect of enrollment in an ungraded high school. These

use models like those used to compute the estimates presented in Table 4. OLS estimates

show a small positive effect of ungraded school attendance on SAT scores and a strong neg-

ative effect on graduation outcomes. 2SLS estimates, by contrast, suggest ungraded school

attendance is unrelated to these outcomes.

Any Screened Lottery

(1) (2) (3) (4) 

Took SAT exam 0.772 0.013 -0.005 0.016

(0.006) (0.010) (0.007)

N 35,102 13,742 28,643

0.642 0.003 0.001 0.003

(0.002) (0.002) (0.002)

N 35,102 13,742 28,643

Notes. This table reports differential Grade A offer effects on the availability of follow-up 

data, computed by regressing a follow-up indicator on dummies for Grade A and ungraded 

school offers, with the controls used for the balance estimates reported in Table 3. Robust 

standard errors appear in parenthesis.

Enrolled in ninth grade

Non-

offered 

Grade A School Type

Table D5. Differential Attrition
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(1) (2) (3) (4) 

474 1.20 521 1.31

(200-800) (103) (0.189) (111) (1.72)

474 1.06 515   0.023

(200-800) (90) (0.176) (94) (1.66)

N 124,902 26,526

0.739 -0.236 0.831 0.035

(0.003) (0.024)

N 183,526 34,191

0.429 -0.134 0.608 0.035

(0.003) (0.036)

0.374 -0.096 0.562 0.032

(0.003) (0.035)

N 121,416 22,168

Notes. This table reports OLS and 2SLS estimates of ungraded school effects produced by the 

models reported in Table 4. Robust standard errors appear in parenthesis.

Table D6. 2SLS Estimates of the Effect of Attending an Ungraded School

College-ready

SAT Math

SAT Reading

Graduated

College- and Career-

prepared

All applicants Applicants with Grade A Risk

Non-enrolled

mean
OLS

Non-offered 

mean
2SLS
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