
Breaking Value Symmetry∗

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract

Symmetry is an important factor in solving many constraint
satisfaction problems. One common type of symmetry is
when we have symmetric values. In a recent series of papers,
we have studied methods to break value symmetries (Walsh
2006a; 2007). Our results identify computational limits on
eliminating value symmetry. For instance, we prove that
pruning all symmetric values is NP-hard in general. Never-
theless, experiments show that much value symmetry can be
broken in practice. These results may be useful to researchers
in planning, scheduling and other areas as value symmetry
occurs in many different domains.

Introduction
Many search problems contain symmetries. Symmetry oc-
curs naturally in many problems (e.g. if we have identical
machines to schedule, identical jobs to process, or equiva-
lently skilled personnel to roster). Symmetry can also be
introduced when we model a problem (e.g. if we name the
elements in a set, we introduce the possibility of permuting
their order). Unfortunately, symmetries increases the size
of the search space. If we do not eliminate symmetries, we
will waste much time visiting symmetric solutions, as well
as those parts of the search tree which are symmetric to al-
ready visited states.

One common type of symmetry is when values are sym-
metric. For example, if we are assigning colors (values)
to nodes (variables) in a graph coloring problem, we can
uniformly swap the names of the colors throughout a color-
ing. As a second example if we are assigning nurses (val-
ues) to shifts (variables) in a rostering problems, and two
nurses have the same skills, we may be able to interchange
them uniformly throughout the schedule. In a recent series
of papers (Walsh 2006a; 2007), we have studied methods to
eliminate such value symmetries. A clear picture of break-
ing value symmetry is emerging from these studies. These
results may be useful to researchers in other areas of AI as
value symmetry is a common feature of many domains.

∗The author is funded by the Australian Government’s Depart-
ment of Broadband, Communications and the Digital Economy and
the Australian Research Council.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An example
To illustrate the ideas, we consider a simple problem
from musical composition. The all interval series problem
(prob007 in CSPLib.org) asks for a permutation of the num-
bers 0 to n− 1 so that neighbouring differences form a per-
mutation of 1 to n−1. For n = 12, the problem corresponds
to arranging the half-notes of a scale so that all musical in-
tervals (minor second to major seventh) are covered. This is
a simple example of a graceful graph problem in which the
graph is a path.

We can model this as a constraint satisfaction problem in
n variables with Xi = j iff the ith number in the series is j.
One solution for n = 11 is:

X1, X2, . . . , X11 = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8 (1)

The all interval series problem has a number of different
symmetries. First, we can reverse any solution and generate
a new (but symmetric) solution:

X1, X2, . . . , X11 = 8, 2, 9, 1, 10, 0, 5, 6, 4, 7, 3 (2)

Second, the all interval series problem has a value symmetry
as we can invert values. If we subtract all values in (1) from
10, we generate a second (but symmetric) solution:

X1, X2, . . . , X11 = 7, 3, 6, 4, 5, 10, 0, 9, 1, 8, 2 (3)

Third, we can do both and generate a third (but symmetric)
solution:

X1, X2, . . . , X11 = 2, 8, 1, 9, 0, 10, 5, 4, 6, 3, 7 (4)

To eliminate such symmetric solutions from the search
space, we can post additional constraints which eliminate
all but one solution in each symmetry class. To eliminate
the reversal of a solution, we can simply post the constraint:

X1 < X11 (5)

This eliminates solution (2) as it is a reversal of (1).
To eliminate the value symmetry which subtracts all val-

ues from 10, we can post:

X1 ≤ 10−X1, X1 = 10−X1 ⇒ X2 < 10−X2 (6)

This is equivalent to:

X1 ≤ 5, X1 = 5 ⇒ X2 < 5

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

1585

This eliminates solutions (2) and (3). Finally, eliminating
the third symmetry where we both reverse the solution and
subtract it from 10 is more difficult. We can, for instance,
post:

X1 ≤ 10−X11,

X1 = 10−X11 ⇒ X2 ≤ 10−X10,

X1 = 10−X11 & X2 = 10−X10 ⇒ X3 ≤ 10−X9,

... (7)

Note that of the four symmetric solutions given earlier, only
(4) with X1 = 2, X2 = 8 and X11 = 7 satisfies all three sets
of symmetry breaking constraints: (5), (6) and (7). The other
three solutions are eliminated. This leaves the question of
where symmetry breaking constraints like (6) and (7) come
from in general. Our work helps answer this question.

Formal background
A constraint satisfaction problem consists of a set of vari-
ables, each with a domain of values, and a set of constraints
specifying allowed combinations of values for given sub-
sets of variables. Variables take one value from a given fi-
nite set. A solution is an assignment of values to variables
satisfying the constraints. Symmetry occurs in many con-
straint satisfaction problems. A value symmetry is a per-
mutation of the values that preserves solutions. More for-
mally, a value symmetry is a bijective mapping, σ of the
values such that if X1 = d1, . . . , Xn = dn is a solution
then X1 = σ(d1), . . . , Xn = σ(dn) is also. For exam-
ple, in the all interval series problem, the value symmetry
σ maps the value i onto n − 1 − i. A variable symme-
try, on the other hand, is a permutation of the variables
that preserves solutions. More formally, a variable sym-
metry is a bijective mapping, θ of the indices of variables
such that if X1 = d1, . . . , Xn = dn is a solution then
Xθ(1) = d1, . . . , Xθ(n) = dn is also. For example, in the
all interval series problem, the variable symmetry for revers-
ing a series maps the index i onto n− i+1. Symmetries are
problematic as they increase the size of the search space. For
instance, m interchangeable values increases the size of the
search space by a factor of m!.

Lex-Leader method
One simple and effective mechanism to deal with symme-
try is to add constraints which eliminate symmetric solu-
tions (Puget 1993). For variable symmetries, Crawford et
al. give a simple method that eliminates all symmetric solu-
tions (Crawford et al. 1996). The basic idea is very simple.
We pick an ordering on the variables, and then post sym-
metry breaking constraints to ensure that the final solution
is lexicographically less than any symmetric re-ordering of
the variables. For example, with a reversal symmetry which
maps Xi to Xn−i+1, we post the lexicographical ordering
constraint:

[X1, . . . , Xn] ≤lex [Xn, . . . , X1]

This selects the “lex leader” assignment. Note that if Xi are
all-different, as they are in the all interval series problem, we

can simplify this lex leader constraint to give as in (5):

X1 < Xn

The lex-leader method lies at the heart of most static
methods for breaking variable symmetry. In their survey
of symmetry breaking in constraint programming in the re-
cent Handbook of Constraint Programming, Gent, Petrie and
Puget observe that:

“. . . lex-leader remains of the highest importance, be-
cause there a number of ways it is used to derive
new symmetry breaking methods . . . [however] the lex-
leader method is defined only for variable symmetries
. . . a proper generalisation of lex-leader to deal with
value symmetries would be valuable, even if restricted
to some special cases . . . ” page 345 (Gent, Petrie, &
Puget 2006)
This is the research challenge we have been tackling in

our recent work (Walsh 2006a; 2007).

Value symmetry
In (Walsh 2006a), we propose a generalization of the lex-
leader method that works with any type of value symme-
try. Suppose we have a set Σ of value symmetries. We
can eliminate all symmetric solutions with the constraint
VALSYM(Σ, [X1, . . . , Xn]) which ensures for all σ ∈ Σ:

[X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)] (8)

Where X1 to Xn is any fixed ordering on the variables and
σ(Xi) represents the action of the symmetry σ on the value
assigned to Xi. For example, if σ inverts values by mapping
i onto n− 1− i as in the all interval series, we can simplify
(8) to give:

[X1, X2, . . .] ≤lex [n− 1−X1, n− 1−X2, . . .]

Expanding the definition of lex, and exploiting the fact that
X1 6= X2, we get as in (6):

X1 ≤ n− 1−X1, X1 = n− 1−X1 ⇒ X2 < n− 1−X2

We give a linear time propagator for lex-leader constraints
like (8), and show how to extend the lex-leader method to
symmetries which act on both variables and values simulta-
neously.

In theory, this generalization of the lex-leader method
solves the problem of value symmetries as it eliminates all
symmetric solutions. Unfortunately, several problems re-
main. First, the set of symmetries Σ can be exponentially
large (for example, there are m! symmetries if we have m
interchangeable values) requiring us to post a large number
of lex ordering constraints. Second, decomposing VALSYM
into separate lex ordering constraints hinders propagation
and may prevent all symmetric values from being pruned.
In (Walsh 2006a), we give a simple example where this de-
composition hinders propagation. Somewhat surprisingly,
there is little hope to overcome this second problem. We
prove in (Walsh 2007) that pruning all symmetric values is
intractable in general even with a small number of symme-
tries (assuming P 6= NP).

1586

Theorem 1 Pruning all inconsistent values for
VALSYM(Σ, [X1, ., Xn]) is NP-hard, even when |Σ| is
linearly bounded.
Proof: In (Walsh 2007), we reduce 3-SAT to deciding if a
particular VALSYM constraint has a solution. 2

With value symmetry, whilst pruning all symmetric val-
ues is NP-hard, method likes those in (Roney-Dougal et al.
2004; Puget 2005) will eliminate all symmetric solutions in
polynomial time. Despite the negative result given in Theo-
rem 1, value symmetry appears easier to break than variable
symmetry both in theory and in practice. For example, with
variable symmetry, we prove in (Bessiere et al. 2004) that
just eliminating all symmetric solutions is itself NP-hard.

Interchangeable values
So far, we have considered symmetries in general and ig-
nored any special properties of the symmetry group. A com-
mon type of value symmetry with special properties that we
can exploit is that due to interchangeable values. We can
break all such value symmetry using value precedence (Law
& Lee 2004), an idea which has been used in many con-
texts including the least number heuristic (Zhang 1996). To
ensure value precedence, we can use the global constraint
PRECEDENCE([X1, ., Xn]). This holds iff the first time we
use j is before the first time we use k for all j < k. For
example, consider an assignment like:

X1, X2, X3, . . . , Xn = 1, 1, 2, 1, 3, . . . , 2 (9)

This satisfies value precedence as 1 first occurs before 2,
2 first occurs before 3, etc. Now consider the symmetric
assignment in which we swap 2 with 3:

X1, X2, X3, . . . , Xn = 1, 1, 3, 1, 2, . . . , 3 (10)

This does not satisfy value precedence as 3 first occurs
before 2. Posting a PRECEDENCE constraint eliminates
all symmetric solutions due to interchangeable values. In
(Walsh 2006b), we give a linear time propagator for the
PRECEDENCE constraint. In (Walsh 2007), we argue that
PRECEDENCE is in fact equivalent to VALSYM.

Another way to ensure value precedence is to channel into
dual variables, Zj which record the first index using each
value j (Puget 2005). This maps value symmetry into vari-
able symmetry on the Zj . We can then break this variable
symmetry by posting simple ordering constraints:

Z1 < Z2 < Z3 < . . . < Zm (11)

This ensures that the first occurrence of 1 is before that of
2, that of 2 is before 3, etc. For example, the assignment
in (9) satisfies (11) as Z1 = 1, Z2 = 3 and Z3 = 5.
However, the symmetric assignment in (10) does not sat-
isfy (11) as Z2 = 5 but Z3 = 3. Puget proves that we
can, in fact, break any value symmetry with a linear number
of ordering constraints on the Zj . Unfortunately, even with
just two value symmetries, Puget’s method hinders propaga-
tion (Walsh 2007). This is supported by the experiments in
(Walsh 2007) where we see faster and more effective sym-
metry breaking with the global PRECEDENCE constraint.
This is therefore a promising method to eliminate the sym-
metry due to interchangeable values.

Dynamic methods
An alternative to static methods which add constraints to
eliminate symmetric solutions are dynamic methods which
modify the search procedure to ignore symmetric branches.
For example, with value symmetries, the GE-tree method
dynamically eliminates all symmetric solutions from a back-
tracking search procedure in O(n4 log(n)) time (Roney-
Dougal et al. 2004). Dynamic methods have the advan-
tage that they do not conflict with the branching heuristic.
However, dynamic methods do not prune the search space
as much. Suppose we are at a particular node in the search
tree explored by the GE-tree method. The GE-tree method
essential performs only forward checking, pruning symmet-
ric assignments from the domain of the next branching vari-
able. Unlike static methods, the GE-tree method does not
prune deeper variables. By comparison, static symmetry
breaking constraints can prune deeper variables, resulting in
interactions between the problem constraints and additional
domain prunings. For this reason, static symmetry breaking
methods can solve certain problems exponentially quicker
than dynamic methods.
Theorem 2 There exists a model of the pigeonhole problem
in n variables and n + 1 interchangeable values such that,
given any variable and value ordering, the GE-tree method
explores O(2n) branches, but which static symmetry break-
ing methods like value precedence solve in just O(n2) time.
Proof: See (Walsh 2007). 2

This theoretical result supports the experimental results in
(Puget 2005) showing that static methods for breaking value
symmetry outperform dynamic methods. Nevertheless, dy-
namic methods have been found useful as they may not con-
flict with the branching heuristic (Gargani & Refalo 2007;
Van Hentenryck & Michel 2008). An interesting direction
for future work are hybrid methods that combine the best
features of static and dynamic symmetry breaking.

Related work
Puget proved that symmetric solutions can be eliminated
by the addition of suitable constraints (Puget 1993). Craw-
ford et al. presented the first general method for construct-
ing variable symmetry breaking constraints (Crawford et al.
1996). To deal with large number of symmetries, Aloul et al.
suggest breaking only those symmetries which are genera-
tors (Aloul et al. 2002). Puget and Walsh independently pro-
posed propagators for value symmetry breaking constraints
(Puget 2006; Walsh 2006a). To deal with the exponential
number of such value symmetry breaking constraints, Puget
proposed a global propagator which does forward checking
in polynomial time (Puget 2006).

To eliminate symmetric solutions due to interchangeable
values, Law and Lee defined value precedence for finite do-
main and set variables and proposed a specialized propaga-
tor for a pair of interchangeable values (Law & Lee 2004).
Walsh extended this to a propagator for any number of in-
terchangeable values (Walsh 2006b). Value precedence en-
forces the so-called “least number heuristic” (Zhang 1996).
Finally, an alternative way to break value symmetry stat-
ically is to convert it into a variable symmetry by chan-

1587

nelling into a dual Boolean viewpoint in which Bij = 1
iff Xi = j, and using lexicographical ordering constraints
on the Boolean variables (Flener et al. 2002; Law & Lee
2006). More recently, static symmetry breaking constraints
have been proposed to eliminate the symmetry due to both
interchangeable variables and values (Flener et al. 2006;
Law et al. 2007).

A number of dynamic methods have been proposed to
deal with value symmetry. Van Hentenryck et al. gave a la-
belling schema for eliminating all symmetric solutions due
to interchangeable values (Van Hentenryck et al. 2003). In-
spired by this method, Roney-Dougal et al. gave a polyno-
mial method to construct a GE-tree, a search tree without
value symmetry (Roney-Dougal et al. 2004). Finally, Sell-
mann and van Hentenryck gave a O(nd3.5 + n2d2) domi-
nance detection algorithm for eliminating all symmetric so-
lutions when both variables and values are interchangeable
(Sellmann & Van Hentenryck 2005).

Conclusions
Value symmetries can be broken either statically (by adding
constraints to prune symmetric solutions) or dynamically
(by modifying the search procedure to avoid symmetric
branches). We have shown that both approaches have com-
putational limitations. With static methods, we can elimi-
nate all symmetric solutions in polynomial time but prun-
ing all symmetric values is NP-hard in general (or equiva-
lently, we can avoid visiting symmetric leaves of the search
tree in polynomial time but avoiding symmetric subtrees is
NP-hard). With dynamic methods, we can take exponen-
tial time on problems which static methods solve without
search. Nevertheless, experimental results in (Puget 2006;
Walsh 2006b; 2006a; 2007) and elsewhere show that value
symmetry can be dealt with effectively in practice.

These results may be useful to researchers in closely re-
lated areas like planning and scheduling where value sym-
metries arise and need to be eliminated. They may also be
useful in areas like model counting, verification, and auto-
mated reasoning as value symmetry arises in many of these
problems too. There are many open questions raised by this
research. For example, are there symmetries where all sym-
metric values can be pruned tractably? How do we combine
the best features of static and dynamic symmetry breaking?

References
Aloul, F.; Ramani, A.; Markov, I.; and Sakallah, K. 2002.
Solving difficult SAT instances in the presence of symme-
tries. In Proc. of the Design Automation Conf., 731–736.
Bessiere, C.; Hebrard, E.; Hnich, B.; and Walsh, T. 2004.
The complexity of global constraints. In Proc. of the 19th
National Conf. on AI. AAAI.
Crawford, J.; Luks, G.; Ginsberg, M.; and Roy, A. 1996.
Symmetry breaking predicates for search problems. In
Proc. of the 5th Int. Conf. on Knowledge Representation
and Reasoning, (KR ’96), 148–159.
Flener, P.; Frisch, A.; Hnich, B.; Kiziltan, Z.; Miguel, I.;
Pearson, J.; and Walsh, T. 2002. Breaking row and column

symmetry in matrix models. In 8th Int. Conf. on Principles
and Practices of Constraint Programming (CP-2002).
Flener, P.; Pearson, J.; Sellmann, M.; and Van Hentenryck,
P. 2006. Static and dynamic structural symmetry breaking.
In Proc. of 12th Int. Conf. on Principles and Practice of
Constraint Programming (CP2006).
Gargani, A., and Refalo, P. 2007. An efficient model and
strategy for the steel mill slab design problem. In Proc.
of 13th Int. Conf. on Principles and Practice of Constraint
Programming (CP2007).
Gent, I.; Petrie, K.; and Puget, J.-F. 2006. Symmetry in
constraint programming. In Handbook for Constraint Pro-
gramming. Elsevier.
Law, Y., and Lee, J. 2004. Global constraints for inte-
ger and set value precedence. In Proc. of 10th Int. Conf.
on Principles and Practice of Constraint Programming
(CP2004), 362–376.
Law, Y., and Lee, J. 2006. Symmetry Breaking Con-
straints for Value Symmetries in Constraint Satisfaction.
Constraints 11(2–3):221–267.
Law, Y.-C.; Lee, J.; Walsh, T.; and Yip, J. 2007. Break-
ing symmetry of interchangeable variables and values. In
13th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2007).
Puget, J.-F. 1993. On the satisfiability of symmetrical con-
strained satisfaction problems. In Proc. of ISMIS’93, LNAI
689, 350–361.
Puget, J.-F. 2005. Breaking all value symmetries in sur-
jection problems. In Proc. of 11th Int. Conf. on Principles
and Practice of Constraint Programming (CP2005).
Puget, J.-F. 2006. An efficient way of breaking value sym-
metries. In Proc. of the 21st National Conf. on AI. AAAI.
Roney-Dougal, C.; Gent, I.; Kelsey, T.; and Linton, S.
2004. Tractable symmetry breaking using restricted search
trees. In Proc. of ECAI-2004. IOS Press.
Sellmann, M., and Van Hentenryck, P. 2005. Structural
symmetry breaking. In Proc. of 19th IJCAI.
Van Hentenryck, P., and Michel, L. 2008. The steel mill
slab design problem revisited. In Proc. of 5th Int. Work-
shop on Integration of AI and OR Techniques in Constraint
Programming (CP-AI-OR).
Van Hentenryck, P.; Agren, M.; Flener, P.; and Pearson, J.
2003. Tractable symmetry breaking for CSPs with inter-
changeable values. In Proc. of the 18th IJCAI.
Walsh, T. 2006a. General symmetry breaking constraints.
In 12th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2006).
Walsh, T. 2006b. Symmetry breaking using value prece-
dence. In Proc. of the 17th ECAI. European Conf. on Arti-
ficial Intelligence.
Walsh, T. 2007. Breaking value symmetry. In 13th Int.
Conf. on Principles and Practices of Constraint Program-
ming (CP-2007).
Zhang, J. 1996. Constructing finite algebras with FAL-
CON. Journal of Automated Reasoning 17(1):1–22.

1588

