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INTRODUCTION 

Although it is well recognized that wave systems in nature are irregular, 
comprising a spectrum of fundamental periods, there is still a need for im- 
proving our understanding of near-breaking nonlinear wave systems which 
contain a single fundamental period. For example, most of the shallow water 
design situations and other cases including forces on small diameter structures 
in which drag forces predominate are more directly treated in terms of a 
"design wave" rather than a wave spectrum.  This situation is contrasted to 
many important engineering design problems in which the dynamics of the system 
are paramount; for example, in the case of a moored drilling vessel.  Finally, 
one may reasonably expect that accurate solutions to the problem of nonlinear 
wave systems with a single fundamental period will lend insight regarding 
productive approaches to the more realistic problem of a spectrum of non- 
linear waves. 

This paper investigates the applicability of the stream function wave 
theory1 for the representation of breaking and near-breaking waves.  This 
particular problem has received little attention, although considerable 
progress has occurred on two related problems: 

1. The development of wave theories covering a wide range 
of relative water depths and wave heights, and 

2. The development of wave theories which apply at breaking 
conditions.  In general, although these theories may be 
applicable for the limiting wave conditions, their basis 
of derivation is such that they cannot be extended to 
non-breaking waves. 

The purpose of the present investigation, then, is to establish whether 
or not the stream function wave theory can be applied to span the range ex- 
tending up to breaking conditions. 

BACKGROUND 

A great deal of effort2'3>1(> 5»5'7 has been devoted to development of 
non-breaking wave theories based on mathematical approaches selected to 
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cover various ranges of relative water depths and wave heights.  Recently, 
Dean3 has compared the relative validities of eight wave theories based 
on the agreement of these theories to the boundary conditions included in 
their formulation.  This comparison showed that the stream function wave 
theory provided a best fit to the boundary conditions over the range 
0.05 < h/T2 < 10.0 ft/sec2 and a range of wave heights encompassing most 
conditions encountered in engineering design problems. 

A second problem area, that of conditions at wave breaking, has also 
received considerable attention9! 10>11 > 12>* 3>ll*.  These investigations 
generally predict an upper limit for wave stability, and, although the 
various results differ somewhat in numerical values, they are in approxi- 
mate agreement.  These results will be discussed m greater detail later. 
Aspects of these limiting wave theories that are important to the goals of 
the present investigation include- 

1. The limiting wave theories cannot be applied to highly 
nonlinear, but non-breaking conditions. 

2. No results are available to compare the results of 
existing non-breaking theories with the limiting 
wave theories for conditions at or near breaking. 

3. All of the limiting wave theories require an a priori 
assumption concerning the shape of the wave crest. 
This assumption raises questions of the validity of 
the stability limit and of the wave kinematics and 
dynamics at breaking. 

ANALYTICAL CONSIDERATIONS OF PRESENT INVESTIGATION 

In the present investigation, two stability parameters will be defined 
as possible mechanisms limiting the heights that waves can attain without 
breaking.  These parameters are defined to equal unity if their respective 
breaking mechanisms are fulfilled.  Employing the stream function wave 
theory, the variations of these parameters are then investigated as the 
wave height is increased.  The calculations are continued with increasing 
wave height until one of the stability parameters equals unity.  The wave 
conditions and the values of the stability parameters at breaking are com- 
pared with previous results. 

Formulation of Water Wave Problem 

The system considered here will be that of a two-dimensional periodic 
water wave propagating over a horizontal bottom.  Since the basis of the 
formulation includes the inherent assumption that the wave travels without 
change of form, it is possible to select a coordinate system moving with 
the wave celerity, C, thereby reducing the problem viewed in this reference 
system to one of steady motion.  The formulation for this problem and the 
inherent assumptions have been presented and discussed thoroughly elsewhere1. 
Therefore, the governing equations will be simply set forth below without 
detailed discussion. 
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The Laplace differential equatxon expressed in terms of the velocity 
potential, <t>, or stream function, tji, must be satisfied throughout the region 
formed by the wave system.  (See Figure 1 for a description of the wave 
system and notation employed.) 

Formulating the problem in terms of a stream function, the associated 
differential equation is 

V2i|/ - 0 (1) 

The kinematic boundary Conditions on the bottom and free surfaces 
ensure that no flow occurs normal to these surfaces, that is, on the 
bottom, 

w=|i=0,z = -h (2) 

and on the free surface, 

In -   w 
3x " u-C * 

(3) 

The remaining (dynamic) boundary condition on the free surface ensures 
that the pressure on the free surface is uniform 

n + 4- [(u-C)2 + w2] = Q , z = n (4) 

where Q is a constant.  The problem formulation is completed by requiring 
that all of the variables be periodic in the horizontal space coordinate, x. 

If an analytical representation could be found that would satisfy the 
differential equation and boundary conditions, the representation would be 
exact within the limitations of the formulation. 

The Stream Function Solution 

The stream function representation for highly nonlinear waves has been 
explored in previous papers; hence, it will be presented here only in out- 
line form.  The stream function solution is written as 

N 

ijj(x,z) = — z + \       A(n) sinh [-^— (h+z) ] cos —• x (5) 

n=l 

and an expression for the free surface displacement, n(x), is determined 
in implicit form by setting z = n in Eq. (5), that is, 
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n = -^ - I    \  A(n) sinh [^° (h+n) ] cos -^ x    (6) 

n-1 

where \\>    is the (constant) value of the stream function on the free surface. 

It can be shown that, for arbitrary A(n) and L values, the stream 
function solution expressed in Eqs. (5) and (6) satisfies the formulation 
exactly except for the dynamic free surface boundary condition, Eq. (4). 
The problem is now posed, for given values of wave height, H, wave period, T, 
and water depth, h, of determining the wave length, L, and stream function 
coefficients, A(n) such that the dynamic free surface boundary condition is 
best satisfied.  (It should be noted that the stream function value at the 
free surface is determined by requiring that the mean of the water surface 
displacement, n, be zero.) A numerical iterative procedure has been es- 
tablished to successively improve on the values of A(n) and L in accordance 
with the requirement of uniform Bernoulli constant, see reference 1 for 
details. During the present investigation, a property of the A(n) coef- 
ficients was found which appears to be general and which facilitates their 
determination. 

STABILITY CRITERIA 

In previous investigations of limiting forms of progressive and standing 
waves, two possible mechanisms for wave breaking have been proposed. 

Kinematic Stability Parameter (KSP) 

The KSP is a measure of the maximum horizontal water particle velocity, 
u , (which occurs at the crest) relative to the wave phase speed, C, 

KSP: ^ (7) 

This criterion is proposed to be limiting if the water particle velocity 
equals the celerity, that is, %/C = 1. For conditions of the KSP equal 
to unity, it is sometimes argued that the crest particles will travel faster 
than the wave form, and the wave will become asymmetric and topple over. 
The soundness of this argument is not clear to this author. 

Dynamic Stability Parameter (DSP) 

The DSP is a measure of the total maximum vertical acceleration, Dw/Dt, 
relative to the acceleration of gravity, g, and is defined as 

DSP:  -i£ (8) 

The physical interpretation of this limiting condition is evident; if this 
parameter exceeds unity, it can be shown that the pressure gradient at the 
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crest Is zero and further increases in the wave height would cause water 
particles to leave the crest of the wave In a vertical direction.  It is 
clear that this must be the breaking mechanism in standing waves.  The KSP 
is generally regarded to be limiting for progressive waves.  The pertinence 
of the DSP to limiting progressive waves is believed to be unresolved by 
published accounts, although Laitone and Kinsman15 have indicated that the 
DSP is governing for progressive waves. 

Finally, it is emphasized that both the KSP and DSP are defined such 
that a value of unity of either of these quantities would indicate breaking 
due to their respective mechanisms. 

RESULTS 

Three wave conditions, spanning the range from relatively shallow to 
deep water, were chosen for further examination.  The wave periods and water 
depths of these three cases are shown in Table I. 

TABLE I 

WAVE CHARACTERISTICS SELECTED FOR BREAKING STUDY 

Case 
Relative 
Depth 

Water Depth 
(ft) 

Period 
(sec) 

A Shallow 20.0 20.0 

B Intermediate 100.0 10.0 

C Deep 1000.0 10.0 

In the initial calculations, the numerical stream function approach de- 
scribed earlier1 was applied to determine the stream function coefficients, 
A(n), individually.  It was found, by examination, that these coefficients 
vary in a semi-logarithmic manner with the index, n, 

A(n) = A(l) e 
-bn 

(9) 

An example is shown in Figure 2 for a 17th order Case A wave.  It is 
emphasized that these coefficients were not constrained to a semi-logarithmic 
variation, but this form of variation appears to provide the best fit to the 
dynamic free surface boundary condition (DFSBC). Although the last few co- 
efficients shown in Figure 2 deviate from the semi-logarithmic form, it was 
found that repeated iterations of the numerical procedure would improve this 
distribution.  Calculations for Cases B and C and other relative depths 
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indicated that the observed semi-logarithmic variation could be regarded as 
a property of these coefficients when a good fit to the DFSBC was attained, 
the reason for the semi-logarithmic variation is not known.  The simpli- 
fications associated with the semi-logarithmic variation are substantial; 
for example, the number of Independent wave parameters is 3 for a 20th order 
wave assuming a semi-logarithmic variation as compared to 21 if no a. priori 
relationship is recognized for the A(n) coefficients.  This feature was 
accounted for in the numerical scheme, thereby greatly reducing the compu- 
tational time required, especially for near-breaking conditions, which 
require a high order representation. 

Case A - Shallow Water Wave (h/T2 =0.05 ft/sec2) 

The kinematic and dynamic stability criteria for this case are plotted 
as a function of H/h in Figure 3. Note that breaking is predicted at a 
ratio H/h = 1.0 while the usually referenced breaking limit is H/h = 0.78; 
the range reported by previous investigators is 0.73 < H/h < 0.87.  For the 
results obtained here, it is clear that the kinematic criterion governs 
breaking, and it is surprising at first that the dynamic parameter is zero 
when breaking occurs.  This point will be discussed later in greater detail. 

The wave forms for a near-breaking Case A wave are presented in Figure 4. 
Note that the enclosed angle of the wave form is in approximate agreement 
with the previously determined value of 120 degrees. 

The amplitude spectrum, determined by a harmonic analysis of the wave 
form, is also shown in Figure 4. As expected, the higher order terms are 
quite significant for the case of a near-breaking shallow water wave for 
which the crests are high and peaked and the troughs low and broad.  As a 
reference for later comparison, the 10th order term (9th harmonic) is about 
25 per cent of the fundamental. 

Case B - Intermediate Depth Water Wave (h/T2 -1.0 ft/sec2) 

For the sake of brevity, the graphical results pertaining to this case 
are not shown here.  The stability parameter results were the same as for 
Case A, that is, the KSP governed breaking and the DSP equals zero at breaking. 
The ratio H/T2 at breaking was determined to be 0.69 ft/sec2 which, as will 
be shown later, is in good agreement with previously referenced results. 

Case C - Deep Water Wave (h/T2 = 10.0 ft/sec2) 

The kinematic and dynamic stability parameters are shown in Figure 5 
and indicate, as in Cases A and B, that the KSP governs and the DSP equals 
zero at breaking.  The value of H/T2 at breaking is 1.06 ft/sec2 compared 
with the usually referenced value of 0.873 ft/sec2.  The wave form and ampli- 
tude spectrum for a near-breaking Case C wave are shown in Figure 6.  Of 
interest is the rapid decrease in amplitude coefficients for large n.  The 
ratio B(10)/B(1) equals 0.02 for Case C, whereas for Case A the corresponding 
ratio is 0.25.  The angle enclosed by the wave in the vicinity of the crest 
is approximately 120 degrees for Case C. 
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Breaking Index 

The breaking wave parameters for the three cases examined here are 
compared with the usually referenced breaking index in Figure 7.  It is 
seen that the results obtained in the present investigation for Cases A, 
B, and C are 28 per cent higher, 0 per cent higher, and 21 per cent higher, 
respectively, than the index shown. Possible reasons for this difference 
are discussed in the next section. 

CONCLUSIONS AND DISCUSSION 

Conclusions 

The results of this investigation indicate that: 

1. For progressive waves, the kinematic stability parameter, 

— rather than the dynamic parameter,  — , governs 

breaking. The dynamic criterion was found to equal zero 
at breaking; this implies that immediately under the crest, 
hydrostatic conditions prevail. 

2. The enclosed crest angle associated with the limiting wave 
is approximately equal to 120 degrees, a value determined 
by previous investigators. Earlier investigators, however, 
required the a. priori assumption that the crest form be an 
angle which is a submultiple of 360 degrees. 

3. The breaking wave heights determined here are somewhat 
higher (0 to 28 per cent) than those usually referenced. 

4. The stream function wave theory appears well suited for 
representing the geometry, kinematics, and dynamics of 
periodic water wave systems up to breaking conditions. 

Discussion 

Probably the most significant results of this study are that:  (1) the 
dynamic parameter, as defined, is zero at breaking rather than one-half as 
usually referenced, and (2) the breaking wave heights determined in this 
study are somewhat larger than those determined in earlier investigations. 
It is important, when considering these differences, to recall that all but 
one of the previous studies has required the a  priori assumption that the 
limiting wave crest at breaking be a sharp angle which is a submultiple of 
360 degrees. The present investigation required no a priori assumptions, 
but was based on determining the representation which best satisfies all of 
the defining equations. 

With regard to the question of the value of the dynamic stability para- 
meter at breaking, it is instructive to expand the expression for this para- 
meter at breaking for the case of a stationary wave system 

nop.   _ I Sw - _ I rc,-ri is. + 12sdi no-) DSP> g Dt g   Ku C)   3x + 2  3z  Jcrest {l0) 
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Consider the two terms enclosed by the brackets. The second term is identi- 
cally zero at the crest phase position where instability would be initiated. 
The first term contains the kinematic stability parameter; and since this is 
zero at breaking, therefore, it is seen that the dynamic stability parameter 
must be zero at breaking unless 3w/3x = °°. This will only occur if 3n/3x = « 
at the crest which is precisely the feature embodied in other investigations 
with the a priori assumption that the crest form a sharp angle.  The interpre- 
tation here is that the DSP xs zero at breaking and that the term 3w/3x is 
finite up to breaking. There is always the possibility that the term 3w/3x 
would approach infinity as the number of terms in the stream function ex- 
pression increases without limit. To test this possibility, higher order 
representations were checked to see whether the additional terms contributed 
substantially to the wave form or to 3w/3x. The conclusion reached from these 
calculations was that the observed result was not an artifice of the finite 
number of terms in the series representation. Other possible extraneous causes, 
that could be associated with the numerical procedure employed, are being ex- 
amined. 

The final question to be considered is whether the breaking values deter- 
mined here or those in previous investigations are more nearly correct. Although 
this question cannot be absolutely resolved, the writer concludes that because 
the approach presented here requires no a  priori assumption concerning the wave 
form (as discussed above) the results of the present investigation may be more 
valid.  Further work, Including breaking computations for a greater number of 
relative depths, is warranted to provide additional results on this facet of 
the problem. 
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