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Abstract

Since time immemorial, surface water waves and their subsequent breaking

have been studied. Herein we concentrate on breaking surface waves in deep

and intermediate water depths. Progress has been made in several areas,

including the prediction of their geometry, breaking onset, and especially

energy dissipation. Recent progress in the study of geometric properties has

evolved such that we can identify possible connections between crest ge-

ometry and energy dissipation and its rate. Onset prediction based on the

local wave-energy growth rate appears robust, consistent with experiments,

although the application of criteria in phase-resolving, deterministic predic-

tion may be limited as calculation of the diagnostic parameter is nontrivial.

Parameterization of the dissipation rate has benefited greatly from synergis-

tic field and laboratory investigations, and relationships among the dynam-

ics, kinematics, and the parameterization of the dynamics using geometric

properties are now available. Field efforts continue, and although progress

has been made, consensus among researchers is limited, in part because of

the relatively few studies. Although direct numerical simulations of breaking

waves are not yet a viable option, simpler models (e.g., implementation of an

eddy viscosity model) have yielded positive results, particularly with regard

to energy dissipation.
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1. INTRODUCTION

Since the scientific study of water waves began, wave breaking has been of particular interest.

Because of its importance with regard to upper-ocean dynamics and air-sea interactions, and

hence its possible relation to climate change, wave breaking in deep and intermediate water depths

has received much recent attention. Perhaps the papers responsible for precipitating much work

over the past 20 years are those of Melville (1982), titled “The Instability and Breaking of Deep-

Water Waves,” and those of Duncan (1981, 1983), who investigated the breaking waves created

by a hydrofoil and the resistance of a hydrofoil that generated the breaking. Melville found two

distinct regimes: One concerned the two-dimensional (2D) Benjamin-Feir instability (Benjamin

& Feir 1967), and the other was a 3D instability that dominated the former for larger values of

wave steepness, ka, and agreed with the results of McLean et al. (1981). Conversely, Duncan’s

investigations, although generated by a hydrofoil, established and discussed a breaking strength

parameter that partially forms the basis for much of the discussion herein.

In the two decades that followed Duncan’s and Melville’s papers, in addition to several relevant

articles on the topic, including the laboratory study by Rapp & Melville (1990) that provided

remarkable insight on wave breaking, five important Annual Review of Fluid Mechanics articles

were published with regard to breaking waves, and we refer the interested reader to them. Banner

& Peregrine (1993) presented a comprehensive review of both field measurements and laboratory

studies of breaking waves. Secondary effects associated with breaking were discussed as well.

Melville (1996) discussed how breaking surface waves affect air-sea interactions and included a

useful discussion on the dynamics of breaking waves. Perlin & Schultz (2000) reviewed capillary

effects on surface waves and breaking onset and in addition discussed breaking models of forced

standing waves. Duncan (2001) reviewed research on spilling breakers and, in particular, his far-

reaching contributions to this area, including relevant kinematics. Lastly, Kiger & Duncan (2012)

reviewed mechanisms of air entrainment in plunging jets in general and specifically in breaking

waves.

In this review article, we organize our discussion around three physics-based areas in which we

feel the most progress has been made over the past 20 years: the geometry of breaking, breaking-

onset criteria, and dissipation due to breaking. We discuss progress in three dimensions as well as

in two dimensions where appropriate. Additionally, as no review of breaking waves can or should

ignore field measurements and numerical simulations, we discuss these two topics in some detail.

Lastly, we summarize the overall progress toward an understanding of the physical processes

associated with breaking waves in deep and intermediate water depths.

2. GEOMETRY OF BREAKING WAVES

2.1. Breaking-Wave Steepness and Crest Asymmetry

For a 2D sinusoidal wave in deep water, its profile is well defined with only two independent

parameters, e.g., the wave amplitude (a) and wavelength (λ), the quotient of which is an important

geometric parameter and from which one can form the wave steepness ka. Here k = 2π/λ is

the wave number. As ka increases, a gravity wave becomes nonlinear, and its geometry becomes

horizontally asymmetric owing to wave-crest steepening and wave-trough flattening. Moreover,

as ka increases further, the wave also exhibits fore-aft asymmetry because of wave-crest front-face

steepening. As ka grows to 0.443 (crest angle 120◦), according to Stokes’ (1880) theory, a limiting

condition is reached and wave breaking occurs.

In laboratory experiments, the limiting steepness associated with incipient wave breaking has

been examined extensively. Experimental observations show that the limiting steepness is typ-
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ically smaller than the Stokes breaking limit. Duncan (1981, 1983) measured the wave height

(ab) and wavelength (λb) of steady breaking waves produced by a towed hydrofoil and found that

ab/λb ∼ 0.1, which gives a limiting steepness of 0.31. Ramberg & Griffin (1987) observed that

the mean of H/gT2 associated with spilling breakers generated in a convergent channel is 0.021,

corresponding to a limiting steepness of 0.41. Here H is the wave height, T is the wave period, and

g is the gravitational acceleration. Conversely, incipient wave breaking due to dispersive focusing

can occur at a much lower wave steepness, from 0.15 to 0.22 (Rapp & Melville 1990, figure 21),

depending on the frequency bandwidth of the wave group. Wu & Yao (2004) generated extreme

steep waves due to dispersive focusing and further demonstrated the effects of the spectral band-

width and shape on the limiting steepness, which decreases approximately from 0.38 to 0.15 as the

spectral bandwidth increases from 0.03 to 0.42. Babanin et al. (2010) observed incipient break-

ing waves due to modulational instability and found that the limiting steepness asymptotically

approaches 0.44, although the steepness of individual incipient breakers was approximately 0.40.

The variation of the limiting steepness may be related to the different methods of breaking-wave

generation and the ambiguity in the definition of incipient breaking waves.

The steepness and surface-elevation profile of spillers and plungers have also been observed

to quantify breaking-wave geometry. As wave breaking occurs over length scales from several

centimeters to hundreds of meters and waves of the same length scale can break with different

intensity (Banner & Peregrine 1993, Melville 1996, Duncan 2001), breaking-wave steepness varies

over a large range. For example, Tulin & Waseda (1999, figure 15) found that the steepness of

breaking waves due to modulational instability can be in the range 0.22 to 0.41. Tian et al. (2008)

observed that local wave steepness immediately before breaking onset ranges from 0.28 to 0.43

for plungers generated by dispersive focusing. Furthermore, Tian et al. (2012) implemented both

modulational instability and dispersive focusing to produce breaking waves, the steepnesses of

which varied approximately from 0.20 to 0.48. The authors noticed that the steepness of some

spillers was considerably higher than that of some plungers, which indicated that the magnitude

of wave steepness does not always correlate well with wave-breaking strength.

Other geometric parameters have been sought to represent the geometry of breaking crests.

For highly nonlinear gravity waves, sharpened crests and flattened troughs introduce horizontal

geometric asymmetry. As waves approach breaking, crest-front faces become very steep, causing

vertical geometric asymmetry. Kjeldsen & Myrhaug (1979) and Kjeldsen et al. (1981) introduced

the crest-front and -rear steepness (ε and δ, respectively) and the vertical and horizontal asymmetry

parameters (β and μ, respectively) to better describe the geometry of breaking crests (Figure 1).

They reported that the breaking crest-front steepness ranges between 0.32 and 0.78, and the

vertical and horizontal asymmetry parameters are as large as 2.0 and 0.9, respectively. Bonmarin

(1989) observed breaking-wave profiles at 500 frames per second from a moving carriage. The

measured crest-front steepness ε increased from approximately 0.25 to 0.55 within two wave

periods prior to breaking onset and reduced to less than 0.20 immediately following breaking

(Bonmarin 1989, figure 10). ε at breaking onset correlated with the wave-breaking strength; i.e.,

averaged values of ε increased from 0.38 for spillers to 0.61 for plungers. Therefore, ε may be more

suitable to quantify breaking strength than wave steepness ka. As for the vertical and horizontal

asymmetry parameters, it was reported that averaged values of β ranged from 1.20 to 2.14, and

averaged μ varied between 0.69 and 0.77, depending on breaking strength. Note that ε = δ =
0.40, β = 1.0, and μ = 0.61 for a second-order Stokes wave (ka = 0.443) in deep water.

The geometry of 3D breaking waves has been examined in laboratory experiments. She et al.

(1994) generated 3D breaking waves using directional focusing and systematically varied the wave

convergent angle to examine its effect on the geometry of breaking waves. They found that the

breaking crest-front steepness increased from 0.51 to 1.02 as the convergent angle increased (a zero
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L', T ' L", T"

h'

h"

L, T

MWL

ζ(x)h = h' + h"

x, t

ε = h'/L'= 2πh'/(gTT') δ = h'/L"= 2πh'/(gTT") μ = h'/hβ = L"/L'

C

Figure 1

Definitions of local wave geometry following Kjeldsen & Myrhaug (1979). Abbreviation: MWL, mean water
line.

convergent angle corresponds to 2D waves). Alternatively, the horizontal geometric asymmetry

parameter, which ranged from 0.65 to 0.67, showed little dependence on the convergent angle.

Later, Nepf et al. (1998) examined the breaking crest geometries of 3D waves due to directional

spreading, which was achieved by spatially tapering the stroke of individual wave-maker paddles.

For such 3D waves, the breaking crest face was steepest (ε = 0.52) in the center, and it mono-

tonically decreased to 0.32 laterally. Conversely, the breaking crest face steepness (ε = 0.56) was

laterally uniform for a corresponding 2D breaking crest. Along with the findings in She et al.

(1994), Nepf et al. (1998) demonstrated the effect of wave directionality on 3D breaking crests;

i.e., the crest-front-face steepness increased from approximately 0.30 to 1.02 as the wave direc-

tionality varied from directional spreading through zero angle (2D waves) to directional focusing.

Wu & Nepf (2002) further explored the geometry of 3D breaking waves and reported that the

crest-front steepness was 0.39 at the onset of 3D spilling breakers due to directional spreading

and was 0.41 for that due to directional focusing, compared with 0.38 at the onset for 2D spillers.

It is noteworthy that the determination of the steepness and crest’s geometric parameters of

breaking waves in laboratory experiments is nontrivial. First, the wave profile close to breaking is

highly irregular, which introduces ambiguity in the definition of local wave parameters. Second,

breaking waves are highly unsteady, and they deform rapidly. Even with accepted definitions,

the timing for the determination of the wave parameters with the spatial measurement of the

surface profiles is problematic. Because of the difficulties of spatial surface profile measurements,

temporal surface-elevation measurements using wave probes are often utilized to determine wave-

steepness and wave-crest asymmetry parameters. However, no straightforward transformation

between measurements in the temporal domain and those in the spatial domain is available.

Therefore, temporal measurements may not fully represent the spatial characteristics. Yao & Wu

(2006) showed that limiting steepness and the crest’s geometric parameters of the same incipient

breaking waves determined from spatial surface profiles and from temporal surface-elevation

measurements are quite different (to 50% variation).

2.2. Wave-Crest Deformation in the Vicinity of Breaking

The wave crest approaching breaking is highly unsteady and deforms rapidly. Initially, measure-

ments of breaking crest deformation were limited to the quantification of wave geometries (e.g.,

Bonmarin 1989, Rapp & Melville 1990). Observations on the detailed crest-profile evolution of

unsteady spilling breakers due to dispersive focusing were essentially nonexistent until the exper-

imental study by Duncan et al. (1994). According to these authors’ high-speed (500 fps) imaging
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Figure 2

Crest profiles of spilling breakers generated by three different methods and their geometric similarity.
Figure adapted from Diorio et al. (2009).

results, spilling breakers are initiated by the formation of a bulge, the appearance of parasitic capil-

lary waves, and the subsequent breakdown of the bulge into turbulence in the crest’s forward face.

In a subsequent study, Duncan et al. (1999) measured detailed crest-profile histories of spilling

breakers. The evolution of the maximum surface elevation (as well as the length and the thickness

of the bulge, the location of the toe, and the capillary waves) was measured to describe the crest

shape deformation. The front faces of the crest profile prior to the bulge becoming turbulent are

geometrically similar, independent of the wavelength of the spillers. This geometric similarity

was investigated further and validated in a recent experimental study by Diorio et al. (2009), who

adopted three different methods (i.e., dispersive focusing, modulational instability, and wind forc-

ing) to generate unsteady spilling breakers with lengths of 10 to 120 cm. With a high-speed imager

and laser-induced fluorescence, they measured the crest profiles close to breaking and found that,

when scaled appropriately, the bulge and capillary waves on the crest-front faces of the spillers

(at breaking onset) are self-similar, independent of the breaking-wave-generation mechanism

(Figure 2). Note that the geometric similarity is limited to the crest-front profiles of the spillers.

This similarity was attributed to the crest flow being dominated by surface tension and gravity

(Duncan 2001, Diorio et al. 2009).

The crest shape deformation of plunging breakers is also of interest. Bonmarin (1989,

figure 6) observed wavelength reduction and wave-crest growth as the crest evolved to a plunger.

The depth of the trough in front of the breaking crest initially increased and achieved a maximum

at approximately one to two wave periods before breaking onset. At this stage, the crest elevation

is roughly equal to that of the trough, and no evident horizontal asymmetry occurs. As the wave

further evolved and the crest continued growing, the surface elevation at the trough became shal-

lower and even rose above the mean water level. The crest-front steepness increased more than

twofold during the process. Tian et al. (2012) examined the crest growth and wavelength reduction

of breaking waves due to both dispersive focusing and modulational instability. They found that

spillers and plungers have approximately the same wavelength-reduction rate, i.e., approximately

a 30% reduction of the wavelength within two wave periods before breaking onset. Meanwhile,

the crest height of spillers may increase as much as 20% within one wave period before breaking

onset, whereas plunging crests may become twice as large during the same period. Diorio et al.

(2009) observed that the crest height of spillers may grow 15% within one-fourth of a wave pe-

riod prior to breaking onset. According to these observations, it may be argued that wavelength
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decrease is the dominant factor in the steepening of a crest that subsequently develops into a spiller;

however, both wavelength reduction and wave-crest growth are significant in the generation of

plungers.

One characteristic of plunging breakers is the overturning crest due to a projected water jet

from the wave-crest front. Longuet-Higgins (1981, 1982) parameterized the forward face of an

overturning plunger at initial stages with cubic curves. New (1983) showed that part of the surface

profiles underneath the overturning crest may be represented with an ellipse of axes ratio
√

3.

This ellipse model was validated qualitatively in the experimental study of Bonmarin (1989).

Many subsequent experimental studies also examined the overturning crests of plungers (e.g.,

Perlin et al. 1996, Skyner 1996, Chang & Liu 1998, Melville et al. 2002, Drazen et al. 2008),

although most of the studies focused on the kinematics and dynamics rather than the geometry

of the breaking crests. Interestingly, Drazen et al. (2008) defined and determined a falling crest

height, h, in their inertial scaling of energy dissipation of unsteady breaking waves. The falling

crest height is the vertical distance from the maximum surface elevation to the point at which

the overturning crest just impacts the water surface beneath it. Their theoretical analysis showed

that the energy dissipation rate due to plunging breakers may be parameterized with the falling

crest height, i.e., D ∼ (kh)2/5. Here D is the energy dissipation rate due to breaking. Tian et al.

(2012) further examined the falling crest height in their development of an eddy viscosity model

for breaking waves. They found an approximately linear relationship between the falling crest

height and a crest asymmetry parameter, i.e., kh ∼ Rb. Here Rb = β/(1 + β), and β is the vertical

asymmetry parameter of the breaking crest.

In conclusion, many prior studies had focused on the straightforward quantification of wave

geometric properties such as the limiting steepness, breaking crest asymmetry, and the evolution

of breaking crest profiles in an attempt to understand the fundamental physics of breaking waves.

Recent progress in the study of the geometric properties of breaking waves has evolved to the

point at which we can identify possible connections between the breaking crest geometry and

the breaking-wave dynamics, i.e., energy dissipation and dissipation rate (e.g., Drazen et al. 2008;

Tian et al. 2010, 2012). Additional work on this topic that considers the influence of three-

dimensionality, wind forcing, and currents, for example, may lead to more significant contributions

in the future.

3. WAVE-BREAKING-ONSET PREDICTION

The accurate prediction of wave-breaking onset is challenging and has been the focus of many

investigations. Numerous breaking criteria have been proposed through theoretical analysis, nu-

merical simulations, laboratory experiments, and field observations (Nepf et al. 1998, Wu & Nepf

2002, Oh et al. 2005, Tian et al. 2008). Based on the predicting parameters involved, they can be

classified into three categories, i.e., geometric, kinematic, and dynamic breaking criteria.

3.1. Geometric Breaking Criteria

In the following, criteria for 2D breaking are discussed first. Subsequently a brief discussion follows

on the 3D effects of breaking criteria as well as the effects of wind and currents.

3.1.1. Geometric criteria for two-dimensional incipient breaking. Geometric criteria typi-

cally use the limiting steepness associated with incipient wave breaking as a critical parameter to

predict breaking onset. As discussed in Section 2.1, the limiting steepness measured in laboratory

experiments ranges from 0.15 to 0.44. This variation renders improbable the universal application

of limiting steepness for breaking-onset prediction. However, Babanin et al. (2007, 2010) recently
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conducted numerical simulations and experimental measurements of breaking waves due to mod-

ulational instability, arguing that it is the limiting steepness ka ∼ 0.44 that ultimately triggers

wave breaking. They introduced an initial monochromatic steepness (IMS) to predict breaking

onset. It was shown that waves of IMS > 0.44 break immediately (within one wavelength) and

waves of IMS < 0.08 will never break in the absence of wind forcing. Waves with IMS between

the two limits will evolve eventually to breaking, and that distance decreases with increasing IMS.

The finding is interesting, but the determination of the IMS is problematic as it does not exist

for evolving wave groups in the ocean or, for that matter, even in the laboratory. Note that for

modulated wave groups that eventually lead to breaking, the reported initial carrier wave steepness

ka is approximately 0.11 (e.g., Tulin & Waseda 1999, Chiang & Hwung 2007).

Alternatively, Rapp & Melville (1990) proposed a global steepness, S = kc(�an), associated

with wave groups to predict breaking onset due to dispersive focusing. A critical global steepness

S0 = 0.25 worked well in their study. Here kc is the wave number of the center frequency wave

in the wave group, and an is the amplitude of the n-th wave component. Later, it was shown

that the critical global steepness can be affected by the wave spectral shape; e.g., Chaplin (1996)

reported S0 = 0.265 and 0.30 for wave groups of constant-amplitude and constant-steepness

spectra, respectively. Banner & Peirson (2007) found that the critical global steepness associated

with breaking waves due to modulational instability can be as low as 0.12. Drazen et al. (2008)

defined the global steepness as S = �(knan) and reported that breaking onset due to dispersive

focusing is in the range 0.32–0.36. Here kn is the wave number of the n-th wave component.

Tian et al. (2010) proposed an alternative definition of the global steepness by replacing kc with

a spectrally weighted wave number ks, i.e., S = ks(�an), for wave groups of constant-steepness

spectra and identified a critical value of 0.34 for breaking onset.

The crest’s geometric parameters, especially the crest-front steepness, are more suitable for de-

scribing the local crest geometry and are often considered more robust than ka for breaking-onset

prediction. For 2D breaking waves, the reported critical crest-front steepness is 0.32 in Kjeldsen

& Myrhaug (1979) and Kjeldsen et al. (1981); 0.31 in Bonmarin (1989); from approximately 0.31

to 0.34, depending on frequency bandwidth, in Rapp & Melville (1990); and 0.38 in Wu & Nepf

(2002). These critical values are not necessarily associated with incipient wave breaking, which

is not well documented in the studies. Also concentrating on the crest’s geometric parameters,

Babanin et al. (2007, 2010) measured the asymmetry (As) and the skewness (Sk) of incipient breakers

due to modulational instability. They reported that the former varies from approximately −0.33

to 0.75 and the latter from 0 to 1 (Babanin et al. 2010, figure 10), corresponding to a vertical

asymmetry β = 0.57 ∼ 1.49 and horizontal asymmetry μ = 0.5 ∼ 0.67, respectively.

Overall, the forecasting parameters used in geometric criteria are simple and relatively straight-

forward to determine, which may explain why they have been the focus of so many studies. Un-

fortunately, the use of simple geometric parameters has compromised the universality of this type

of criterion. Wave breaking can be generated through different mechanisms, such as dispersive

focusing, modulational instability, wind forcing, and wave-current interaction. The generation

mechanism can influence breaking-wave geometry at the onset, as discussed in the next section.

In addition, wave breaking occurs over a wide range of length scales, and waves of the same length

scale may break with different intensity, which means that predicting breaking onset from only

geometric aspects was destined to fail. Furthermore, the wave profile close to breaking has an

irregular shape and evolves rapidly in time and space, which may complicate the definition and

determination of incipient wave breaking.

3.1.2. Three-dimensionality, wind, and current effects. This section discusses the effects of

three-dimensionality, wind, and current on wave-breaking onset in terms of their influence on
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geometric breaking criteria. We begin with the 3D wave experiments conducted by Johannessen

& Swan (2001), who showed that the increase in directional spread (i.e., more short-crested waves)

effectively reduces the maximum crest elevation, ηmax, at the focusing point for the same overall

wave stroke of their wave maker. Therefore, to generate limiting 3D waves (incipient breakers)

with greater directional spread, they used a larger overall stroke input, which resulted in a higher

crest elevation of the limiting waves. The wave steepness represented by kpηmax of the 3D limiting

waves can be as much as 35% greater than that of 2D limiting waves. Here kp is the spectral

peak wave number. However, one should notice that the steepness is calculated with kp rather

than a local wave number. Consistent with Johannessen & Swan, Waseda et al. (2009) observed

that the occurrence of freak waves in their random directional wave field rapidly decreased as the

directional spread increased.

Toffoli et al. (2010) recently reported that the limiting steepness of 3D ocean waves can reach a

maximal steepness of 0.55 (much higher than the Stokes breaking limit), beyond which the waves

will break. However, it was documented that waves of this maximal steepness are already breaking.

By comparing field and laboratory measurements, Toffoli et al. argued that the maximal steepness

is a property of the waves rather than a feature of the evolution or environmental conditions.

Babanin et al. (2011) made additional contributions to the estimation of the limiting steepness

of 3D waves. Their results show that the limiting steepness associated with the onset of wave

breaking is ka = 0.46–0.48, whereas the steepness may reach ka ∼ 0.55 during the course of

breaking. The associated limiting horizontal asymmetry μ is approximately 0.63, slightly less than

0.67 as reported in their previous study of 2D incipient breakers (Babanin et al. 2010).

Wind forcing is also known to affect the limiting steepness of incipient breaking waves.

Banner & Phillips (1974) showed theoretically that the presence of a wind-driven surface drift

can substantially reduce the maximum surface elevation, ζ max = C2(1 − q/C )2/(2g). Here C is

the wave phase speed, and q is the magnitude of the surface drift. Therefore, the limiting steep-

ness for incipient wave breaking is ka = (1 − q/C )2/2. Reul et al. (1999) observed the airflow

structure above steep and breaking waves using particle image velocimetry (PIV). Although their

study was not designed to examine geometric breaking criteria, their measurements showed that

the crest-front-face steepness at incipient breaking ranges from ∼0.15 to 0.30, much less than

that of incipient breaking in the absence of wind (typically greater than 0.30) (Reul et al. 1999,

figure 2). Touboul et al. (2006) and Kharif et al. (2008) examined the evolution of dispersive fo-

cusing wave groups under wind forcing, which was found to sustain the duration of extreme waves

and delay the defocusing process of the focusing groups. They identified a critical local surface

slope ∂η/∂x = 0.35 to indicate the onset of airflow separation, which is generally accompanied

by wave breaking. As limiting Stokes waves have a mean slope of tan (π/6) = 0.58, wave breaking

under wind forcing may occur at a much reduced surface slope. Recently, Babanin et al. (2010)

examined the evolution of modulated wave groups under wind forcing. They showed that wind

influences incipient breaking by stabilizing the crest shape before breaking onset (reducing the

scattering of the limiting geometric parameters) but then randomizing the crest shape of breaking

waves. However, they argued that the overall wind-forcing effect on breaking onset is generally

minimal unless very strong wind is present.

As for the effects of current on geometric breaking criteria, the studies by Wu & Yao (2004)

and Yao & Wu (2005, 2006) are particularly interesting. Wu & Yao (2004) reported that weak

uniform (either following or opposing) currents have limited influence on incipient wave breaking.

However, strong opposing currents can increase significantly the limiting steepness (to 0.36),

which also depends on the shape and bandwidth of the wave frequency spectra. Furthermore,

Yao & Wu (2005, 2006) observed that the limiting steepness of incipient breaking waves depends

strongly on shear currents; i.e., positive (negative) shear currents decrease (increase) the limiting
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steepness, and the variation of the limiting steepness is proportional to the shear strength of the

current. Specifically, the limiting steepness of their incipient breakers decreases from 0.18 to 0.16

as the current shear strength varies from −0.5 to 0.8.

3.2. Kinematic Breaking Criteria

Kinematic breaking criteria often involve the horizontal crest particle velocity U and the wave phase

speed C, and wave breaking occurs when U exceeds C; i.e., U/C ≥ 1. The examination or application

of this criterion is nontrivial because of the difficulties in determining U and the ambiguity in

defining C of highly unsteady, rapidly evolving breaking crests. Nevertheless, kinematic criteria

have drawn much attention.

The examination of kinematic criteria is facilitated by PIV measurements of breaking waves.

Perlin et al. (1996) conducted PIV measurements of a deep-water plunging breaker created by

dispersive focusing. They found that the measured phase speed C was close to its linear theory

approximation, i.e., 1.08 versus 1.05 m s−1. Just prior to the wave crest overturning, the maximum

U was 0.8 m s−1, which gave U/C = 0.74. However, when the crest front neared vertical, the

water-particle velocities became virtually horizontal and began to accelerate. It was found that

U at the tip of the ejecting jet of the plunging breaker was 30% greater than C. Chang & Liu

(1998) performed PIV measurements of a monochromatic breaking wave in shallow water. They

reported U/C = 0.86 prior to wave breaking and U/C = 1.07 when the particle velocities at

the crest tip became almost horizontal. In addition, the velocity at the tip of the overturning

jet was 68% greater than the linear wave phase speed. Both studies support kinematic breaking

criteria.

Qiao & Duncan (2001) observed the evolution of the crest flow of gentle spilling breakers

using PIV measurements. According to their measurements, the maximum horizontal particle

speed U is approximately 75% to 95% of the breaking crest speed, Cb, before the toe moves;

however, U/Cb increases to 1.0 to 1.3 following the initial motion of the toe (in wave coordinates).

Recent estimations show that Cb is approximately 80% to 90% of the breaking-wave phase speed C

(Melville & Matusov 2002, Banner & Peirson 2007, Tian et al. 2010). Stansell & MacFarlane (2002)

examined kinematic criteria by conducting PIV measurements and by assessing three definitions

of the wave phase speed (i.e., phase speed based on linear wave theory, partial Hilbert transforms of

measured surface elevation, and the local position of maximum surface elevation). The estimated

phase speed based on the three definitions showed great disparity. But all estimates were greater

than the measured U, specifically, U/C ≤ 0.95 for spilling breakers and U/C ≤ 0.81 for plunging

breakers. This suggests that U/C ≥ 1 may be only a sufficient but not necessary condition for the

onset of wave breaking. Using a PIV system, Oh et al. (2005) also evaluated kinematic breaking

criteria for deep-water waves under strong wind forcing. The maximum U/C observed in their

experiments was approximately 0.75, which led them to the conclusion that this kinematic criterion

is inadequate for the prediction of breaking onset under wind action.

Conversely, Wu & Nepf (2002) examined kinematic criteria with surface-elevation measure-

ments at fixed locations. C and U were estimated with the Hilbert transform and linear wave

theory. It was reported that U/C ≥ 1 successfully distinguished breaking waves from nonbreaking

ones. Interestingly, the magnitude of U/C indicated variation of breaking strength along a single

3D breaking crest; i.e., U/C ≥ 1.5 for plungers and U/C ≥ 1 for spillers. They argued that this

kinematic criterion is robust and insensitive to wave directionality. Considering that the results

are based entirely on wave-probe measurements and linear wave theory, further evaluation may

be necessary.
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3.3. Dynamic Breaking Criteria

While downward acceleration at the wave crest and energy variation of higher-frequency wave

components are often considered in the determination of dynamic breaking criteria, here we focus

on dynamic criteria based on the local energy growth rate (Schultz et al. 1994, Banner & Tian 1998,

Song & Banner 2002). Rapp & Melville (1990) hinted that the rate of change of wave steepness

may perform better than the steepness itself for breaking-onset prediction. Schultz et al. (1994)

reported one of the earliest numerical studies on this type of breaking criterion and demonstrated

that a root-mean-square wave height [square root of potential energy,
√

∫

ζ 2(x)d x] can function as

a breaking criterion for regular 2D deep-water waves. The critical condition is that the potential

energy exceeds 52% of the total energy of a limiting Stokes wave. The authors also found that

the energy input/growth rate can indicate the breaking severity. Later, Banner & Tian (1998)

examined numerically the evolution of the local mean energy and momentum densities of waves

subject to modulational instability. Two dimensionless growth rates, βE and βM , were constructed

as the predicting parameters for breaking onset, and the threshold was determined as βE/M = 0.2,

independent of wave-group structures, initial wave-group configurations, and surface shears.

Their dynamic criterion was developed further in the numerical study of Song & Banner (2002),

who proposed a dimensionless diagnostic parameter, δ(t), to represent essentially the growth rate

of the mean local wave energy. The diagnostic parameter is a function of the local wave number

and the local energy density at the envelope maxima of wave groups. With a threshold range for

δ(t) of (1.4 ± 0.1) × 10−3, the criterion was shown to successfully differentiate breaking waves

from nonbreaking ones. The initial wave-group structure (as well as the number of waves in the

wave groups, wind forcing, and surface shear) has little influence on the threshold range (Banner

& Song 2002), which indicates the universality of the criterion for breaking-onset prediction.

Moreover, a strong correlation was presented between the breaking parameter, δ(t), just prior

to breaking onset and the breaking intensity indicated by the global steepness, as proposed by

Rapp & Melville (1990). Note that Song & Banner (2002) generated breaking waves through both

modulational instability and dispersive focusing.

The evaluation and validation of dynamic criteria were the focus of several experimental efforts

(Banner & Peirson 2007; Tian et al. 2008, 2010). Banner & Peirson (2007) conducted detailed

laboratory experiments in which they generated and examined wave groups with the same or

equivalent initial conditions as in Song & Banner’s numerical simulations. The local wave-energy

density and the local wave number at the wave-group envelope maxima were determined through

surface-elevation measurements using two sets of three in-line wave probes. Experimental results

were supportive of the dynamic criterion published by Song & Banner (2002). Concurrently, Tian

et al. (2008) performed independent laboratory experiments to evaluate the breaking criterion.

Unlike the experimental reproduction of Song & Banner’s initial conditions in Banner & Peirson

(2007), Tian et al. generated breaking waves through dispersive focusing and measured the surface

profile as a function of time and space using video imaging. With the measurements and comple-

mentary numerical simulations, they found that the criterion is sensitive to the choice of local wave

number, but the adoption of a particular local wave number determined by two consecutive zero

crossings adjacent to the breaking crest allows the criterion to distinguish breaking groups from

those that do not break. Further validation was provided by Tian et al. (2010), who investigated

four additional dispersive focusing groups with different characteristic frequencies. In addition,

the diagnostic parameter just prior to wave breaking was found to correlate well with the breaking

strength parameter suggested by Duncan (1981, 1983).

Dynamic criteria based on the local wave-energy growth rate appear robust; however, their

application in phase-resolving, deterministic prediction of the evolution of nonlinear wave fields
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may be limited, as the calculation of the diagnostic parameter δ(t) is nontrivial. The process involves

the estimation of the dimensionless local energy oscillating at the maximum surface elevation, the

determination of its upper and lower envelopes using spline fitting, and the computation of the

mean local energy growth rate.

4. ENERGY DISSIPATION IN BREAKING WAVES

4.1. Estimation and Parameterization of the Total Dissipation

Wave breaking dissipates energy through the entrainment of air bubbles into the flow and the

generation of currents and turbulence (Rapp & Melville 1990, Lamarre & Melville 1991). Over

the course of many years, laboratory experiments have been conducted extensively for the esti-

mation and parameterization of the total energy dissipation (e.g., Rapp & Melville 1990; Banner

& Peirson 2007; Drazen et al. 2008; Drazen & Melville 2009; Tian et al. 2008, 2010). Ideally the

estimation requires direct measurement of the surface profile and the velocity field over a fairly

large field of view throughout the active breaking process, which proves extremely difficult in both

field and laboratory experiments (Melville et al. 2002, Drazen & Melville 2009). Alternatively, it

may be approximated through surface-elevation measurements at fixed locations upstream and

downstream of wave breaking and through implementation of a wave theory and a simple control

volume analysis. A demonstration of the control volume analysis can be found, e.g., in Rapp &

Melville (1990, section 2.4 and figure 5).

One of the first experimental studies that systematically quantified and parameterized en-

ergy dissipation due to wave breaking was performed by Rapp & Melville (1990), who reported

that a spilling breaker can dissipate as much as 10% of the initial energy of a dispersive focus-

ing group, whereas more than 25% can be dissipated during a plunging breaking event. The

energy dissipation was inferred with surface-elevation measurements and control volume anal-

ysis under the assumptions of linear wave theory, i.e., �E/E0 = �[ζ 2]/[ζ (x0, t)2]. Here �E is

the energy dissipation, E0 is the total prebreaking energy at a reference location x0, �[ζ 2] =
[ζ (x1, t)2] − [ζ (x2, t)2] with ζ (x,t) the temporal surface elevation measured at the x locations, and

the square brackets represent long time integrations. The authors found that �E/E0 depends

strongly on the global wave steepness S (Figure 3a). The influence of wave-group bandwidth and

carrier frequency on the energy dissipation was shown to be weak and secondary. Using the same

technique, subsequent studies quantified the energy dissipation of wave breaking due to dispersive

focusing considering different initial wave spectral shapes (Kway et al. 1998), free wave dissipation

by excluding contributions from bound waves (Meza et al. 2000), three-dimensionality (Nepf et al.

1998, Wu & Nepf 2002), and currents (Yao & Wu 2004).

Banner & Peirson (2007) estimated and parameterized the energy dissipation in breaking waves

using the diagnostic parameter δ(t) in the dynamic breaking criterion proposed by Song & Banner

(2002). Song & Banner showed that the parameter just prior to wave breaking, δbr , correlates

well with the energy dissipation due to wave breaking. Banner & Peirson managed to determine

experimentally the energy dissipation (�E) and the prebreaking energy (E0) for breaking waves

produced with the same initial conditions as the numerical tests of Song & Banner. The focus of

Banner & Peirson (2007) was to evaluate experimentally the dynamic breaking criterion; a majority

of their breaking waves resulted from modulational instability, with the breaking intensity relatively

mild. However, the mean dissipation averaged over the wave group can still be as large as 20%

depending on breaking strength, and it has an approximately linear dependence on δbr (Figure 3b).

Recently, Tian et al. (2010) reported interesting experimental results of the energy dissipa-

tion of plunging breakers due to dispersive focusing. They defined and determined three sets of
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Figure 3

Parameterization of energy dissipation (a) as a function of global wave steepness S and (b) as a function of δbr . In panel a, I, S, and P
represent the range of steepness for incipient breaking, spilling breakers, and plunging breakers, respectively. Panel a redrawn from
Rapp & Melville (1990), and panel b redrawn from Banner & Peirson (2007).

characteristic timescales and length scales (i.e., global scales associated with the wave group, local

prebreaking scales prior to breaking onset, and local postbreaking scales of the subsequent break-

ing crest). They successfully demonstrated relationships among these sets, which were employed

to parameterize the energy dissipation �E/E0. The energy dissipation ratio ranged from 8% to

∼25% for their plungers. Both E0ks
3/(ρg) and �Eks

3/(ρg) can be scaled accurately with the global

steepness S, which indicates that �E/E0 is correlated well with S. Here ks is a spectrally weighted

wave number of the wave group.

4.2. Spectral Distribution of the Energy Dissipation in Breaking Waves

In laboratory experiments, frequency spectra evolution of breaking groups due to dispersive

focusing has been examined frequently (e.g., Rapp & Melville 1990, Baldoc et al. 1996, Kway

et al. 1998, Meza et al. 2000, Yao & Wu 2004, Tian et al. 2011). These studies show that as wave

groups approach breaking, energy levels of the wave components of frequencies higher than the

spectral peak grow at the expense of spectral peak reduction. Prior to breaking, similar energy

upshifting can also occur for breaking-wave groups due to modulation instability (e.g., Babanin

et al. 2010). In the subsequent breaking process, according to Tian et al. (2011), the energy gain

across the higher-frequency region is dissipated. Direct comparison of the wave frequency spectra

before and after breaking reveals that most of the energy dissipation is located at the high end of

the first harmonic band ( f/fp = 1–2; here fp is the spectral peak frequency) (Figure 4). In addition,

the wave components of frequencies lower than the spectral peak propagate through the break-

ing event without much energy loss. If viscous dissipation is excluded, the spectral peak remains

virtually unchanged (Meza et al. 2000, Tian et al. 2011). Conversely, for wave groups subject to

modulational instability, wave breaking can significantly reduce the spectral peak, and a spectral

peak downshift can be observed after breaking (e.g., Tulin & Waseda 1999, Hwung et al. 2007).

Meza et al. (2000) generated isolated spillers and plungers with dispersive focusing and

managed to quantify the spectral distribution of energy dissipation due only to free waves by

excluding the contributions from the bound waves. They reported that a small portion (∼12%)

of the breaking dissipation in the higher-frequency region is transferred to wave components of

frequencies lower than the spectral peak. Yao & Wu (2004) investigated the energy dissipation

in breaking waves subjected to currents. For breaking waves in the presence of strong opposing

currents, their results showed that a larger portion (to 40%) of the dissipated energy in the
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Figure 4

Variation in wave frequency spectra breaking-wave groups. W1G3 represents the first experimental wave
train (W1) with the third gain setting (G3), for example. The solid curves are from numerical simulations,
and the measurements are represented by open circles. Figure adapted from Tian et al. (2011).

higher-frequency wave components was transferred to the lower-frequency waves. Alternatively,

Tian et al. (2011) suggested that the lower-frequency wave components may not necessarily

gain energy directly from the higher-frequency waves. By tracking the energy level in the lower

frequencies ( f/fp = 0.5–0.9), they found that energy gain in the region occurred before breaking

onset, and for more than half of the breaking groups considered, no obvious energy gain was

found immediately following wave breaking. Therefore, Tian et al. argued that this energy gain

(see Figure 4) may result from the combined effects of nonlinearity and wave breaking. They

determined that energy is transferred to the lower-frequency region through nonlinearity (from

the spectral peak) in the focusing process and that the presence of wave breaking rendered irre-

versible the nonlinear energy transfer (back to the spectral peak) during the defocusing process.

Note that the nonlinear transfer is reversible in the absence of wave breaking (Tian et al. 2011).

4.3. Energy Dissipation Rate During Active Wave Breaking

In this subsection the timescale of dissipation is necessarily discussed first. This is followed by a

discussion of energy dissipation and its parameterization.

4.3.1. Timescale of energy dissipation in breaking waves. Before proceeding to the estima-

tion of the energy dissipation rate in wave breaking, a discussion of the relevant timescales is
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Figure 5

Active breaking duration as a function of global wave steepness (breaking strength). Panel a adapted from Drazen et al. (2008), and
panel b adapted from Tian et al. (2010).

appropriate. The duration of active wave breaking is of the order of one wave period (Rapp &

Melville 1990, Lowen & Melville 1991, Dean & Stokes 1999, Drazen et al. 2008, Tian et al. 2010),

and most of the energy dissipation occurs during the active breaking process. Lamarre & Melville

(1991) demonstrated that entraining air into water, which accounts for 30% to 50% of the total

energy dissipation, happens within a small fraction of a wave period. Rapp & Melville (1990) and

Melville et al. (2002) showed that 90% of the total energy dissipation is completed within the first

four wave periods following breaking onset, and the remainder decays as t−1. Chen et al. (1999)

performed numerical simulations of breaking waves and reported that 80% of the total energy is

lost within three periods of breaking onset. Therefore, the notion of active breaking duration has

been employed by several researchers in the estimation of the energy dissipation rate (Melville

1994, Drazen et al. 2008, Tian et al. 2010). Lowen & Melville (1991) measured the duration of

the acoustic sound generated by wave breaking; Melville (1994) applied their measurements to

deduce the associated energy dissipation rate. Similarly, Drazen et al. (2008) estimated the energy

dissipation rate via active breaking duration as inferred from hydrophone measurements of the

acoustic signal. It was found that the active breaking time depends on the global wave steepness

(and breaking strength) (Figure 5a). Alternatively, Tian et al. (2010, 2012) determined the ac-

tive breaking timescales and length scales by observing whitecap coverage due to wave breaking.

As shown in Figure 5b, the active breaking time also exhibits a strong dependence on breaking

strength, although the breaking times are in general much greater than those measured by Drazen

et al. (2008).

4.3.2. Parameterization of energy dissipation rate. The energy dissipation rate of 2D breaking

waves scales to the fifth power of a characteristic speed; i.e., ε = bρU5/g. Here ε is the dissipation

rate per unit crest width, ρ is the water mass density, U is a characteristic speed associated with the

breaking wave, and b is a dimensionless coefficient related to wave-breaking strength (termed the

wave-breaking strength parameter). The estimation and parameterization of ε are important in

phase-averaged wave modeling. The parameterization originated from the seminal experimental

work by Duncan (1981, 1983). Moreover, because of its importance in relating the kinematics to

the dynamics of breaking waves, the above equation has been investigated extensively in laboratory

experiments and field observations (e.g., Duncan 1981, 1983; Phillips 1985; Thorpe 1993; Melville

128 Perlin · Choi · Tian

A
n
n
u
. 
R

ev
. 
F

lu
id

 M
ec

h
. 
2
0
1
3
.4

5
:1

1
5
-1

4
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.a
n
n
u
al

re
v
ie

w
s.

o
rg

b
y
 $

{
in

d
iv

id
u
al

U
se

r.
d
is

p
la

y
N

am
e}

 o
n
 0

1
/0

8
/1

3
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



1994; Phillips et al. 2001; Melville & Matusov 2002; Banner & Peirson 2007; Drazen et al. 2008;

Drazen & Melville 2009; Gemmrich et al. 2008; Tian et al. 2010).

It would be beneficial if a particular choice of the characteristic speed U associated with the

breaking wave can provide a universal, constant b; unfortunately, it is unlikely that such a choice

of U exists as there can be a wide range of breaking intensities for a wave of given length. To

date, the speed choices are the breaking crest speed, Cb, and the breaking-wave phase speed, C;

the former has been adopted more frequently. Recently, Banner & Peirson (2007) employed the

breaking-wave phase velocity in their estimation of the dissipation rate. This was done because

ocean wave modeling is performed often in the frequency domain, and the wave phase speed C of

the Fourier wave components is easier to determine than the breaking crest speed Cb. Note that

laboratory and field measurements have shown that Cb can be approximated by a fraction of C, for

example, Cb/C = 0.8 in Melville & Matusov (2002), 0.9 ± 0.04 in Banner & Peirson (2007), and

0.84 in Tian et al. (2010). Therefore, the use of one speed as opposed to another will result in a

different, but correlated, breaking strength parameter b.

The estimation of the energy dissipation rate was reported first by Duncan (1981, 1983),

who generated quasi-steady breaking waves by towing a submerged hydrofoil and measured the

induced drag per unit crest width, Fb. The drag was found to scale with the fourth power of the

breaking-wave phase speed; i.e., Fb = 0.009ρCb
4/( gsinθ ). Here θ is the angle of inclination of the

breaking region. Therefore, the energy dissipation rate per unit crest width was determined as

ε = Fb/Cb = bρCb
5/g (Duncan 1981, 1983; Phillips 1985; Thorpe 1993; Melville 1994). According

to Duncan (1981), θ ranged from 10◦ to 14.7◦, which gives a breaking strength parameter b =
0.009/sin θ = (3.6–5.2) × 10−2.

Focusing on unsteady breaking waves, Melville (1994) determined the energy dissipation rate

by examining the turbulence dissipation rate due to wave breaking. With the assumption that

the lost energy due to breaking is eventually transferred to heat through viscosity, the energy

dissipation rate per unit crest width is ε = ρu3/l(DL/2). Here u and l are an integral veloc-

ity and length scale associated with the wave turbulence, respectively; D and L are the depth

and length of the roughly triangular turbulent region, respectively (see Rapp & Melville 1990,

section 4, and Melville 1994, section 5). According to Rapp & Melville’s (1990) dye-patch experi-

ment to determine the spatial extent of the turbulent mixing, u ∼ χC, l ∼ D, and L is comparable

to the breaking wavelength; i.e., L ∼ 2πC2/g. Therefore, the dissipation rate can be estimated as

ε = (πχ3)ρC5/g. The numerical constant χ is estimated as 0.10–0.17 (Melville 1994, Tian et al.

2010). Therefore, the breaking strength parameter b = πχ3 varies in the range (3–16) × 10−3.

The estimation is somewhat lower than that of Duncan (1981, 1983), mainly because the type of

breakers and the breaking intensity vary in the different studies.

Alternatively, b can be directly estimated by determining the total energy dissipation and the

active breaking time; i.e., the energy dissipation rate is estimated as ε = �E/tb, and the breaking

strength parameter is then evaluated as b = εg/ρU5 (Melville 1994, Drazen et al. 2008, Tian et al.

2010). Here the total energy dissipation �E and the active breaking time tb can be determined

as discussed above. Using this estimation method, Melville (1994) reanalyzed the measurements

of Lowen & Melville (1991) and found that the breaking parameter is in the range (4–12) ×
10−3. Drazen et al. (2008) conducted an inertial scaling analysis of the dissipation rate in unsteady

breaking waves and derived b = (hk)5/2. Here k was chosen as the wave number corresponding

to the center frequency in the study and h the falling wave-crest height, which measures the

height of the overturning crest when the crest just impacts the water surface below. The authors

conducted experiments of breaking waves due to dispersive focusing in deep water to evaluate

their theoretical results. Drazen et al. (2008, figure 13) found that b = (1–7) × 10−2, and their

theoretical relation, b = (hk)5/2, was valid only in a general sense owing to data scatter. The data
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0.01

0

Mean squared error: 2.13 × 10–6 Mean squared error: 5.23  × 10–6

(×10–3)(×10–3)

0.02

0.03
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0
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bbbb
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Figure 6

Normalized energy dissipation rate [breaking strength parameter (bb)] as (a) a function of local wave steepness (Sb) and (b) the breaking
criterion parameter δbr by Song & Banner (2002). Figure adapted from Tian et al. (2010).

scatter may partially result from the utilization of the wave number of the center frequency wave,

which is not necessarily a characteristic one. In both studies (Melville 1994, Drazen et al. 2008),

tb was measured with a hydrophone, and the characteristic speed U was chosen as the phase speed

of the center frequency wave.

Tian et al. (2010) defined the characteristic wave-group velocity, local wave number, and

breaking-wave phase speed. They used these quantities to estimate the breaking strength parameter

(bb in Figure 6), which was found to scale linearly with S (Sb in the figure) and δbr and vary from

0.002 to 0.02. The estimate is in the same range given by Melville (1994) but is approximately one-

third to one-half the value presented by Drazen et al. (2008) for comparable wave steepness. The

discrepancy may be attributed to the different timescales adopted in the two studies. In addition,

the application of the characteristic scales rather than the wave parameters corresponding to the

center frequency in Tian et al. (2010) significantly reduced data scatter in their results.

Overall, the determination of the energy dissipation, as well as its spectral distribution and the

dissipation rate due to wave breaking, has drawn much attention during the past two decades.

Parameterization of the breaking-wave dissipation rate has benefited significantly from laboratory

and field experiments, which have also advanced our understanding of the geometric properties

and the kinematics of breaking waves. The combined effort has made available relationships among

the three physics-based areas of breaking waves, i.e., links among the dynamics and the kinematics

(e.g., ε ∼ ρC5/g) and the parameterization of the dynamics using geometric properties [e.g.,

b ∼ Sb and b ∼ (hk)5/2].

5. PROGRESS REGARDING WAVE BREAKING
AS MEASURED IN THE FIELD

Because of the difficulties and costs associated with field measurements of waves in deep and in-

termediate water depths, particularly breaking waves, as compared to laboratory and numerical

investigations, progress has been slow; hence there are fewer studies to report. Obviously field

measurements are inherently 3D, with breaking occurring sporadically and not necessarily near

one’s measurement location. Nevertheless, some hearty souls persevere, and we report their find-

ings presently. Essentially all the existing results are related to dissipation due to wave breaking.

Thorpe (1993) used his own observations (Thorpe 1992) with wind speeds up to 28 m s−1

and a protected fetch of 20 km, along with those of several other researchers, to couple with the

energy loss of a single breaking event in the laboratory (Duncan 1981) to estimate the energy

transfer to the mixed ocean layer. He found that the number of breaking waves per wave is
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f = (4.0 ± 2.0) × 10−3 × (W10/c 0)3, where W10 is the wind speed at 10-m elevation and c0 is

the wave phase speed associated with the dominant waves. Then, using the energy loss per unit

length of crest for a breaking wave, E = (0.044 ± 0.008)ρc 5
b /g, as found by Duncan, and knowing

that Ew = E f/λ0, he determined the energy loss per unit surface area due to breaking. Here cb is

the phase speed of the breaker; λ0 is the wavelength of the dominant wave; and ρ and g are the

mass density and acceleration of gravity, respectively. If a choice is made that cb/c0 is 0.25, as this

ratio appears in the equation to the fifth power, then approximations are in order-of-magnitude

agreement with the estimates of others. Thorpe made additional comparisons, for example, by

looking at the dissipation values of Agrawal et al. (1992), and found agreement by simply changing

the power of the phase speed ratio.

In a paper published for essentially the same purpose—for comparison with the field measure-

ments by Agrawal et al. (1992)—Melville (1994) arrived at similar conclusions but used a different,

perhaps more convincing, path. Melville argued compellingly that Duncan’s (1981) measure-

ments, which were achieved under quasi-steady breaking conditions using a submerged hydrofoil

(e.g., as might be expected for ship-generated waves), might not be appropriate to represent ocean

breaking waves that are likely unsteady. Melville estimated the energy dissipation rate per unit

length of a crest based on data from Loewen & Melville (1991) and from Rapp & Melville (1990)

and demonstrated order-of-magnitude agreement. Then, using this estimate, Melville stated that

his phase speed ratio, cb/c0, had he needed one, would be ∼0.40–0.63, as compared with that used

by Thorpe (1993), 0.25 to match the Agrawal et al. data. Finally, it was shown that Melville’s

approximation is consistent with Phillips’ (1985) field measurements. Additionally, we mention

that improved data on the laboratory measurements are available presently but may not have been

applied with regard to the field measurements.

Next we discuss attempts to determine the term in the wave action equation that remains most

elusive: the dissipation (sink) term due to wave breaking (Komen et al. 1994). No definitive answer

has evolved; however, much effort has been expended, and some progress has been made. The

major difficulty in determining this term is that it requires field measurements of dissipation. Using

data from a tower in Lake Ontario, Donelan (2001) assumed that an expression for the dissipation

sink term is dependent on the saturation in the spectrum, with the degree of saturation n = 2.5

deemed the better choice. Because of long wave–short wave interaction, the equation must be

modified, and comparisons across the entire spectrum are presented. The author acknowledged

that more research is required to better quantify the constants in the equation.

Another parameter often used to obtain the dissipation term is �(c). Using X-band radar,

researchers from the Naval Research Laboratory conducted experiments that sensed the sea surface

with high temporal and spatial resolution at Kauai, Hawaii, and these data were analyzed by Phillips

et al. (2001) with regard to wave breaking. The average length of breaking front per unit area per

unit speed, �(c) as discussed originally in Phillips (1985), was given, �(c) ≈ αc(�τ 2)/(AT�c), and

using the data, the authors presented a first estimate. Here c is the phase speed, τ is the duration, α

is a proportional constant that when multiplied by cτ yields the average length over the duration, A

is the area of the sea surface considered, T is the observation time, and �c is the difference in phase

speed considered. Figure 7 presents these seminal data. Additionally, the figure also presents the

energy dissipated by wave breaking, as determined from their radar data, as a function of phase

speed (through use of the expression in Duncan 1981).

Along similar lines, except by means of field data from aerial images recorded during the

SHOWEX experiment, Melville & Matusov (2002) determined �(c) and the energy dissipation

due to breaking. They found that b in the Duncan (1981) expression was an order of magnitude

larger than that found by Phillips et al. (2001) and suggested that this discrepancy might result

from the indirect nature of the radar measurements. Using a weighting of U10
−3 (where U10 is of
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Figure 7

Determination of (a) �(c) and (b) the energy dissipation due to wave breaking as a function of speed. Figure redrawn from Phillips et al.
(2001, figures 5 and 6), c© American Meteorological Society. Reprinted with permission.

course the wind speed at 10 m), Melville & Matusov showed that the following expression fitted

the data well: �(c) = 3.3 × 10−4 e−0.64c over their measured range of speeds. For three distinct

wind speeds and directions, they also presented the directional properties of �(c), the momentum

flux, and the energy dissipation.

Hwang & Wang (2004) also determined via field measurement a functional dependence for

the dissipation term in the wave action density equation. They began with a form given by Phillips

(1985) and sought to determine B, the so-called degree of saturation as a function of u∗/c , the ratio

of the friction velocity to the wave phase speed. Their focus is on relatively short waves (0.02-m

through 6-m wavelengths), and they necessarily divided their results into three regimes. For the

lower wave numbers, the wave spectral function exhibits a power-law relation with exponent 1.0,

whereas for the higher wave numbers, the exponent is 1.5. In their middle range of wavelengths

(0.16 m through 2.1 m), the exponent of the degree of saturation, B, ranges to a maximum value

of 10. They attributed this large change across the intermediate wave numbers to wave breaking

but gave no further explanation.

Field measurements by Gemmrich et al. (2008) and subsequent analysis show agreement in

some respects and disagreement in others with the papers discussed above. These researchers again

determined �(c) dc and found that over an intermediate range, �(c) is larger, whereas at lower and

higher scales, the value is significantly less. For developing seas, breaking waves were seen for a

range of phase speeds about the spectral peak of 0.1 through 1.0. Conversely, for developed seas,

breaking waves were rarely seen for phase speeds in excess of one-half the phase speed associated

with the peak frequency. As in other papers, the authors computed the energy dissipation rate

using the moments of �(c). They also presented a value of b that is one to two orders of magnitude

less than the results of Phillips et al. (2001) and Melville & Matusov (2002). Additionally, within

their own data sets, b varies by a factor of three, and it increases with wave age. The authors

suggested that for the open ocean, one should use a value of b as (7 ± 3) × 10−5.

Once again alluding to the wave action density equation, Young & Babanin (2006) sought to

determine the dissipation term. In citing preceding studies, the authors stated that none of the

models addressed the physics of wave breaking. The authors followed the ideas of Zakharov and at-

tempted to measure directly the spectral dissipation of wind-generated waves through “dominant”
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breaking. Dominant breaking was defined as those breaking waves within the cyclic frequency

range f = fp ± 0.3fp, where fp is the frequency associated with the peak of the spectrum. Breaking

at smaller scales was considered a consequence of the dominant breaking waves. The data set

used had almost a 50% rate of dominant breaking. The authors’ primary conclusion was that the

dominant breakers cause dissipation for the scales smaller than those of the spectral peak. The

rate of dissipation at each frequency was found linear with the spectral density (less a threshold

value) and a correction for the directional spectral width. Hence Young & Babanin found that the

dissipation source term in the wave action density equation can be given by

Sds ( f ) = ag f X [F ( f ) − Fthr ( f )] + bg

∫ f

f p

[[F (q )] − Fthr (q )]A(q )dq ,

where a is a constant; g is the usual acceleration of gravity; F and Fthr represent the spectral

density and a threshold spectral density, respectively; A is the directionally integrated form of the

directional spectrum; and X [. . .] is to date an unknown function of its argument. As only a single

data set was analyzed, the value of a determined was acknowledged to represent those particular

conditions only. Furthermore and more importantly, the authors argued that their contribution

was the first to estimate the spectral changes directly due to the breaking associated with the

dominant waves.

With several ideas along the same lines as those of the two aforementioned papers, Banner

& Morison (2010) proceeded to derive a model for the source terms in Komen et al.’s (1994)

model under the assumption of negligible currents. For the right-hand side of the model, Sin +
Snl + Sds (which represents the total of the source terms due to the input from wind, the nonlinear

wave-wave interactions, and the dissipation rate, respectively), the authors used contributions from

Janssen (1991), which they modified, for what the authors called an “exact” form of Snl , and, for

the Sds term, contributions from Banner et al. (2002) and Alves & Banner (2003) along with a new

treatment that separated it into a local contribution and that of a background attenuation. For

�(c) and the (breaking strength) parameter, b, they used parts from Phillips (1985), Banner et al.

(2002), and Banner & Peirson (2007) to obtain expressions for each for the value at the spectral

peaks. In so doing, new forms for the wind input and source terms, as well as for �(c) and b, were

presented. Figure 8 reproduces some primary results from this investigation, namely those for

�(c) and for Sin, Snl , and Sds.

As demonstrated above, many researchers have used the notions set forth by Phillips (1985)

to quantify “the expected length of breaking fronts (per unit surface area) with speeds of advance

between c and c + dc and the number of such breaking events passing a given point per unit time,”

i.e., �(c)dc. Kleiss & Melville (2011) recently quantified these notions through the use of video

recordings taken from aircraft. The authors went into great depth discussing the difficulties of

quantifying regions of whitecaps from those that do not exhibit them, and the interested reader

is referred to their paper. However, here we mention it as the results qualitatively support, for

example, those mentioned previously by Melville & Matusov (2002) and Gemmrich et al. (2008).

On a slightly different track, similar to that in Section 2, Toffoli et al. (2010) used four large sets

containing time series of independent data of sea surface elevation, two from field observations

in the Black Sea and the Indian Ocean and two from directional wave basins, one in Norway

and the other in Japan, to quantify wave steepness at breaking. Hence all records were from 2D

surfaces. The authors divided the waves using zero upcrossings to obtain the rear wave statistics

and zero downcrossings to define the statistics of the front portion of the wave. They found that

the vertical extent of the waves changes little with breaking; rather the downcrossing period is

reduced. Furthermore, their primary findings were that the front-face steepness is limited by 0.55,
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Figure 9

The wave steepness distributions for (a) downcrossing (front-face) waves and (b) upcrossing (rear-face) waves. As is evident, the
front-face steepness is limited by 0.55, and the rear by slightly more than that of the Stokes wave, 0.44. A total of 5 × 105 observations
were used in the study. Figure redrawn from Toffoli et al. (2010) by permission of the American Geophysical Union.

whereas the rear-face steepness exceeds the Stokes limiting value of 0.44 slightly. Figure 9 exhibits

nicely their principal conclusions.

It is clear from the discussions in this section that work on breaking waves in the field continues

but that much remains to be done. Advances have been made in various areas; however, consensus

among researchers is limited. The sluggish rate at which progress is being made is a result of the

difficult nature of measurements in the field, as well as the costs associated with conducting these

experiments.

6. NUMERICAL MODELING OF WAVE BREAKING

6.1. Inviscid Computations of Breaking Waves

The most well-known numerical method to compute breaking waves is the mixed-Eulerian-

Lagrangian (MEL) method based on a boundary integral formulation. Following the seminal

work of Longuet-Higgins & Cokelet (1976) for 2D breaking waves, a number of improvements

have been made, including higher-order discretizations of the boundary geometry, fast algorithms

to evaluate multiple integrals, and extensions to 3D waves possibly interacting with bottom to-

pography with application to shallow-water waves. As there have been a number of extensive

reviews on this method, including Tsai & Yue (1996), we do not provide a detailed description of

numerical implementations here. Because the MEL method can simulate a breaking wave only to

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 8

�(c) and b, as well as the wind input and source terms, as found in Banner & Morison’s (2010) study under
the assumption of negligible currents. (a) The measured breaking wave crest length spectral density �(c) for
period 1 and period 3 for U10 = 12m s−1. The blue and green vertical arrows indicate the wave age of the
spectral peaks for period 1 and period 3 with associated speeds 11.0 and 15.5 m s−1, respectively. (b) The
modeled variation of the spectral density of breaking crest length per unit area and breaking strength for the
spectral peak waves. (c,d ) The developing seas’ source term balance for period 1 (c) and period 3 (d ). (The
interested reader is referred to Banner & Morison 2010 for additional information.) Figure redrawn from
Banner & Morison (2010, figures 8 and 9).
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the moment when the free surface impinges another part of the free surface, these methods have

been used to study primarily the onset of wave breaking.

The first serious validation of a breaking-wave simulation using a MEL method was provided by

Dommermuth et al. (1988), who showed that their numerical solution for a breaking focusing wave

group compared reasonably well with laboratory measurements of the surface elevation as well

as the horizontal and vertical velocities using a laser anemometer. A more detailed comparison

of velocity measurements via PIV was provided by Skyner (1996), who used a MEL model of

Dold & Peregrine (1986) to simulate a plunging breaking wave. Although a phase discrepancy was

observed near wave breaking, less than a 2% difference in the velocity comparison was attained by

shifting the wave profiles to match the phase. The same numerical model has been used by Song

& Banner (2002) to develop a criterion of wave breaking for focusing wave groups, encouraged by

the previous work of Banner & Tian (1998) for modulating wave groups. The criterion developed

numerically by Song & Banner (2002) has been confirmed experimentally by Andonowati et al.

(2006) and Tian et al. (2008), demonstrating that it could be used as a predictive quantity for the

onset of wave breaking. This indicates indirectly the usefulness of the MEL methods at the early

stage of wave breaking.

Fochesato et al. (2007) studied numerically the 3D breaking of directional focusing waves using

a higher-order MEL method combined with a fast multipole algorithm. Once a focused wave was

created, the authors found that the subsequent overturning and breaking processes were locally

quasi-2D, with weak transverse velocity and acceleration components. Conversely, they found

that the wave kinematics beneath a breaking wave was different from that of a nonbreaking wave.

For example, the horizontal velocity depended weakly on water depth. Although the development

of the free surface during focusing and overturning was similar to observations, no comparison of

numerical solutions with laboratory experiments has been made for 3D breaking waves.

Irisov & Voronovich (2011) examined breaking criteria in a random wave field of surface gravity

waves using a MEL method. Through Monte-Carlo simulations, they found that locations of wave

breaking correlated well with those of the maximum convergence of surface currents induced by

long waves and therefore concluded that wave-breaking events take place mainly because of the

decreasing length of relatively short waves by longer waves.

One of the shortcomings of the MEL method in modeling ocean waves of many wave compo-

nents is that it is unable to resolve a wide range of spatial scales with a finite number of Lagrangian

points. With increasing interest focused on rogue waves in random ocean wave fields, the accurate

prediction of their occurrence has become paramount, in particular, for a relatively large area. Re-

cently, a pseudospectral method developed originally by West et al. (1987) and Dommermuth &

Yue (1987) has been found suitable for simulations of broadband ocean waves when combined with

efficient fast Fourier transforms. It has been shown to simulate reliably the evolution of nonlinear

irregular wave fields when compared with laboratory experiments (Grue et al. 2003, Goullet &

Choi 2011). The method has been further developed by Craig & Sulem (1993) by reformulating the

water wave problem in terms of the Dirichlet-Neumann operator (making the connection between

Dirichlet and Neumann data), which in turn can be expanded in wave steepness to recover the for-

mulation of West et al. (1987). As these pseudospectral methods are based on asymptotic expansion,

they could be useful to study the onset of wave breaking but fail to simulate overturning waves.

For 2D breaking waves, an alternative approach without expanding the Dirichlet-Neumann

operator in wave steepness is available. After mapping a physical domain under the free surface into

a strip of finite thickness (in which the Dirichlet-Neumann operator can be easily defined), one

can obtain a closed system of explicit nonlinear evolution equations for the surface elevation and

the free surface velocity potential (Ovsjannikov 1974, Dyachenko et al. 1996, Chalikov & Sheinin

2005). As the free surface is parameterized by a conformal coordinate, the system in principle can
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describe an overturning wave. This original formulation was due to Ovsjannikov (1974), but it was

Chalikov & Sheinin (2005) who first simulated successfully an overturning wave. Babanin et al.

(2007, 2010) used this numerical method to study the role of wind forcing, modeled as an external

pressure, on the evolution of steepness, skewness, and asymmetry of a steep wave profile, but they

stopped their simulations when the free surface became vertical. They also performed laboratory

experiments, but the comparison between numerical solutions and laboratory measurements was

only qualitative. Although this approach solves the Euler equations without imposing the small

steepness assumption, it is limited to 2D waves due to a conformal mapping technique adopted

for the derivation of the system of evolution equations.

6.2. Viscous Computations of Breaking Waves

Because of the difficulty of resolving small-scale free surface turbulence induced by wave breaking,

only a small number of viscous simulations of breaking waves are currently available. In fact, most

are limited to the evolution of a periodic wave train in relatively low–Reynolds number 2D flows

(Chen et al. 1999, Song & Sirviente 2004, Iafrati 2009) although some 3D simulations have been

attempted recently (Wang et al. 2009, Weymouth & Yue 2010).

Chen et al. (1999) studied a wave train with a plunging breaker using the volume of fluid

method with a density ratio of 10−2, a viscosity ratio of 0.4, a Bond number of 104, and a Reynolds

number of 104. The exponential decay rate of the wave amplitude due to viscosity was estimated to

be 1.9 × 10−2 based on linear theory but was found to increase to 0.16 during the active breaking

process when the decay rate of the total energy was monitored numerically. One of their findings

was that more than 80% of the prebreaking energy was dissipated within the first three wave

periods following breaking. Although the physical parameters chosen for numerical simulations

differ from those for the air-water system, this observation is consistent with the experimental

measurements of Rapp & Melville (1990). Using a coupled level set and volume-of-fluid method,

Wang et al. (2009) repeated the simulation of Chen et al. (1999) with the same computational

setup and found good qualitative agreement between the two simulations.

Chen et al. (1999) also compared their direct numerical simulations with inviscid numerical

solutions via a MEL method with constant viscous terms suggested by Longuet-Higgins (1992).

To the point of jet re-entry onto the forward surface, the two solutions were observed to compare

well, with the difference in the maximum velocity being approximately 1%.

Iafrati (2009) simulated the breaking of 2D periodic waves with initial steepness over the range

ka = 0.2–0.65. Using a Navier-Stokes solver for a two-fluid system combined with a level-set

method to capture the interface, he examined the effect of breaking intensity on the resulting

flow. Iafrati chose the Reynolds number to be 104, although the Weber number in the simulations

corresponded to a wavelength of 30 cm, which corresponds to a Reynolds number of 4.4 × 105.

The density ratio chosen was between that of air and water, but the viscosity ratio of 0.4 was much

greater than that between air and water.

Iafrati’s simulations showed that wave breaking occurred for ka > 0.33: spilling-type breaking

between ka = 0.33 and 0.35 and plunging-type breaking for ka > 0.37. During the most energetic

breaking process, it is difficult to measure experimentally the role of bubbles in energy dissipation,

but numerical simulations were able to describe quantitatively the amount of air trapped and the

degassing process. It was concluded that major energy dissipation occurs locally at the region of

small bubbles generated by the fragmentation of the air cavity entrapped by the plunging jet. The

scaling law for the amount of air entrapped as a function of the initial wave steepness was found,

and the primary circulation induced by the breaking process scaled with the velocity difference

between the wave crest and trough.
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Even though viscous simulations are essentially the only theoretical means to investigate de-

tailed breaking processes and numerous improvements in numerical methods have been made

(Wang et al. 2009, Weymouth & Yue 2010), they still suffer from various numerical and modeling

issues to resolve small-scale turbulence and bubbles resulting from wave breaking. Furthermore,

numerical results are compared qualitatively with laboratory experiments, mostly, in terms of free

surface profiles. Therefore, a more robust computational method along with careful validation

with high-quality laboratory measurements on detailed breaking processes is still desirable.

6.3. Parameterization of Energy Dissipation due to Wave Breaking

It is still problematic to simulate detailed breaking processes using a Navier-Stokes solver over a

large computational domain. Hence a simple wave-breaking model would be useful if it at least

accounts for energy dissipation due to wave breaking.

To describe intermittent wave-breaking effects, Sullivan et al. (2004, 2007) developed a stochas-

tic forcing model, which was incorporated into a large-eddy-simulation model to study the wave-

current interaction problem. They represented the constant-stress boundary condition by a sum

of randomly distributed compact impulses determined from field and laboratory measurements.

Their focus was wave-breaking effects on near-surface currents in the oceanic boundary layer, but

feedback to the evolution of nonlinear surface waves (and therefore the forcing model) was not

included. Hence the stochastic forcing model cannot be used in breaking- and postbreaking-wave

simulations.

An alternative, but simpler, approach was proposed by Tian et al. (2010). Instead of simulating

the complete breaking process, they represented the net effect of wave breaking by parameter-

izing energy dissipation in terms of global flow variables and incorporated them into an inviscid

wave model that solves the Euler equations. Using the linearized boundary-layer analysis pre-

sented by Ruvinsky et al. (1991), Tian et al. (2010) proposed a so-called eddy viscosity model

and estimated an eddy viscosity using characteristic scales of breaking waves measured through

laboratory experiments. A possible use of eddy viscosity for breaking waves was suggested earlier

by Longuet-Higgins (1992), who reformulated Ruvinsky et al.’s (1991) analysis and remarked, “It

is highly interesting to consider whether an analogous theory might be formulated for breaking

waves, in which the molecular viscosity would be replaced by a turbulent eddy coefficient.”

By estimating the energy dissipation rate in terms of timescales and length scales of breaking

waves, Tian et al. (2010) estimated the eddy viscosity as

νedd y = αH br Lbr/T br ,

where Tbr is defined as the time when the wave crest begins to fall to the time when the surface

disturbance front is no longer obvious, Lbr is the distance from incipient breaking to the location

where the obvious surface disturbance ends, Hbr refers to the falling crest height, and α is a

proportional constant (α = 0.02, as determined in Tian et al. 2010).

Tian et al. (2010) then estimated eddy viscosities associated with different wave groups using

the experimental measurements and found them to depend on the breaking strength. Whereas

the kinematic viscosity of water is O(10−6 m2 s−1), the magnitudes of the eddy viscosity were

found to be of the order of 10−3 m2 s−1, and the eddy viscosity increased as wave breaking

intensified. For numerical simulations, the eddy viscosity model is applied in the region of active

wave breaking during its time duration. When these estimates are used in the pseudospectral

model, good agreement between numerical solutions and experimental measurements was found.

Figure 10 compares the spatial evolution of the total energy along the wave tank and of the

temporal evolution of the surface elevation at three different wave-probe locations.
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Figure 10

(a) Comparison of the
total energy as a
function of space.
The symbols represent
experimental
measurements, and
the solid lines are
numerical results.
The vertical dashed
lines indicate the
wave-breaking region.
(b) Comparison of the
surface elevation
measured from three
wave stations. The
solid lines represent
experimental
measurements, and
the dashed lines are
numerical results.
The curves in the left
column are from the
postbreaking-wave
groups; the figures of
the most violent
breaking-wave group
are in the right
column. The breaking
region is given by
13.09 m < x <

14.24 m. Figure
adapted from Tian
et al. (2010).

Even with such success, the original eddy viscosity model proposed by Tian et al. (2010) was

limited for application to the simulation of evolving ocean waves as the time and location of

wave breaking have to be known, and the eddy viscosity has to be estimated a priori through

laboratory experiments, which is not realistic. Tian et al. (2012) proposed a solution to overcome

this difficulty, suggesting formulae to estimate the temporal and spatial scales of wave breaking
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through local wave characteristics:

kb Lbr = 24.3Sb − 1.5; ωb T br = 18.4Sb + 1.4; kb H br = 0.87Rb − 0.3;

where kb, ωb, Sb, and Rb are the local wave number, wave frequency, wave slope, and wave asym-

metry, respectively, as defined in Tian et al. (2012), and are determined from the simulated wave

profile. In addition, the critical wave slope beyond which wave breaking is predicted was chosen

to be SC = 0.95, where the local wave slope S is defined as S = −∂ζ/∂x with the minus sign

introduced because the spatial derivative of the surface elevation is negative on the forward face

of the wave crest. Tian et al. (2012) evaluated the applicability of the eddy viscosity model for

three different wave groups: energy-focusing wave groups, wave groups subject to modulational

instability, and irregular waves characterized by the JONSWAP spectrum. They found that the

model predicts well the total energy dissipated in breaking waves and that the computed surface

elevations following wave breaking agree satisfactorily with the measurements.

Although it has been shown that a simple eddy viscosity model can be useful, it has to be

refined to perform better for various wave-breaking mechanisms and it must include a more

robust criterion of breaking onset. In addition, the model needs to be developed for 3D breaking

waves and should be validated carefully with laboratory experiments.

7. CONCLUDING REMARKS

In this review on breaking waves in deep and intermediate water depths, we focus on three physics-

based areas in which we feel the most progress has been made over the past 20 years: the geometry

of breaking, breaking-onset criteria, and dissipation due to breaking. We discuss the progress

in three dimensions as well where appropriate. Additionally, field measurements and numerical

simulations are discussed in some detail.

Regarding the geometry of breaking waves, many prior studies had focused on straightfor-

ward quantification of the wave’s geometric properties, such as the limiting steepness, breaking

crest asymmetry, and the evolution of breaking crest profiles, in an attempt to understand the

fundamental physics of breaking waves. Recent progress has evolved to the point at which we

can identify possible connections between the breaking crest geometry and the breaking-wave

dynamics, i.e., energy dissipation and dissipation rate (e.g., Drazen et al. 2008; Tian et al. 2010,

2012). Additional work on this topic that considers the influence of three-dimensionality, wind

forcing, and currents, for example, will lead to more significant contributions in the future.

The accurate prediction of wave-breaking onset remains a challenge; however, it too has pro-

gressed recently. Based on the parameters used, onset prediction can be classified into three cate-

gories: geometric, kinematic, and dynamic. Dynamic criteria based on local wave-energy growth

rate appear robust, consistent with the available experimental evaluations. However, the applica-

tion of the criteria in the phase-resolving, deterministic prediction of the evolution of nonlinear

wave fields may be limited, as the calculation of the diagnostic parameter δ(t) is nontrivial.

During the past two decades, the determination of the energy dissipation, as well as its spectral

distribution and the dissipation rate due to wave breaking, has been the focus of many investiga-

tions. The parameterization of the breaking-wave dissipation rate has benefited significantly from

laboratory and field experiments. In fact, the combined effort has made available relationships

among the three physics-based areas of breaking waves, i.e., links among the dynamics and the

kinematics (e.g., ε ∼ ρC5/g) and the parameterization of the dynamics using geometric properties

[e.g., b ∼ Sb and b ∼ (hk)5/2].

It is evident from the discussions in Section 5 that field work on offshore breaking waves

continues, although much remains to be done. Advances have been made in various areas, but
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consensus among researchers is limited. In fact, few studies have been completed. The slow rate

of progress is a result of the difficult nature of measurements in the field, as well as the costs

associated with conducting these experiments.

Section 6 presents a focused discussion of the numerical progress on breaking-wave research.

At this juncture, direct numerical simulations are not a viable option for ocean wave calculations

over a large domain; therefore, a simpler approach should be adopted to model the breaking

effects. This is explored using a simple eddy viscosity model, and when it is combined with an

inviscid wave evolution model, the numerical results for the total energy dissipation and the surface

elevation show good agreement with laboratory measurements of 2D breaking-wave experiments.

Nevertheless, a more sophisticated theoretical model describing the interaction between breaking

waves and turbulent flow fields is still necessary. In particular, it would be beneficial for 3D wave

breaking, for which detailed experimental measurements are extremely difficult to obtain.

Overall, investigators continue to chip away at the difficult problem of quantifying wave break-

ing through laboratory investigations, field measurements, and numerical simulations. As this

research area includes three of the most challenging problems in fluid mechanics (turbulence,

two-phase flow, and interfacial flow), it is likely that progress will continue at a very slow pace.
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David Quéré ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 197

Ice-Sheet Dynamics

Christian Schoof and Ian Hewitt ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ 217

Flow in Foams and Flowing Foams
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