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Chapter

Breaking Yield Ceiling in Wheat: 
Progress and Future Prospects
Neeraj Pal, Dinesh Kumar Saini and Sundip Kumar

Abstract

Wheat is one of the most important staple crops that contribute considerably to 
global food and nutritional security. The future projections of the demand for wheat 
show significant enhancement owing to the population growth and probable changes 
in diets. Further, historical yield trends show a reduction in the relative rate of gain 
for grain yield over time. To maintain future food security, there is a strong need to 
find ways to further increase the yield potential of wheat. Grain yield is a quantitative 
trait that is highly influenced by the environment. It is determined by various inter-
linked yield component traits. Molecular breeding approaches have already proven 
useful in improving the grain yield of wheat and recent advances in high-throughput 
genotyping platforms now have remodelled molecular breeding to genomics-assisted 
breeding. Hence, here in this chapter, we have discussed various advancements in 
understanding the genetics of grain yield, its major components, and summarised the 
various powerful strategies, such as gene cloning, mining superior alleles, transgenic 
technologies, advanced genome editing techniques, genomic selection, genome-wide 
association studies-assisted genomic selection, haplotype-based breeding (HBB), 
which may be/being used for grain yield improvement in wheat and as the new 
 breeding strategies they could also be utilised to break the yield ceiling in wheat.

Keywords: wheat, grain yield, genomics resources, molecular breeding,  
genomics-assisted breeding

1. Introduction

Wheat (Triticum aestivum L.) is the most extensively grown food crop around the 
world and ranks second after rice [1]. China is the top wheat-growing country which 
recently in 2020, produced 134,250 thousand tonnes of wheat accounting for approx-
imately 20.66% of the total wheat production around the globe. The top five wheat-
growing countries (China, India, Russian Federation, United States of America, and 
Canada) together account for 63.46% of the world’s wheat production (6,499,759 
thousand tonnes in 2020) [2]. It accounts for more than 20% of the calorific intake of 
humans and supplies more protein (approximately 23%) than all animal sources [1]. 
The progress for the genetic improvement of grain yield in wheat ranged from 0.3% 
to 1.0% per year during the last century [3]. Nevertheless, it has been decreased in 
recent years, largely due to the narrow genetic base of the germplasm used for the 
development of new genotypes and the lack of adoption of novel breeding strategies. 
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Noticeably, there is a need to increase wheat yield to feed the world population which 
may be increased from the current 7.5 billion to more than 9 billion by 2050, and this 
is with the unusual constraints posed by climate change. Under such kind of pres-
sure, wheat breeding programs need to do more to achieve the targeted genetic gain 
in grain yield ensuring food security in the near future. Many studies have shown 
that increases in the harvest index (HI), grain weight (GW), grain number per spike 
(GNPS), and decreases in plant height (PH) are the major traits associated with 
genetic gain in wheat [4, 5]. Improvement in HI has permitted better partitioning of 
photosynthetic assimilates to the developing grains, resulting in greater grain yield 
(GY). The HI of cultivated wheat varieties generally ranges from 0.4 to 0.5 which is 
already close to the theoretical maximum value of 0.62 [6, 7]. Furthermore, HI val-
ues more than 0.5 are very hard to achieve, particularly in unfavourable environmen-
tal conditions [8]. This situation again shows that genetic progress in wheat breeding 
programs may be difficult. Therefore, understanding the changes (either increment 
or reduction) in yield and related traits is an essential step towards developing new 
breeding strategies and a further improvement in the grain yield.

Grain yield is the final result of plant growth and development and hence 
most, if not all, genes are supposed to contribute towards yield either indirectly or 
directly. Consequently, achieving increased grain yield is a non-trivial task, and 
the accumulative knowledge from wheat breeding suggests that we would require 
concurrent improvements of both the ‘source’ and ‘sink’ tissues. Traditional breed-
ing largely depends on empirical phenotypic selection, which has already resulted in 
the development and release of a large number of high-yielding varieties. However, 
time consumption, labour intensity, environmental dependence, and low efficiency 
are prime barriers that nowadays hinder conventional/traditional wheat breeding. 
High-yielding wheat varieties can result from the uncovering of novel genetic varia-
tion, better selection techniques, or the identification of superior genotypes with 
novel or improved characteristics caused by favourable combinations of superior 
alleles at multiple loci. In recent years, an impressive number of advancements in 
genetics and genomics have been made in wheat. Owing to the tremendous effort of 
IWGSC, the ‘gold standard’ reference genome has become available for wheat cultivar 
‘Chinese Spring’. The most comprehensive assembly of this reference line has been 
recently released in 2018 which gave access to a total of 107,891 high-confidence 
genes [9]. The genome sequences may assist the identification of important genes at 
an unprecedented level which is a key aspect in wheat breeding. Different types of 
molecular markers, such as RFLP, AFLP, SCAR, STS, SSR, CAPS, and GBS-SNPs, 
have been identified and mapped on the different chromosomes of wheat and highly 
dense genetic maps have also been developed (available at https://wheat.pw.usda.gov/
GG3/) which are being utilised in various genetic studies in wheat [10, 11]. To date, 
more than 15 different high-throughput GBS strategies have been developed and 
utilised in various crops including wheat [12]. Moreover, several SNP arrays/assays 
have also been developed which are flexible in terms of data point and sample number 
customization, which contributes to its high-density scanning and robust call rates 
compared to PCR and NGS-based markers. Several high-density SNP genotyping 
arrays have been utilised for genetic dissection of different traits and marker-assisted 
breeding in wheat namely the Illumina Wheat 9 K iSelect SNP array [13], the Illumina 
Wheat 90 K iSelect SNP genotyping array [14], the Wheat 15 K SNP array [15], the 
Wheat 55 K SNP array, the Axiom Wheat 660 K SNP array, the Axiom HD Wheat 
genotyping (820 K) array [16], the Wheat Breeders’ 35 K Axiom array [17], and the 
Wheat 50 K Triticum TraitBreed array [18]. These advancements in genomics have 
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greatly enhanced our understanding of structural and functional aspects of the wheat 
genome and contributed to wheat improvement in two ways. First, they provided a 
better understanding of the various biological mechanisms that have led to new or 
improved screening methods for identifying and selecting superior genotypes more 
efficiently. Secondly, this new information improved the decision-making process 
for more efficient breeding strategies. With these advancements, the focus of wheat 
breeding has gradually switched from phenotype-based to genotype-based selection. 
Marker-assisted selection (MAS) has improved wheat breeding efficiency to some 
extent and predominated in breeding programs for decades. Several MAS strategies 
have been developed—marker-assisted backcrossing (MABC) or introgression of 
QTL or major genes, selection of complex quantitative traits using molecular markers, 
and enrichment of favourable alleles in early generations [19]. Availability of high-
throughput genotyping platforms and genomics resources now rapidly remodelling 
marker-assisted breeding to genomics-assisted breeding.

Here in this chapter, we summarise the recent progress in understanding the 
genetics of grain yield and other related traits together with the new strategies, such 
as gene cloning and mining of superior alleles, transgenic technologies, genome edit-
ing technologies, genomic selection (GS), genome-wide association studies (GWAS)-
assisted GS, and haplotype-based breeding (including haplotype-based GWAS and 
haplotype-based GS), which altogether make it available for genomics-assisted 
breeding (GAB) in crop improvement and to break the yield ceiling in wheat.

2. Genetics of grain yield and its related traits

Grain yield is a complex polygenic trait, significantly associated with grain number 
per spike, grain weight, harvest index, number of productive tillers, plant height, 
days to heading/flowering, etc. The trait is also influenced by the environment and 
shows a significant level of genotype × environment interaction with low heritability. 
Previous studies showed that increased yield potential in the major wheat-growing 
countries was largely associated with increased grains per square meter, harvest 
index, and biomass, and reduced plant height [4, 5]. Moreover, it has been revealed 
that the use of dwarfing genes (Rht1, Rht2, Rht8, and Rht24), the 1BL.1RS transloca-
tion lines [20–23], and positive selection of desirable alleles of major genes including 
grain size (for instances, TaGS3-A1, TaTGW6, TaSus1, TaGW2, TaGW8, and so on), 
vernalization requirements (Vrn genes), photoperiod response (Ppd-1), etc. resulted 
into the enormous improvement in wheat grain yield [24, 25]. It is now believed that 
further improvement in grain yield can be attained only by exploiting untapped 
genetic variation and depth understanding of its genetic architecture combined with 
the use of advanced genomics-assisted breeding techniques. QTL mapping has been 
one of the innovative approaches for understanding the genetic architecture of grain 
yield and its component traits in wheat. Advancements in molecular marker systems 
have revolutionised the field of QTL mapping, as hundreds of QTLs for different 
yield-related traits have been mapped using different bi-parental and multi-parental 
mapping populations in several countries [26–31]. The QTL regions identified by 
the standard interval mapping procedure frequently extend to several centimorgans 
(cM) on linkage map (on the physical map, it may be equivalent to the several Mbp) 
which may encompass a large number of genes [31]. Therefore, it becomes very 
hard to pinpoint the causative locus/candidate gene responsible for a specific trait. 
Furthermore, the introgression of such large QTL regions based on linked or flanking 
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markers might carry several unwanted genes due to linkage drag, thereby negatively 
affecting the performance of generated cultivars encompassing the introgressed 
genomic segments. Therefore, the genetic resolution of the mapping procedures must 
be increased to allow QTL placement within the shortest possible genomic region 
using advanced strategies. Fine mapping is an important strategy that can be used 
for refining the QTL region. Three major factors, such as phenotyping, population 
size, and the number of markers, mainly regulate the success of QTL dissection, fine 
mapping, and further cloning of desired QTLs. Advances in NGS technologies have 
dramatically reduced per sample genotyping cost and offered increased throughput. 
Moreover, with the latest SNP genotyping platforms such as SNP chips or arrays in 
place, it is now quite possible to genotype tens of thousands of samples in a short 
period [32]. Moreover, QTL fine mapping occasionally reveals surprises, for instance, 
the presence of distinct genes whose combined effects contribute to the QTL identi-
fied using standard mapping procedures, distinct upstream non-coding enhancer/
modifier sequences that contribute to phenotypic effects of a QTL, and substantial 
genetic differences between the alleles in the QTL region. Identification of the genes 
or sequence variants that underlie QTL may help in investigating the contribution of 
specific genes or structural variants to the overall genetic architecture of grain yield 
and related traits [26, 33].

As discussed above, several studies have reported hundreds of QTLs in differ-
ent mapping populations evaluated under different environments. An innovative 
approach i.e., meta-QTL analysis has emerged which helps in refining the QTL 
positions by combining the QTL results from independent studies and identifying the 
most stable and consensus QTLs [34]. The power of this approach lies in detecting 
regions of the genome that are most often involved in trait variation and reducing the 
QTL confidence intervals, thus facilitating the identification and characterisation 
of underlying candidate genes. For the first time in 2010, Zhang and his colleagues 
[35] conducted a meta-QTL analysis of major QTLs for grain yield and yield-related 
traits and identified 12 significant MQTLs on chromosomes 1A, 1B, 2A, 2D, 3B, 4A, 
4B, 4D, and 5A, few of which also included important known genes, such as Vrn and 
Rht [35]. Another study reported 16 MQTLs on chromosomes 1B, 2A, 2D, 3B, 4A, 6A, 
and 6B, related to grain weight [36]. Most recently in 2021, Saini and his colleagues 
[37] have identified a total of 141 MQTLs responsible for grain yield and related traits, 
which included 13 breeder’s MQTLs and 24 ortho-MQTLs. This study also identified 
1202 high-confidence candidate genes within the physical positions of the MQTL 
flanking markers [37]. Beside these, recently, various other MQTL studies have been 
also conducted in wheat [38–41]. DNA markers tightly linked to these meta-QTLs 
(MQTLs) may be used as molecular tools for MAS in wheat breeding. Association 
mapping or GWAS offers an alternative route for identifying genomic regions that 
have effects across a wider range of germplasm if false associations that are caused by 
population structure and relatedness can be minimised. With the advancements in 
high-throughput genotyping technologies, haplotypes and SNP-sets (instead of single 
SNPs) are being utilised for GWAS, thereby reducing the detection of false positives 
via overcoming the limitations of multiple testing and enhancing the identification of 
underlying candidate genes which in turn facilitate gene-based association mapping. 
Several GWAS studies have been conducted in wheat for grain yield and related traits, 
which have also resulted in the identification of hundreds of high-confidence candi-
date genes governing yield-related traits [42–46]. Combined linkage analysis and joint 
linkage association mapping (JLAM) have also been used in wheat for genetic dissec-
tion of grain yield-related traits. Unlike meta-QTL analysis, meta-GWAS studies have 
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been rare in wheat for yield and related traits. For the first time in 2018, Battenfield 
and his colleagues [47] described this meta-GWAS approach, which combined GWAS 
analysis from multi-year unbalanced breeding nurseries and identified the consensus 
and stable marker-trait associations (MTAs) and underlying candidate genes [47]. 
The markers, as well as candidate genes identified for grain yield and its component 
traits, provide important genomic resources for wheat breeding. These genomics 
resources can be immediately implemented to genomics-assisted breeding in wheat 
for genetic improvement of grain yield.

3. Gene cloning and allele mining: to be used for MAS

MAS allows a more effective selection of target genotypes which further enable 
certain traits to be ‘fast-tracked’, resulting in faster line development and variety 
release. MAS is a more cost-effective approach that can replace phenotyping and 
thereby allows selection in off-season nurseries as well. Another advantage of using 
MAS is that the total number of genotypes that need to be tested can be reduced 
significantly in early generations which allow more efficient use of field or glasshouse 
space which is generally limited [48]. MAS remains a valid option for major gene 
or QTL, whereas QTL cloning or gene cloning may become a more routine activity 
assisted by increased utilisation of high-throughput phenotyping techniques [49], 
sequencing [50], and identification of high-confidence candidate genes through 
‘omics’ profiling [51]. Cloned QTL/gene may provide new opportunities for a more 
targeted search for novel alleles in wild wheat germplasm and mutants (Table 1).

At present, tremendous sequence information is available in public databases as 
a result of the sequencing of diverse wheat crop genomes, including reference lines 
and wild progenitors. This information can be used for mining the novel and superior 
alleles of agronomically important genes from gene pools to appropriately deploy for 
the development of high-yielding cultivars. Allele mining also provides insights into 
the molecular basis of trait variations and identifies the sequence variants associated 
with superior alleles. Moreover, it helps in the development of allele-specific molecu-
lar markers, assisting the introgression of novel alleles via MAS.

4. Transgenic technologies to boost grain yield

Considerable progress has been made in the past for manipulation of genes from 
diverse sources, including wild relatives and progenitors, and transferring them into 
wheat to confer increased grain yield, transgenesis can be employed as a powerful 
alternative for increasing the grain yield through exploiting the genes/traits which does 
not occur naturally in the wheat species. Transgenic plants refer to plants that contain 
a gene(s) that has been artificially inserted from an unrelated plant or a completely 
different species. The increase in grain yield potential through transgenesis involves 
an ideotypic detail of potential targets for transformation. In 2017, Nadolska-Orczyk 
and his colleagues [79] reported potential targets for transgenesis which can result 
in the increased grain yield in wheat. These include ‘transcription factors, regulating 
spike development, which mainly affect grain number; genes involved in metabolism 
or signalling of growth regulators—cytokinins, gibberellins, and brassinosteroids—
which control plant architecture and consequently stem hardiness and grain yield; 
genes determining cell division and proliferation mainly impacting grain size; floral 
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Genes/QTLs Chromosome Products/enzymes Associated yield-

related traits

References

TaSus2 2A, 2B, 2D Sucrose synthase Endosperm 

development

[52]

TaCwi-A1 2A Cell wall invertase Kernel weight [53]

TaCWI-5D 5D Cell wall invertase Kernel weight [54]

TaSAP1-A1 7A Zinc-finger protein Thousand grain 

weight, number of 

grains per spike, spike 

length, peduncle 

length and spikelet’s 

per spike

[55]

TaGS1a 6D Glutamine synthetase Mineral nutrient and 

grain size

[56]

TaTGW-7A 7A Indole-3-glycerol-

phosphate synthase

Thousand grain 

weight

[57]

TaGASR7-A1 7A Snakin/GASA protein Grain length [58]

TaGS-D1 7D Glutamine synthetase Thousand grain 

weight, grain length

[59]

TaCKX6a02 3D Cytokinin oxidase/

dehydrogenase

Grain size, grain 

filling rate, grain 

weight

[60]

Tackx 3A Cytokinin oxidase Grain weight and leaf 

chlorophyll content

[61]

TaTPP-6AL1 6A Trehalose 6-phosphate 

phosphatase

Grain weight [62]

TaFlo2-A1 2A FLO2 protein Thousand grain 

weight, grain size

[63]

TaSnRK2.3 1A, 1B, 1D Plant-specific protein 

kinase

Plant height, 

length of peduncle, 

penultimate node, 

thousand grain 

weight

[64]

TaSnRK2.10 4A, 4B,4D Sucrose non-fermenting 

1-related protein kinases

Thousand grain 

weight, spike length

[65]

6-SFT-A2 4A Fructan 

6-fructosyltransferase

Thousand grain 

weight

[66]

TaGW2-6A 6A E3 ubiquitin ligase Grain weight, grain 

size

[25]

TaCKX6-D1 3D Cytokinin oxidase/

dehydrogenase

Thousand grain 

weight

[67]

TaGL3-5A 5A Putative protein 

phosphatase

Grain length [68]

TaAPO-A1 7A F-box protein of 429 amino 

acids

Total spikelet number 

per spike

[69]

TaTGW6-A1 3A Indole-3- acetic acid-

glucose hydrolase

Thousand grain 

weight

[24]

TaGW8-B1a 7B E3 ubiquitin ligase Kernel size [70]
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regulators influencing inflorescence architecture and consequently seed number, and 
genes involved in carbohydrate metabolism having an impact on plant architecture 
and grain yield’. Furthermore, modulated expression of flowering genes, which control 
vernalization and photoperiod-dependent floral induction, may be good for winter or 
spring wheat varieties [79, 80]. Besides, augmenting photosynthetic rates of laminar 
and non-laminar organs and the capability to access and utilise a greater amount of 
resources, such as nutrients or water, may also be potential targets for transgenesis in 
wheat for grain yield improvement [81, 82]. Besides, information about specific geno-
types as well as climatic and agronomic conditions and consideration of the fact that 
the majority of the genes are members of multigene families is required for successful 
implementation of selected potential genes in breeding programs [79].

Transgenic wheat has the capacity to transform agriculture, but progress has been 
very limited as no transgenic wheat cultivar could be commercially approved so far 
because of consumers’ concerns. Few promising reports are available where newly 
developed transgenic wheat showed a significant grain yield advantage [72, 83]. Over-
expression of a nitrate-inducible transcription factor (NAC TF) in wheat enhanced root 
growth and the ability to uptake nitrogen, therefore, increased nitrogen accumulation 
and grain yield by 10% (on a single plant basis) [72]. In another study, Gonzalez and his 
colleagues [83] reported that transgenic wheat lines carrying a mutated version of the 
sunflower TF (HaHB4) can significantly increase grain yield and water use efficiency 
across a range of environments [83]. Most recently in 2020, Argentina has become the 
first country to approve a genetically modified wheat variety (HB4). This is a drought-
tolerant high-yielding wheat variety jointly developed by Argentine crop inputs 
manufacturer ‘Bioceres’ and ‘Trigall Genetics’ yielding 20% more than other standard 
wheat varieties in 10 years trials under drought conditions. The commercial approval 
of this GMO variety solely depends on approval by Brazil, which imports more than 

Genes/QTLs Chromosome Products/enzymes Associated yield-

related traits

References

TaTAR2.1-3A 3A Tryptophan amino 

transferase

Plant height, spike 

number

[71]

TaNAC2-5A 5A NAC transcription factor Spike number, grain 

number per spike, 

and thousand grain 

weight

[72]

TaGS5-3A 3A Serine carboxypeptidases Grain size, grain 

weight

[73]

TaTEF-7A 7A Transcript elongation 

factor

Grain number [74]

TaPPH-A 7A Pheophytin pheophorbide 

hydrolase

Thousand grain 

weight, grain filling

[75]

TaNF-YB4 3B Histone-like transcription 

factor

Number of spikes per 

plant

[76]

TaNFYA-B1 6B Histone-like transcription 

factor

Number of spikes per 

plant

[77]

TaCYP78A3 7A, 7B, 7D Cytochrome P450 

CYP78A3

Seed size [78]

Table 1. 
Cloned genes/QTLs regulating various yield-related traits in wheat.
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85% of Argentine wheat [84]. Experts have also raised concerns about the growth and 
marketing of this GMO wheat variety, citing challenges related to food safety, con-
sumer preferences, environmental effects, and socioeconomic issues. More research is 
required to determine the true safety of this GMO wheat and to decide, whether they 
are safe for both the consumers and the environment. At least, most would agree that 
the possible advantage of producing transgenic wheat, which furnishes the human 
population with cheaper and more food, makes transgenesis a useful invention.

5. Genome-editing technologies

Targeted genome editing has emerged as a powerful tool for studying gene func-
tion, correcting defective genes, or introducing novel functionality. Its mechanism 
involves sequence-specific double-strand breaks (DSBs) in the target DNA, with edits 
incorporated during the endogenous repair. In the earlier phase of genome editing, 
to induce the desired double-strand breaks at the target site, the engineering for 
zinc-finger nucleases (ZFNs) [85] or meganucleases [86] attracted the attention of 
the researcher community. These genome-editing systems needed specialised compe-
tence to produce artificial proteins consisting of customizable DNA-binding domains 
(sequence-specific), each linked to a non-specific nuclease for target DNA cleavage, 
and offered researchers with extraordinary tools to perform genetic manipulation. 
Later, the identification of a novel class of a Flavobacterium okeanokoites catalytic 
domain (FokI) derived from bacterial proteins termed transcription activator-like 
effectors (TALEs) further offered new possibilities for precisely targeted genome 
editing [87]. TALE-based programmable nucleases allowed the cleavage of any DNA 
sequence of interest with comparatively high frequency. Dimerization of FokI nucle-
ase is needed to make an active nuclease, therefore, every time two modules need to 
be designed to target closely DNA sequences for generating DSBs at target sites. This 
dimerization requirement limited the use of these two powerful genomes-editing 
tools, as designing active nucleases was difficult and very expensive [88].

In 2012, an inexpensive, simple, easy to use, and effective genome-editing system 
that is clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (CRISPR/Cas9) was introduced which revolutionised the field of 
genome editing [89]. The use of this powerful tool allows producing genome-edited 
plants in a very short period. CRISPR technology can be efficiently utilised for both 
precisely eliminating the negative regulator genes and augmenting the activity of 
positive-regulator genes that affect the trait of interest. Nevertheless, there are only a 
couple of reports available for validation of the CRISPR technique in wheat compared 
to other crops, such as rice [90]. In these reports, different genes were targeted by 
CRISPR/Cas9 to address the major biotic, and abiotic stresses along with improving a 
few agronomic traits in wheat [90]. An exciting advantage of using the CRISPR/Cas9 
technology is the possibility of simultaneously editing multiple target genes using a 
single CRISPR construct. For instance, Wang and his colleagues [91] practiced this 
multiplexed genome editing in hexaploid wheat for targeting three different genes viz. 
TaLpx-1, TaGW2, and TaMLO. They placed three sgRNAs (each specific to a different 
gene) in a tRNA polycistronic cassette under the control of a single promoter to pro-
duce knockouts. Multiplex genome-editing tools can be efficiently utilised to address 
more complex traits (such as grain yield) involving multiple genes in a single attempt 
[91]. Moreover, this CRISPR/Cas9 mediated multiplex genome editing can also be uti-
lised to mimic the domestication process during evolution in a short time frame, with 
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implications for a convenient and rapid generation of high-yielding wheat varieties. 
Despite the several advantages of using CRISPR/Cas9, one of the prominently associ-
ated challenges is off-target effects, that is undesired mutations at unintended sites 
induced by genome editing. Various methods have been developed to find off-target 
mutations both in vitro and in vivo. These include SITE-seq [92], Digenome-seq [93], 
CIRCLE-seq [94], GUIDE-seq [95], and DISCOVER-seq [96]. In the same way, the 
engineering of Cas9 proteins has also been performed to enhance the specificity.

5.1  Base editors and prime editing: opening up new avenues for wheat genome 
engineering

Many crucial agronomic traits are determined by a few base changes or point 
mutations in a gene [97–99]. CRISPR/Cas9 mediated gene replacements or gene 
modifications through homology-directed repair (HDR) has been reported as a 
practicable approach to correct the point mutations in the target DNA/gene and has 
the capability for accelerating crop improvement [100, 101]. Yet, the low efficiency 
of template DNA delivery and the rare occurrence of HDR (endogenous) has always 
been a difficult task in attaining success in plants. Furthermore, the CRISPR/
Cas9 system is amenable for gene knock-in or knock-out, but cannot covert base 
into another. These challenges highlighted the demand for alternative powerful 
approaches that can result in precise and stable genome editing in crops. In 2016, a 
novel approach that is ‘Base editing’ was emerged which allows precise base (nucleo-
tide) substitutions in a programmable manner, without requiring a donor template 
or disruption of a gene [102]. A base editor is a fusion of catalytically inactive Cas9 
domain (Cas9 variants, Cas9 nickase, or dCas9) and an adenosine or cytosine 
domain that converts one base to another. Nucleotide substitutions or single-base 
changes may generate elite trait variations in crops which assist in accelerating crop 
improvement. The base-editing system can revert an SNP or single-base change 
without gene disruption. In recent years, many adenine and cytosine base editors 
have emerged as powerful tools for precise genome modifications (A to G or C to T) 
in eukaryotic genomes [102]. The potential of this approach has been demonstrated 
in several crops, including wheat [103–106]. As aforementioned, HDR efficiency is 
comparatively low in plant cells, so knock-ins of DNA fragments to target sites are 
challenging. Recently in 2019, Anzalone and co-workers developed a more efficient 
genome-editing technology that is ‘Prime editing’ which consists of CRISPR-Cas9 
nickase–reverse transcriptase fusions programmed with pegRNAs (prime-editing 
guide RNAs) that enable precise genome editing without inducing DSBs or requiring 
a donor DNA template (mandatory for genome editing via HDR) in mammalian cells 
[107]. The prime editors have been adapted for use in wheat via optimization of the 
codon, promoter, and editing conditions [108]. This optimised suite of prime editors 
enabled InDels and point mutations in wheat and rice at higher frequencies [108]. 
Development of new technologies and tools, newly discovered CRISPR/Cas systems, 
are being continuously reported, inferring that the CRISPR toolbox for wheat genome 
engineering would expand further in the near future. Researchers have also focused 
on the development of efficient approaches for eliminating transgenes from genome-
edited plants, such as (a) transient expression of DNA and RNA [109], (b) use of 
CRISPR/Cas9 ribonucleoprotein complexes [110], (c) use of CRISPR-S—an active 
interference element [111], and (d) programmed self-elimination of the CRISPR/Cas9 
constructs [112] to generate transgene-free genome-edited plants. The elimination 
of transgenes offers the following two advantages—(i) elimination of Cas9 construct 
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from genome-edited plants prevents the induction of genetic changes at undesired 
loci, (ii) elimination of the transgenes is likely a prerequisite for getting regulatory 
approval of genome-edited crops for commercial applications. In the future, CRISPR 
technology may be supposed to accelerate wheat biology research, ultimately facilitat-
ing the development of high-yielding wheat varieties.

6. Genomic selection for grain yield improvement

The genetic complexity of grain yield and other yield-related traits limit the power 
of QTL mapping and association mapping in identifying small effect loci [113]. A 
powerful breeding strategy that is genomic selection (GS) has been introduced to 
circumvent this problem which implements whole-genome markers for predictions, 
and thus can efficiently complement QTL mapping and association analysis in dis-
secting the complex genetic base of grain yield-related traits in wheat [114, 115]. 
High-throughput/next-generation genotyping technologies have accelerated the 
adoption of GS by enabling the development of large sets of DNA marker data at 
reasonable costs [116]. GS is a potential GAB tool that predicts genomic-estimated 
breeding values (GEBVs) of individuals (from the breeding population) with geno-
typic data available via prediction models constructed based on a training population 
(TP) with available phenotypic and genotypic information [117]. As aforementioned, 
using the prediction models, the GEBVs of unobserved individuals are predicted, 
circumventing the omission of the small-effect genomic region (markers) that would 
fail a threshold (significance) test. Though the effect of each marker is small, a large 
volume of genotypic information covering the whole genome still has the power to 
explain all the genetic variance. GS complements conventional breeding approaches 
and can potentially decrease the requirement of large-scale phenotyping and hasten 
the rate of genetic gain via shorter breeding cycles [118, 119]. The performance of GS 
relies mainly on the prediction accuracy, defined as the ‘Pearson’s correlation between 
the selection criterion and the true breeding value to select individuals with unknown 
phenotypes’ [120, 121]. Other factors that affect the GS accuracy include gene effects, 
level of linkage disequilibrium (LD), statistical models, the genetic composition of the 
TP, relationship between validation population (VP) or selection individuals and TP, 
and heritability of the target traits [120]. The major objective of GS is to decrease the 
cost of phenotyping and hasten genetic gains, use of high-throughput phenotyping 
tools and platforms that enable high-density phenotyping of hundreds to thousands 
of individuals across time and space using proximal or remote sensing, can increase 
the intensity and accuracy of selection and, eventually the selection response, as well 
as reduce phenotyping costs. The main idea of high-throughput phenotyping is to 
exploit secondary traits, such as canopy temperature, and green normalised difference 
vegetation index (NDVI) are closely related to grain yield that may be advantageous in 
early-generation testing of individuals. Data recorded on secondary traits (genetically 
correlated to grain yield) can be incorporated in multivariate pedigree and GS models, 
improving indirect selection for GY [122–124]. Moreover, GS can also be applied to 
gene bank accessions for germplasm enhancement. Accessions stored in germplasm 
bank represents an under-exploited rich genetic resource for wheat breeders, superior 
alleles can be extracted from these accessions which may be exploited for grain yield 
improvement in wheat [125, 126]. In general, lengthy pre-breeding programs are 
needed to develop lines that possess favourable alleles/genes from the wild accessions 
with superior agronomic performance and that may be utilised as parents in breeding 
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Population type and size* Number of 

genotyped 

markers

Traits Accuracy 

of GEBV 

used

References

Advanced breeding lines from 

CIMMYT (254)

41,371 

GBS-SNPs

TGW, DTH, 

and GY

0.28–0.45 [128]

Two DH populations (165 and 159) 1975 and 1483 

SNPs (90K 

SNP)

GNPS 0.10–0.42 [129]

European winter wheat lines (2325) 12,642 SNPs 

(9K SNP)

GY 0.5–0.65 [130]

Winter wheat population (273) 40,267 SNPs 

(90K SNP)

GY, TGW, PH 

and DTH

0.33–0.67 [131]

Inbred breeding lines (557) 12,083 

GBS-SNPs

DTH and GY 0.57 [132]

Advanced elite spring wheat lines 

(287)

15,000 SNPs 

(90 K SNP)

GY, TGW and 

GN

0.38–0.63 [133]

Lines from multiple families (659) 9500 DArT-

GBS-SNPs

GY 0.38–0.41 [134]

Winter wheat breeding population 

from multiple families (861)

6600 DArT-

GBS-SNPs

GY 0.39–0.48 [135]

Inbred breeding lines (557) 12,083 

GBS-SNPs

GY 0.65–0.76 [136]

Hybrids obtained by crossing 18 

males and 667 females (1888)

13,005 SNPs 

(90 K and 

15 K)

GY, DTH and 

PH

0.5–0.55 [137]

Winter wheat lines (1100) 27,000 

GBS-SNPs

GY 0.23–0.55 [138]

European winter and spring 

cultivars (210)

GBS-SNPs 44 spike 

morphology 

traits

0.2–0.5 [139]

Elite wheat lines (4368) 2038 

GBS-SNPs

DTH, DTM, PH 

and GY

0.35–0.44 [140]

Bread wheat lines (10375) 18,101 

GBS-SNPs

GY and TGW 0.59–0.98 [141]

Double haploid lines (282) 7426 

GBS-SNPs

GY and TGW 0.47–0.54 [142]

Bread wheat lines (3771) 8519 

GBS-SNPs

DTH, DTM and 

GY

0–0.75 [143]

Soft red winter wheat lines 

(239), Double haploid (100), and 

Recombinant inbred lines (156)

2721 SNPs (9 

and 90K)

GY, DTH, 

TGW, GNPS, 

and PH

− 0.14-

0.43

[144]

F4:6 generation and double haploid 

winter wheat breeding lines (1114)

7300 DArT-

GBS-SNPs

GY 0.45 [145]

Winter wheat lines (3282) 18,728 

GBS-SNPs

GY 0.25 [122]
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programs. Using GS, germplasm enhancement breeding programs can be directly 
started using wild accessions and landraces. In a recent GS-based study, NGS tech-
nologies with multi-environment phenotyping were used to study the contribution of 
exotic genomes to 984 pre-breeding lines. Significant positive contributions of exotic 
germplasm to pre-breeding lines derived from crosses of CIMMYT’s best elite lines 
with exotics were reported [127]. Genomic selection studies conducted in wheat for 
grain yield and related traits are presented in Table 1. The prediction accuracy of GS 
for different grain yield-related traits has varied from 0 to 0.98% in wheat (Table 2).

6.1 GWAS-assisted GS: making GS more efficient

As discussed above, GWAS estimates marker effects throughout the genome on 
the target association panel (diverse germplasm) based on prediction models. Based 
on LD, GWAS may identify new functional variants, including novel MTAs and 
genes for many agronomically important traits in diverse germplasm. According to a 
comprehensive simulation study in plants, the use of a few major MTAs/QTLs/genes 
(each explaining ≥ 10% of the phenotypic variance) as fixed effects in GS models 
can increase the accuracy of GS for complex quantitative traits [151]. Although, the 
potential to combine robust and consistent associations identified from GWAS as 
fixed effects in GS models to increase prediction accuracy for complex traits such as 
grain yield has not been investigated comprehensively in wheat. The first report of 
integrating the genetic architecture of GY (revealed through GWAS) into prediction 
models in wheat has come from the work by Sehgal and co-workers, most recently 
in 2020 [149]. Firstly, using a haplotype-based genome-wide association study, they 
identified 58 MTAs for GY. Out of these 58 MTAs, 16 were ‘environment-specific’ 
with large effects and eight MTAs were consistent across trials and environments. 
These consistent MTAs were then used as fixed effects in the prediction models which 
resulted in a 9–10% increase in prediction accuracy for GY [149]. It is suggested that 
the utility of GS incorporating GWAS results may be noteworthy for GY when GWAS 
results detect highly robust and significant genomic regions.

Population type and size* Number of 

genotyped 

markers

Traits Accuracy 

of GEBV 

used

References

>6400 breeding lines 78,662 

GBS-SNPs

GY 0.41 [146]

Advanced breeding lines (456) 11,089 

GBS-SNPs

GY 0.33–0.66 [147]

Association mapping panel (456), 

two F5 populations (61 and 501), 

two DH populations (447 and 759)

16,233 

GBS-SNPs

GY 0.21 [148]

Advanced bread wheat lines (4302) 8443 

GBS-SNPs

GY 0.35–0.43 [149]

Winter wheat lines (1325) 11,154 SNPs 

(15 K)

GY 0.57 [150]

GY, GNPS, DTH, DTM, PH, and TGW refer to grain yield, grain number per spike, days to heading, days to maturity, 
plant height, and thousand grain weight, respectively.*Figures in parenthesis are the population size.

Table 2. 
Genomic selection studies conducted in wheat for grain yield and related traits.
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7.  Haplotype-based breeding (HBB) for grain yield improvement

Due to low heritability and persistent ‘genotype × environment’ interactions, 
improving grain yield (GY) is a difficult task for the global plant breeding community, 
especially under stressful environmental conditions [152–154]. As discussed  
earlier, GWAS-assisted GS has proven to be an effective method for deciphering the  
genetic architecture of complex traits, population improvement, and the development 
of better varieties with a higher yield. However, the problem of ‘missing heritability’, 
which is widespread in single marker-based GWAS, is not addressed by this approach. 
The alternative approach to boost the power of GWAS is by constructing haplotypes 
between neighbouring SNPs on a chromosome. As specific sets of alleles are observed 
on a single chromosome, haplotypes are inherited jointly with the limited probability of 
contemporaneous recombination. Haplotypes are implemented in crop improvement 
in two ways—retrospective and prospective [155]. Plant breeders have to choose the 
advantageous haplotypes that lead to desirable phenotype(s) for the trait(s) of inter-
est during the long-term selection process. As a result, these advantageous haplotypes 
in elite crop germplasm can be found utilising the genome resequencing technique 
to sequence an elite gene pool [156]. Later, molecular markers that characterise these 
beneficial haplotypes can be produced, and all of these haplotype-defining markers can 
then be utilised to pick the most ideal combination of haplotypes that govern a certain 
phenotype. Furthermore, by identifying lines with unique recombination in chromo-
somal blocks of relevance, these haplotype-related markers can be utilised to distinguish 
between favourable and unfavourable genetic variation. On the other hand, haplotypes 
can be employed in a prospective approach, in which a vast collection of ancestral and 
wild germplasm of specific crop species (not just elite breeding pools) is re-sequenced 
to find haplotypes with a wider range of genetic variation [153, 155]. The genome-wide 
haplotypes are employed in this strategy to find novel haplotypes in a wide variety of 
natural germplasm. For the discovery of QTLs/genes, recent GWA studies based on 
empirical and simulation data (i.e., better p-values) and allelic effect estimation have 
demonstrated that haplotype blocks have higher mapping accuracy and power than 
individual SNPs [153, 155–160]. Haplotype superiority can be explained by a number 
of factors. Stephens and his colleagues [161] showed that haplotype blocks are more 
informative than SNP markers because of their multi-allelic character in nature. The 
scientists found that haplotype variants were more common than SNPs, implying that 
recombination and recurrent mutation events occurred within and among haplotype 
genes (Figure 1). In addition, as compared to individual SNPs, haplotype-based analysis 
is predicted to reduce the false positives and shows the intricate mechanism of causal 
haplotypes [162]. Similarly, the haplotype-assisted GS depicts the complex relationships 
between genotypic information and phenotypes more accurately than individual SNPs. 
As a result, this method could eventually aid in improving selection gain per unit of 
time. Because haplotypes can better capture LD and genomic similarities in various lines 
and may capture local high-order allelic interactions, they may improve the accuracy 
of genomic prediction [163]. Furthermore, by depicting population structure in the 
calibration set, prediction accuracy might be enhanced. The superiority of haplotype-
based predictions over SNP-based predictions for all studied traits, including yield, test 
weight, and protein content, was established in a recent GS study that compared the 
prediction ability computed from haplotypes and SNPs in a set of 383 advanced lines 
and cultivars of wheat [164]. Based on evidence revealing higher haplotype-assisted 
genomic prediction efficiency than SNPs, researchers are increasingly embracing 
haplotype-assisted genomic prediction in crop development programmes.
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8. Conclusions

Significant progress has been made in wheat in developing various genomics 
resources, including high-throughput molecular markers, dense genetic maps, and 
next-generation genotyping platforms. The availability of high-quality wheat genome 
information has also enabled many next-generation sequencing-based approaches 
for genetic mapping, allele mining, and identification of candidate genes which have 
enhanced the precision, pace, and efficiency of trait mapping. At present, trait-asso-
ciated markers, high-throughput genotyping platforms, and expertise are available 
for deploying genomics-assisted breeding in wheat. We believe that in the coming 
years, extensive deployment of genome editing, transgenic technology, genomic 
selection, haplotype-based breeding in combination or alone would be undertaken for 
crop improvement and breaking the yield ceiling. Various steps involved in generating 
high-yielding wheat genotypes using genomics-assisted breeding technologies are 
represented in Figure 2.

Figure 2. 
Flowchart demonstrating the steps involved in generating high-yielding wheat genotypes using different  
genomics-assisted breeding strategies.

Figure 1. 
Flow diagram indicating how haplotype-based GWAS and haplotype-based GS, when combined with  
high-throughput genotyping, have the potential to improve gene identification precision and accuracy  
(modified from Bhat et al. [162]).
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