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1 Introduction

The discovery of neutrino oscillations indicates that neutrinos are massive and bear flavor

mixing. The neutrino mixing arises from the mismatch between their mass and flavor

eigenstates, and is described by a 3 × 3 unitary matrix U = U †
l Uν (with Ul and Uν being

respectively the unitary matrix for diagonalizing the charged-lepton mass matrix MlM
†
l

and neutrino mass matrix Mν). In the standard parametrization, U reads

U = Pφ







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13






Pν , (1.1)

where θij (for ij = 12, 13, 23) are the mixing angles (with cij = cos θij and sij = sin θij)

and δ is the Dirac CP phase. Pν = Diag(eiρ, eiσ, 1) contains two Majorana CP phases ρ

and σ, while Pφ = Diag(eiφ1 , eiφ2 , eiφ3) consists of three unphysical phases φ1,2,3 that can

be removed via the charged-lepton field rephasing. In addition, neutrino oscillations are

also controlled by two mass-squared differences ∆m2
ij = m2

i −m2
j (for ij = 21, 31). Thanks

to various neutrino-oscillation experiments [1], the neutrino mixing parameters have been

measured to a good accuracy. A global-fit result [2] for them is given by

sin2 θ12 = 0.308± 0.017 , ∆m2
21 = (7.54± 0.24)× 10−5 eV2 ,

sin2 θ13 = 0.0234± 0.0020 , |∆m2
31| = (2.47± 0.06)× 10−3 eV2 . (1.2)

Note that the sign of ∆m2
31 remains undetermined, allowing for two possible neutrino

mass orderings m1 < m2 < m3 (referred to as the normal hierarchy and NH for short) or

m3 < m1 < m2 (the inverted hierarchy and IH for short). The absolute neutrino mass

scale is not known either, but subject to the constraint m1 + m2 + m3 < 0.23 eV from

cosmological observations [3]. Particularly noteworthy, a recent result from the NOvA

experiment (θ23 = 39.5◦ ± 1.7◦ or 52.1◦ ± 1.7◦ in the NH case) disfavors the popular

maximal mixing scenario θ23 = 45◦ with 2.6σ significance [4]. On the other hand, it is
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interesting to find that the best-fit result for δ is around 270◦ (261◦ ± 55◦ for NH and

277◦ ± 43◦ for IH) [5].

How to understand the neutrino mixing pattern poses an interesting question. As

symmetries (e.g., the SU(3)q quark flavor symmetry) have been serving as a guideline for

understanding the particle physics, they may play a similar role in addressing the flavor

issues. Along this line, many discrete groups have been proposed as the lepton flavor

symmetry [6, 7]. A simplest example is the µ-τ permutation symmetry [8–12]: in the

basis of Ml being diagonal, Mν should keep unchanged with respect to the transformation

νµ ↔ ντ and thus feature Meµ = Meτ and Mµµ = Mττ (with Mαβ for α, β = e, µ, τ being

the matrix elements of Mν). Such a symmetry (which results in θ23 = π/4 and θ13 = 0) was

historically motivated by the experimental facts that θ23 takes a value close to π/4 while

θ13 was only constrained by sin2 2θ13 < 0.18 [13] (and thus might be negligibly small) at the

time. However, the relatively large θ13 ≃ 0.15 observed recently [14] requires a significant

breaking of this symmetry unless neutrinos are quasi-degenerate in masses [15]. Hence we

need to go beyond this simple possibility to accommodate the experimental results in a

better way. In this connection, the µ-τ reflection symmetry [12, 16] may serve as a unique

alternative: when Ml is diagonal, Mν should remain invariant under the transformation1

νe ↔ νce , νµ ↔ νcτ , ντ ↔ νcµ , (1.3)

and thus be characterized by

Meµ = M∗
eτ , Mµµ = M∗

ττ , Mee = M∗
ee , Mµτ = M∗

µτ . (1.4)

In addition to allowing for an arbitrary θ13, this symmetry predicts θ23 = π/4 and δ =

±π/2 [19] which are close to the present data, thereby having been attracting a lot of

interest [20–34]. Moreover, ρ and σ are required to take the trivial values 0 or π/2.

Nevertheless, it is hard to believe that the µ-τ reflection symmetry can remain as

an exact one. On the experimental side, the aforementioned results seem to hint towards

θ23 6= π/4 (and possibly δ 6= ±π/2). On the theoretical side, flavor symmetries are generally

implemented at a superhigh energy scale and so the renormalization group (RG) running

effect may provide a source for the symmetry breaking as we will see. In view of these con-

siderations, it is worthwhile to consider the breaking of this symmetry. In the next section,

we perform a systematic study of the possible symmetry-breaking patterns and their im-

plications for the mixing parameters. First of all, we establish an equation set relating the

symmetry-breaking parameters in an Mν of approximate µ-τ reflection symmetry and the

deviations of mixing parameters from their special values taken in the symmetry context.

While the numerical results for these equations are analyzed in section 2.1, some analyt-

ical approximations will be derived in section 2.2 to explain the corresponding numerical

results. In section 2.3 the general treatment is applied to some specific symmetry breaking

arising from the RG running effect. Finally, we summarize our main results in section 3.

1This operation is a combination of the µ-τ exchange and CP conjugate transformations — a typical

kind of the generalized CP transformations [17, 18].
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2 Breaking of the µ-τ reflection symmetry

Above all, we define the following parameters to characterize breaking of µ-τ reflection

symmetry

ǫ1 =
Meµ −M∗

eτ

Meµ +M∗
eτ

, ǫ2 =
Mµµ −M∗

ττ

Mµµ +M∗
ττ

, ǫ3 =
Im(Mee)

Re(Mee)
, ǫ4 =

Im(Mµτ )

Re(Mµτ )
,

(2.1)

by analogy with the discussions about breaking of µ-τ permutation symmetry in ref. [35].

Note that they correspond to the four symmetry conditions in eq. (1.4) one by one. These

parameters have to be small in magnitude (say |ǫi| ≤ 0.1 for i = 1, 2, 3, 4) so as to keep the

µ-τ reflection symmetry as an approximate one. In terms of them, the most general neutrino

mass matrix of an approximate µ-τ reflection symmetry can always be parameterized in

a manner as follows: suppose, at the symmetry level, there is a neutrino mass matrix of

the form

M (0)
ν =







A0 B0 B∗
0

B0 C0 D0

B∗
0 D0 C∗

0






, (2.2)

in which A0 and D0 are real. This neutrino mass matrix can be diagonalized by a unitary

matrix U (0) (an analogue of U) with its parameters satisfying the requirements

φ
(0)
1 = φ

(0)
2 + φ

(0)
3 = 0 , θ

(0)
23 = π/4 , δ(0) = ±π/2 , ρ(0), σ(0) = 0 or π/2 .

(2.3)

After the symmetry is softly broken, M
(0)
ν may receive a general perturbation as given by

M (1)
ν =







δee δeµ δeτ
δeµ δµµ δµτ
δeτ δµτ δττ






, (2.4)

which can be decomposed into two parts as

M (1)
ν =

1

2







2Re(δee) δeµ + δ∗eτ δ∗eµ + δeτ
δeµ + δ∗eτ δµµ + δ∗ττ 2Re(δµτ )

δ∗eµ + δeτ 2Re(δµτ ) δ∗µµ + δττ






+

1

2







2iIm(δee) δeµ − δ∗eτ δeτ − δ∗eµ
δeµ − δ∗eτ δµµ − δ∗ττ 2iIm(δµτ )

δeτ − δ∗eµ 2iIm(δµτ ) δττ − δ∗µµ






.

(2.5)

Consequently, the complete neutrino mass matrix Mν = M
(0)
ν + M

(1)
ν can be parameter-

ized as

Mν =







A(1 + iǫ3) B(1 + ǫ1) B∗ (1− ǫ∗1)

B(1 + ǫ1) C(1 + ǫ2) D(1 + iǫ4)

B∗ (1− ǫ∗1) D(1 + iǫ4) C∗ (1− ǫ∗2)






, (2.6)

with

A = A0 +Re(δee) , B = B0 +
δeµ + δ∗eτ

2
,

D = D0 +Re(δµτ ) , C = C0 +
δµµ + δ∗ττ

2
, (2.7)
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and

ǫ1 =
δeµ − δ∗eτ

2B
, ǫ2 =

δµµ − δ∗ττ
2C

, ǫ3 =
Im(δee)

A
, ǫ4 =

Im(δµτ )

D
. (2.8)

It should be noted that Im(ǫ1,2) and ǫ3,4 will transform in a way as

Im(ǫ1) → Im(ǫ1) + ϕ1 + (ϕ2 + ϕ3)/2 , ǫ3 → ǫ3 + 2ϕ1 ,

Im(ǫ2) → Im(ǫ2) + ϕ2 + ϕ3 , ǫ4 → ǫ4 + ϕ2 + ϕ3 , (2.9)

under the neutrino-field rephasing

νe → eiϕ1νe ≃ (1 + iϕ1)νe , νµ → eiϕ2νµ ≃ (1 + iϕ2)νµ ,

ντ → eiϕ3ντ ≃ (1 + iϕ3)ντ , (2.10)

with ϕ1,2,3 being some small parameters comparable to ǫi. Taking advantage of such a

freedom, one can always achieve ǫ3,4 = 0 from the general case given by eq. (2.6). In

the following discussions, we therefore concentrate on this particular case without loss of

generality.

Starting from an Mν of the form in eq. (2.6) but with ǫ3,4 = 0, we study the dependence

of mixing parameters on ǫ1,2. To this end, we diagonalize such an Mν with one unitary

matrix in a straightforward way

U †MνU
∗ = Diag(m1,m2,m3) . (2.11)

The mixing parameters in U are supposed to lie around those special values in eq. (2.3)

and the corresponding deviations

∆φ1 = φ1 − 0 , ∆φ = (φ2 + φ3)/2− 0 , ∆θ = θ23 − π/4 ,

∆δ = δ − δ(0) , ∆ρ = ρ− ρ(0) , ∆σ = σ − σ(0) , (2.12)

are some small quantities. By making perturbation expansions for these small quantities in

eq. (2.11), one reaches the following relations connecting the mixing-parameter deviations

with ǫ1,2

m3s
2
13∆δ +m1c

2
12∆ρ+m2s

2
12∆σ =

(

m3s
2
13 −m11

)

∆φ1 ,

2m12s̄13∆θ −m11s
2
13∆δ −m1s

2
12∆ρ−m2c

2
12∆σ = (m22 −m3)∆φ ,

[m12 + i(m11 +m3)s̄13]∆θ − (m11 −m3)s̄13∆δ

−2m1c12(is12 + c12s̄13)∆ρ+ 2m2s12(ic12 − s12s̄13)∆σ =

[m12 − i(m11 +m3)s̄13](i∆φ1 + i∆φ− ǫ1) ,

2(m22 −m3)∆θ − 2(m12 − im11s̄13)s̄13∆δ

−2m1s12(is12 + 2c12s̄13)∆ρ− 2m2c12(ic12 − 2s12s̄13)∆σ =

(m22 +m3 − 2im12s̄13)(2i∆φ− ǫ2) . (2.13)
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In order to make the expressions compact, the definitions

m11 = m1c
2
12 +m2s

2
12 , m12 = (m1 −m2) c12s12 , m22 = m1s

2
12 +m2c

2
12 ,

m1 = m1exp
[

2iρ(0)
]

, m2 = m2exp
[

2iσ(0)
]

, s̄13 = −is13exp
[

iδ(0)
]

, (2.14)

have been taken.

2.1 Numerical results

By solving eq. (2.13), one can learn how much mixing-parameter deviations are predicted

given some small values of symmetry-breaking parameters. As we will see, the resulting

mixing-parameter deviations depend on the neutrino mass spectrum and the combinations

of ρ(0) and σ(0). So they are to be evaluated as functions of the lightest neutrino mass

(m1 for NH or m3 for IH) for various combinations of ρ(0) and σ(0) (i.e., [ρ(0), σ(0)] = [0, 0],

[π/2, 0], [0, π/2] and [π/2, π/2]). As typical examples, the mixing-parameter deviations

respectively arising from R1 ≡ Re(ǫ1) = 0.1 (in figure 1), I1 ≡ Im(ǫ1) = 0.1 (in figure 2),

R2 ≡ Re(ǫ2) = 0.1 (in figure 3) and I2 ≡ Im(ǫ2) = 0.1 (in figure 4) are presented in such a

way. Here and in the following, the black, red, green and blue colors are assigned to ∆θ,

∆δ, ∆ρ and ∆σ, respectively. To save space, the absolute value of a mixing-parameter

deviation will be represented by a dashed line when it is negative. By contrast, the full

line will be used when the mixing-parameter deviations are positive. In consideration

of the experimental sensitivity, the region where the mixing-parameter deviations have

magnitudes smaller than 0.01 has not been shown. In doing the calculations we have

specified δ(0) = −π/2. If it takes the opposite value π/2, the mixing-parameter deviations

produced by R1 or R2 will change in the way

∆θ → ∆θ , ∆δ → −∆δ , ∆ρ → −∆ρ , ∆σ → −∆σ , (2.15)

while those produced by I1 or I2 will change in the way

∆θ → −∆θ , ∆δ → ∆δ , ∆ρ → ∆ρ , ∆σ → ∆σ . (2.16)

The point is that eq. (2.13) stays invariant with respect to the transformations

∆θ → ∆θ , ∆δ → −∆δ , ∆ρ → −∆ρ , ∆σ → −∆σ ,

R1 → R1 , I1 → −I1 , R2 → R2 , I2 → −I2 , (2.17)

combined with s̄13 → −s̄13 as well as ∆φ1 → −∆φ1 and ∆φ → −∆φ. For the convenience

of readers, from the results in figures 1–4 we take some representative values of ∆θ (in

table 1), ∆δ (in table 2), ∆ρ (in table 3) and ∆σ (in table 4) at m1(m3) = 0.001, 0.01 and

0.1 eV in the NH (IH) case. When a value of the mixing-parameter deviations falls in the

range [−0.01, 0] or [0, 0.01], it will be reported as 0.00 or −0.00.

There are two immediate remarks for the above results. For the convenience of discus-

sions, we use the contribution of R1 to ∆δ as an illustration. But the following discussions

apply to the contribution of each symmetry-breaking parameter to each mixing-parameter

deviation. (1) The resulting ∆δ still can be inferred from the results in figure 1 when

– 5 –
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m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

IH ++ IH −+ IH +− IH −−

Figure 1. The mixing-parameter deviations induced by R1 = 0.1 (∆θ in black, ∆δ in red, ∆ρ in

green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or IH) case for

various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and −− respectively

stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

IH ++ IH −+ IH +− IH −−

Figure 2. The mixing-parameter deviations induced by I1 = 0.1 (∆θ in black, ∆δ in red, ∆ρ in

green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or IH) case for

various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and −− respectively

stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

R1 takes a value other than 0.1.2 Since eq. (2.13) is a system of linear equations, ∆δ is

expected to have a linear dependence on R1, implying that the ratio ∆δ/R1 must be a

quantity independent of the value of R1. The size of this ratio measures the sensitivity

of ∆δ to R1. When it is of ≤ O(0.1), O(1) or ≥ O(10), we say that ∆δ may receive a

small, modest or large contribution from R1. For R1 = 0.1, the “small”, “modest” and

“large” contributions are respectively of ≤ O(0.01), O(0.1) and O(1). Provided that the

2Note that in some scenarios (e.g., the RG-induced symmetry breaking as will be discussed in section 2.3)

the symmetry-breaking parameters have no chance to acquire a size up to 0.1.
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m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

IH ++ IH −+ IH +− IH −−

Figure 3. The mixing-parameter deviations induced by R2 = 0.1 (∆θ in black, ∆δ in red, ∆ρ in

green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or IH) case for

various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and −− respectively

stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

IH ++ IH −+ IH +− IH −−

Figure 4. The mixing-parameter deviations induced by I2 = 0.1 (∆θ in black, ∆δ in red, ∆ρ in

green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or IH) case for

various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and −− respectively

stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

∆δ′ arising from a given value R′
1 of R1 (e.g., 0.1) has already been known (e.g., the red

lines in figure 1), the ∆δ′′ generated by another value R′′
1 of R1 can be directly obtained as

∆δ′′ =
∆δ′

R′
1

R′′
1 =

R′′
1

R′
1

∆δ′ . (2.18)

For example, the ∆δ produced by R1 = 0.01 will be a tenth of the result given by figure 1.

(2) But there is one thing to take care of: in some cases (in particular the case of quasi-

degenerate neutrino mass spectrum combined with ρ(0) 6= σ(0)) ∆δ seems to have gained

a contribution of ≥ O(1) from R1 = 0.1. For instance, as shown by the red line of the
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❳
❳

❳
❳
❳

❳
❳
❳

❳
❳

❳
❳

[ρ(0), σ(0)]

m1[m3] 0.001 eV 0.01 eV 0.1 eV

[0, 0] R1 = 0.1 0.00 [−0.00] 0.00 [−0.00] 0.03 [−0.07]

[π/2, 0] 0.00 [−0.09] 0.01 [−0.09] 0.36 [−0.56]

[0, π/2] 0.00 [−0.09] 0.01 [−0.09] 0.43 [−0.70]

[π/2, π/2] 0.00 [−0.00] 0.00 [−0.00] 0.00 [−0.00]

[0, 0] I1 = 0.1 0.00 [0.00] 0.00 [0.00] 0.00 [0.01]

[π/2, 0] 0.00 [−0.00] −0.00 [−0.00] 0.17 [−0.34]

[0, π/2] 0.00 [−0.00] −0.00 [−0.00] 0.15 [−0.31]

[π/2, π/2] 0.00 [0.00] 0.00 [0.00] 0.00 [0.00]

[0, 0] R2 = 0.1 0.06 [−0.05] 0.08 [−0.08] 0.65 [−1.5]

[π/2, 0] 0.06 [−0.01] 0.07 [−0.02] 0.49 [−0.57]

[0, π/2] 0.04 [−0.01] 0.04 [−0.01] 0.13 [−0.14]

[π/2, π/2] 0.04 [−0.05] 0.03 [−0.03] 0.00 [−0.00]

[0, 0] I2 = 0.1 0.00 [−0.00] 0.00 [−0.00] −0.00 [−0.00]

[π/2, 0] 0.00 [0.00] 0.00 [0.00] −0.17 [0.28]

[0, π/2] −0.00 [0.00] −0.00 [0.00] 0.09 [−0.13]

[π/2, π/2] −0.00 [−0.00] −0.00 [−0.00] −0.00 [−0.00]

Table 1. Some representative values of ∆θ (induced by R1 = 0.1, I1 = 0.1, R2 = 0.1 and I2 = 0.1,

respectively) at m1(m3) = 0.001, 0.01 and 0.1 eV in the NH (IH) case for various combinations of

ρ(0) and σ(0) with δ(0) = −π/2.

sub-figure labelled by “NH +−” in figure 1, ∆δ takes a value of 10 at m1 ≃ 0.077 eV in

the case of NH combined with [ρ(0), σ(0)] = [0, π/2]. This would never be a realistic result

but some signal for the breakdown of our approximation method used to derive eq. (2.13).

Nevertheless, the ratio ∆δ/R1 which takes a value of 100 in this specific case (implying

that even a small R1 = 0.001 can lead to some sizable ∆δ ≃ 0.1 = 6◦) is still useful.

To keep ∆δ within an acceptably small range in such a case (remember that it is right

the possible closeness of θ23 and δ to π/4 and −π/2 that motivates us to study the µ-τ

reflection symmetry), R1 should be of ≤ O(0.001). If R1 were unfortunately much greater

than 0.001, the resulting ∆δ would be of O(1). And one has to invoke an exact method

(instead of the approximation one adopted here) to obtain the precise value of ∆δ. But

this is beyond the scope of our interest, because it would be insignificant to discuss the µ-τ

reflection symmetry any more if δ turned out to be far from ±π/2.

Given small values of symmetry-breaking parameters (i.e., R1 = 0.1, I1 = 0.1, R2 = 0.1

and I2 = 0.1), the resulting ∆θ appears as:

1. The |∆θ| from R1 = 0.1 is: negligibly small in the case of m1 ≪ m2 ≪ m3 (e.g., the

particular case of m1 = 0.001 eV in table 1); negligibly small or 0.1 in the case of

m3 ≪ m1 ≃ m2 (e.g., the particular case of m3 = 0.001 eV in table 1) combined with

– 8 –
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❳
❳

❳
❳
❳

❳
❳
❳

❳
❳

❳
❳

[ρ(0), σ(0)]

m1[m3] 0.001 eV 0.01 eV 0.1 eV

[0, 0] R1 = 0.1 −0.11 [−0.00] −0.06 [−0.00] −0.03 [−0.01]

[π/2, 0] −0.13 [1.94] −0.22 [1.98] 2.83 [11.2]

[0, π/2] 0.15 [1.95] 0.45 [2.07] 17.3 [11.7]

[π/2, π/2] 0.11 [−0.00] 0.04 [−0.00] 0.00 [−0.00]

[0, 0] I1 = 0.1 −0.05 [0.10] −0.13 [0.14] −1.70 [1.68]

[π/2, 0] −0.02[4.92] 0.25 [5.18] 22.0 [31.5]

[0, π/2] −0.07 [4.90] 0.09 [5.05] 21.6 [24.3]

[π/2, π/2] −0.07 [0.09] −0.06 [0.07] −0.01 [0.01]

[0, 0] R2 = 0.1 0.02 [−0.01] 0.01 [−0.01] 0.06 [−0.23]

[π/2, 0] 0.02[1.27] 0.08 [1.47] 4.20 [12.4]

[0, π/2] 0.00 [1.24] 0.03 [1.16] 3.86 [3.16]

[π/2, π/2] 0.00 [−0.01] −0.00 [−0.00] 0.00 [−0.00]

[0, 0] I2 = 0.1 −0.24 [−0.08] −0.06 [−0.10] 0.80 [−0.89]

[π/2, 0] −0.31[−1.22] −0.84 [−1.91] −21.1 [−25.9]

[0, π/2] 0.33 [−1.08] 0.75 [−0.49] 12.5 [9.86]

[π/2, π/2] 0.27 [−0.07] 0.11 [−0.05] 0.01 [−0.01]

Table 2. Some representative values of ∆δ (induced by R1 = 0.1, I1 = 0.1, R2 = 0.1 and I2 = 0.1,

respectively) at m1(m3) = 0.001, 0.01 and 0.1 eV in the NH (IH) case for various combinations of

ρ(0) and σ(0) with δ(0) = −π/2.

ρ(0) = σ(0) or ρ(0) 6= σ(0); 0.03 orO(1) or negligibly small in the case ofm1 ≃ m2 ≃ m3

(e.g., the particular case of m1 = 0.1 eV in table 1) combined with [ρ(0), σ(0)] = [0, 0]

or [π/2, 0] (and [0, π/2]) or [π/2, π/2].

2. The |∆θ| from I1,2 = 0.1 is: around 0.1 in the case of m1 ≃ m2 ≃ m3 combined with

ρ(0) 6= σ(0); negligibly small in other cases.

3. The |∆θ| from R2 = 0.1 is: 0.05 in the case of m1 ≪ m2 ≪ m3; 0.05 or negligibly

small in the case of m3 ≪ m1 ≃ m2 combined with ρ(0) = σ(0) or ρ(0) 6= σ(0); O(1) or

0.1 or negligibly small in the case of m1 ≃ m2 ≃ m3 combined with [ρ(0), σ(0)] = [0, 0]

(and [π/2, 0]) or [0, π/2] or [π/2, π/2].

On the other hand, the resulting ∆δ turns out to be:

1. The |∆δ| from R1 = 0.1 is: around 0.1 in the case of m1 ≪ m2 ≪ m3; negligibly

small or O(1) in the case of m3 ≪ m1 ≃ m2 combined with ρ(0) = σ(0) or ρ(0) 6=

σ(0); 0.03 or O(1) or negligibly small in the case of m1 ≃ m2 ≃ m3 combined with

[ρ(0), σ(0)] = [0, 0] or [π/2, 0] (and [0, π/2]) or [π/2, π/2].
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[ρ(0), σ(0)]

m1[m3] 0.001 eV 0.01 eV 0.1 eV

[0, 0] R1 = 0.1 0.44 [0.01] 0.07 [0.01] 0.02 [0.04]

[π/2, 0] −0.36 [−1.25] 0.02 [−1.43] −3.24 [−6.25]

[0, π/2] 0.22 [−1.77] −0.19 [−1.72] −9.14 [−12.4]

[π/2, π/2] −0.33 [0.01] −0.04 [0.01] −0.00 [0.00]

[0, 0] I1 = 0.1 −0.12 [−0.12] −0.01 [−0.02] 0.04 [−0.05]

[π/2, 0] 0.07 [−1.27] −0.19 [−3.38] −15.7 [−20.7]

[0, π/2] 0.26 [−5.57] −0.08 [−3.75] −14.1 [−19.0]

[π/2, π/2] −0.24 [0.11] −0.01 [0.01] −0.00 [0.00]

[0, 0] R2 = 0.1 −0.24 [0.01] −0.05 [0.01] −0.16 [0.34]

[π/2, 0] 0.15 [0.02] −0.10 [−0.80] −4.27 [−6.70]

[0, π/2] −0.13 [−1.61] −0.00 [−0.85] −1.96 [−3.21]

[π/2, π/2] 0.15 [−0.00] 0.01 [0.00] 0.00 [0.00]

[0, 0] I2 = 0.1 0.58 [−1.17] 0.11 [−0.11] −0.01 [0.02]

[π/2, 0] −0.18 [−0.14] 0.55 [1.23] 15.0 [17.0]

[0, π/2] 0.10 [1.75] −0.48 [0.45] −8.07 [−7.62]

[π/2, π/2] −0.50 [1.17] −0.11 [0.12] −0.01 [0.01]

Table 3. Some representative values of ∆ρ (induced by R1 = 0.1, I1 = 0.1, R2 = 0.1 and I2 = 0.1,

respectively) at m1(m3) = 0.001, 0.01 and 0.1 eV in the NH (IH) case for various combinations of

ρ(0) and σ(0) with δ(0) = −π/2.

2. The |∆δ| from I1,2 = 0.1 is: O(0.1) in the case of m1 ≪ m2 ≪ m3; 0.1 or O(1) in the

case of m3 ≪ m1 ≃ m2 combined with ρ(0) = σ(0) or ρ(0) 6= σ(0); O(1) in the case of

m1 ≃ m2 ≃ m3 but negligibly small for [ρ(0), σ(0)] = [π/2, π/2].

3. The |∆δ| from R2 = 0.1 is: negligibly small in the case of m1 ≪ m2 ≪ m3; negligibly

small or O(1) in the case of m3 ≪ m1 ≃ m2 combined with ρ(0) = σ(0) or ρ(0) 6=

σ(0); 0.06 or O(1) or negligibly small in the case of m1 ≃ m2 ≃ m3 combined with

[ρ(0), σ(0)] = [0, 0] or [π/2, 0] (and [0, π/2]) or [π/2, π/2].

Note that in the cases where some mixing-parameter deviation acquires a size of O(1) from

R1 = 0.1, I1 = 0.1, R2 = 0.1 or I2 = 0.1, the corresponding symmetry-breaking parameter

should be of ≤ O(0.01) to keep this mixing-parameter deviation within an acceptably

small range. From the above results one can draw the following observations: (1) The

mixing-parameter deviations tend to get remarkably enhanced (or suppressed) in the case

of m1 ≃ m2 ≃ m3 combined with ρ(0) 6= σ(0) (or [ρ(0), σ(0)] = [π/2, π/2]). (2) When the

absolute neutrino mass scale is small and ρ(0) 6= σ(0), the mixing-parameter deviations

generally have a much greater magnitude in the IH case than in the NH case. (3) ∆θ is
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[ρ(0), σ(0)]

m1[m3] 0.001 eV 0.01 eV 0.1 eV

[0, 0] R1 = 0.1 −0.02 [−0.00] −0.02 [−0.01] −0.01 [−0.02]

[π/2, 0] −0.02 [−0.43] 0.01 [−0.63] −1.33 [−2.88]

[0, π/2] 0.01 [−0.94] −0.06 [−0.79] −4.07 [−5.63]

[π/2, π/2] 0.02 [−0.01] 0.01 [−0.00] 0.00 [−0.00]

[0, 0] I1 = 0.1 0.01 [−0.12] 0.00 [−0.02] 0.04 [−0.04]

[π/2, 0] 0.00 [0.65] −0.06 [−1.35] −6.83 [−9.09]

[0, π/2] 0.01 [−3.65] −0.03 [−1.77] −6.32 [−8.58]

[π/2, π/2] 0.01 [0.11] 0.00 [0.01] −0.00 [0.00]

[0, 0] R2 = 0.1 0.02 [0.00] 0.02 [−0.00] 0.07 [−0.14]

[π/2, 0] 0.01 [0.46] −0.03 [−0.32] −1.74 [−3.08]

[0, π/2] −0.01 [−1.18] −0.00 [−0.43] −0.88 [−1.47]

[π/2, π/2] −0.01 [−0.01] −0.01 [−0.00] −0.00 [−0.00]

[0, 0] I2 = 0.1 0.17 [−1.17] 0.09 [−0.11] −0.01 [0.02]

[π/2, 0] 0.19 [−0.64] 0.32 [0.47] 6.57 [7.50]

[0, π/2] −0.20 [1.31] −0.30 [0.23] −3.66 [−3.48]

[π/2, π/2] −0.18 [1.17] −0.09 [0.12] −0.01 [0.01]

Table 4. Some representative values of ∆σ (induced by R1 = 0.1, I1 = 0.1, R2 = 0.1 and I2 = 0.1,

respectively) at m1(m3) = 0.001, 0.01 and 0.1 eV in the NH (IH) case for various combinations of

ρ(0) and σ(0) with δ(0) = −π/2.

most sensitive to R2 while ∆δ to all the symmetry-breaking parameters. In magnitude, ∆δ

is generally much greater than ∆θ.

For illustration, we give a toy example to show how to make use of the above results.

In this connection, we discuss how the global-fit results θ23/
◦ = 41.6+1.5

−1.2 and δ/◦ = 261+51
−59

in the NH case [5] may arise from an approximate µ-τ reflection symmetry. (For simplicity,

only the best-fit results will be used.) An interesting possibility is that a single R2
3 is

responsible for the two measured mixing-parameter deviations ∆θ ≃ −3.4◦ and ∆δ ≃ −9◦.

This can be achieved when the ∆δ and ∆θ generated by R2 happen to fulfill the condition

∆δ/∆θ = (−9◦)/(−3.4◦) ≃ 2.65. With the aid of the sub-figure labelled by “NH −+”

in figure 3, it turns out that this requirement can be satisfied in the case of [ρ(0), σ(0)] =

[π/2, 0]: at m1 = 0.019 eV, the values of ∆θ/R2 and ∆δ/R2 (as well as ∆ρ/R2 and ∆σ/R2)

respectively read 7.8 and 20.7 (as well as −24.5 and −9). Accordingly, R2 ≃ −0.076 is

capable of producing θ23 ≃ 41.6◦ and δ = 261◦ (as well as ρ ≃ 100.7◦ and σ ≃ 3.9◦).

3Of course, in a realistic context, the mixing-parameter deviations may receive contributions from not

merely one symmetry-breaking parameter.
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Figure 5. The possible values of |Re(M
ee
)| against the lightest neutrino mass m1 (or m3) in the NH

(or IH) case for various combinations of ρ(0) and σ(0). The signs ++,−+,+− and −− respectively

stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

Finally, we discuss the consequences of breaking of µ-τ reflection symmetry on the

allowed range of effective Majorana neutrino mass |Mee| which directly controls the rates

of neutrinoless double-beta decays [36–39]. For this purpose, one obtains

Re(Mee) ≃ m1c
2
12c

2
13 +m2s

2
12c

2
13 −m3s

2
13 ,

Im(Mee) ≃ m1c
2
12∆ρ+m2s

2
12∆σ +m3s

2
13∆δ +

(

m11 −m3s
2
13

)

∆φ1 . (2.19)

Because the symmetry-breaking parameter ǫ3 = Im(Mee)/Re(Mee) should be a small quan-

tity (e.g., |ǫ3| ≤ 0.1) if we want to maintain the µ-τ reflection symmetry as an approximate

one, the value of

|Mee| =
√

[Re(Mee)]
2 + [Im(Mee)]

2 ≃ |Re(Mee)|

(

1 +
ǫ23
2

)

, (2.20)

can be well approximated by that of |Re(Mee)|. It is thus fair to say that the consequences

of breaking of µ-τ reflection symmetry on the allowed range of |Mee| are negligibly small.

In figure 5 we present the possible values of |Re(Mee)| as a function of the lightest neutrino

mass m1 (or m3) in the NH (or IH) case for various combinations of ρ(0) and σ(0) [23]. (1) In

the NH case, the three components of |Re(Mee)| add constructively to a maximal level for

[ρ(0), σ(0)] = [π/2, π/2]. By contrast, the three components will cancel each other out (i.e.,

|Re(Mee)| ≃ 0) at m1 ≃ 0.002 eV (or 0.007 eV) for [ρ(0), σ(0)] = [π/2, 0] (or [0, π/2]). (2)

In the IH case, the value of |Re(Mee)| is mainly determined by the first two components

as the third one is highly suppressed. Because of m1 ≃ m2 in the IH case, |Re(Mee)|

approximates to m1 (or m1(c
2
12 − s212)) for ρ

(0) = σ(0) (or ρ(0) 6= σ(0)).

2.2 Analytical approximations

In this section, we give the analytical expressions of ∆δ and ∆θ (which are of more practical

interest than ∆ρ and ∆σ since the Majorana phases cannot be pinned down in a foreseeable
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future) to explain the numerical results. After a lengthy but straightforward calculation,

one obtains the approximation results

∆δ ≃ [2T(m1 +m2)(m1 −m3)(m2 −m3)s̄13]
−1 {[2Tm12(m22 −m3)

(

m1 +m2 − 2m3s
2
13

)

−4m2
12(m11 +m3 +Tm12)s

2
13 + 4(m1 −m3)(m2 −m3)(m11 +m3)s

2
13

]

R1 −
[

4m12

×(m1 −m3)(m2 −m3)− 2T
(

m1 +m2 − 2m3s
2
13

)

(m11 +m3)(m22 −m3)− 4TΩ

×m2
12m3s

2
13

]

s̄13I1 −
[

Tm12(m22 +m3)
(

m1 +m2 − 2m3s
2
13

)

− 2Tm12(m1 −m3)

×(m2 −m3)s
2
13 − 2(m11 −m3)(m22 +m3)(m11 +m3 +Tm12)s

2
13

]

R2

+T(m22 +m3)
[

m2
12 − (m22 −m3)(2m11 +m22 −m3)

]

s̄13I2} ,

∆θ ≃
[

2T(m1 +m2)(m1 −m3)(m2 −m3)
]−1

{2T(m1 +m2)
[

m2
12 −

(

m2
11 −m2

3

)

s213
]

R1

+4m11m12

[

T(m1 +m2) + 2m12s
2
13

]

s̄13I1 − T(m1 +m2)(m11 −m3)(m22 +m3)R2

−Tm12

[

(m1 +m2)(2m11 +m22 −m3)− 2m11(m22 +m3)s
2
13

]

s̄13I2} , (2.21)

with T = tan 2θ12 and Ω = (m11 +m3)/(m11 −m3).

For illustration, we discuss the possible values of ∆δ and ∆θ in several typical cases.

(1) In the case of m1 ≪ m2 ≃
√

∆m2
21 ≪ m3 ≃

√

|∆m2
31|, ∆δ and ∆θ approximate to

∆δ ≃
m3

2m2s̄13

[(

2rc12s12 +
4

T
s213

)

R1 − s̄13I2 +

(

rc12s12 −
2

T
s213

)

R2

]

− 2s212I1 ,

∆θ ≃ s213R1 − 2|r|c12s
3
12s̄13I1 +

1

2
R2 −

m2

2m3

c12s12s̄13I2 , (2.22)

where r = ∆m2
21/∆m2

31 takes a value of ±0.03 for NH or IH. One finds that ∆δ (∆θ) can

receive modest contributions from R1 and I1,2 (R2). (2) For m1 ≃ m2 ≃
√

|∆m2
31| ≫ m3,

in which case one has m2 −m1 ≃ ∆m2
21/(2

√

|∆m2
31|), the results are strongly dependent

on the combinations of ρ(0) and σ(0). If ρ(0) and σ(0) take the same value, ∆δ and ∆θ are

simplified to

∆δ ≃ I1 −
3

4
I2 +

1

4Ts̄13

[(

4s213 − 2T|r|c12s12
)

R1 +
(

2s213 +T|r|c12s12
)

R2

]

,

∆θ ≃ −s213R1 − |r|c12s12s̄13

(

I1 −
3

4
I2

)

−
1

2
R2 . (2.23)

It turns out that ∆δ (∆θ) can acquire modest contributions from I1 and I2 (R2). When

ρ(0) and σ(0) differ from each other, one will have

∆δ ≃
1

|r|

[

−32c312s
3
12s̄13R1 + 4 cos 2θ12I1 − 4c12s12s̄13R2 − 4c212s

2
12 cos 2θ12I2

]

,

∆θ ≃ −4c212s
2
12R1 − c12s12 cos 2θ12

[

1−
4

|r|
cos 2θ12s

2
13

]

s̄13 (4I1 − I2)−
1

2
cos2 2θ12R2 .

(2.24)

Enhanced by the factor 1/|r|, ∆δ is easy to gain a large contribution. On the other hand, ∆θ

can only obtain a modest contribution from R1. (3) When it comes tom1 ≃ m2 ≃ m3 ≃ m0,

in which case m2−m1 ≃ ∆m2
21/(2m0) and m3−m1 ≃ ∆m2

31/(2m0), the mixing-parameter
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deviations may get remarkably magnified in some cases. For [ρ(0), σ(0)] = [0, 0], ∆δ and ∆θ

are approximately given by

∆δ ≃
1

Ts̄13

[

(

Trc12s12 + 2s213
)

R1 +
2m2

0

∆m2
31

(

Trc12s12 − 2s213
)

R2

]

−
2m2

0

∆m2
31

(2I1 − I2) ,

∆θ ≃
2m2

0

∆m2
31

[

2s213R1 − rc12s12s̄13 (2I1 − I2) + R2

]

. (2.25)

Because of the enhancement factor m2
0/∆m2

31, ∆δ (∆θ) can get large contributions from

I1 and I2 (R2). In the case of [ρ(0), σ(0)] = [π/2, 0], ∆δ and ∆θ appear as

∆δ ≃
2m2

0

∆m2
21

{[

4

T
s212 − 2c12s12

(

1 + 2s212
)

]

s̄13R1 + 2 cos 2θ12I1 − 2c12s12s̄13R2 − c212I2

}

,

∆θ ≃
2m2

0

∆m2
31

[

2c212s
2
12R1 −

4m2
0

∆m2
21

c12s12 cos 2θ12s̄
3
13

(

2 cos 2θ12I1 − c212I2
)

+ c412R2

]

. (2.26)

When [ρ(0), σ(0)] = [0, π/2], the results become

∆δ ≃
2m2

0

∆m2
21

{

−

[

4

T
c212 + 2c12s12

(

1 + 2c212
)

]

s̄13R1 + 2 cos 2θ12I1 − 2c12s12s̄13R2 + s212I2

}

,

∆θ ≃
2m2

0

∆m2
31

[

2c212s
2
12R1 −

4m2
0

∆m2
21

c12s12 cos 2θ12s̄
3
13

(

2 cos 2θ12I1 + s212I2
)

+ s412R2

]

. (2.27)

In these two cases ∆δ is greatly enhanced by the factor m2
0/∆m2

21, while the enhancement

factor m2
0/∆m2

31 for ∆θ is also significant but not so huge. Finally, [ρ(0), σ(0)] = [π/2, π/2]

will lead us to

∆δ ≃ −
∆m2

31

4m2
0s̄13

[(

rc12s12 +
2

T
s213

)

R1 + s̄13 (I1 − I2)

]

,

∆θ ≃
∆m2

31

8m2
0

[

2s213R1 − 2rc12s12s̄13 (I1 − I2) + R2

]

. (2.28)

It is easy to see that all the mixing-parameter deviations are extremely suppressed in this

case. One will find that all the above analytical results agree well with the corresponding

numerical results.

2.3 RG induced symmetry breaking

This section is devoted to the RG-induced breaking of µ-τ reflection symmetry. A flavor

symmetry [6, 7] together with the associated new fields is usually introduced at an energy

scale ΛFS much higher than the electroweak (EW) one ΛEW. In this case one must consider

the RG running effect when confronting the flavor-symmetry model with the low-energy

data [40]. During the RG evolution process the significant difference between mµ and mτ

can serve as a unique source for the breaking of µ-τ reflection symmetry. The general

symmetry breaking studied in the above thus finds an interesting application in such a

specific situation [41–44]. The energy dependence of neutrino mass matrix is described by

its RG equation, which at the one-loop level appears as [45–49]

16π2dMν

dt
= C

(

Y †
l Yl

)T

Mν + CMν

(

Y †
l Yl

)

+ αMν . (2.29)

– 14 –



J
H
E
P
0
9
(
2
0
1
7
)
0
2
3

Here t is defined as ln(µ/µ0) with µ denoting the renormalization scale, whereas C and

α read

C = −
3

2
, α ≃ −3g22 + 6y2t + λ , in the SM ;

C = 1 , α ≃ −
6

5
g21 − 6g22 + 6y2t , in the MSSM . (2.30)

In eq. (2.29) the α-term is flavor universal and therefore just contributes an overall rescaling

factor (which will be referred to as Iα), while the other two terms may modify the structure

of Mν . In the basis under study, the Yukawa coupling matrix of three charged leptons is

given by Yl = Diag(ye, yµ, yτ ). In light of ye ≪ yµ ≪ yτ , it is reasonable to neglect the

contributions of ye and yµ. Integration of the RG equation enables us to connect the

neutrino mass matrix Mν(ΛFS) at ΛFS with the corresponding one at ΛEW in a manner

as [50, 51]

Mν(ΛEW) = IαI
†
τMν(ΛFS)I

∗
τ , (2.31)

where Iτ ≃ Diag{1, 1, 1−∆τ} and

Iα = exp

(

1

16π2

∫ ln Λ
EW

ln Λ
FS

αdt

)

, ∆τ =
C

16π2

∫ ln Λ
FS

ln Λ
EW

y2τdt . (2.32)

In the SM case, the RG running effect is negligible due to the smallness of yτ ≃ 0.01 (which

renders ∆τ ≃ O(10−5) ). By contrast, y2τ = (1+ tan2 β)m2
τ/v

2 can be enhanced by a large

tanβ in the MSSM case. Given ΛFS ≃ 1013GeV, for example, the value of ∆τ depends on

tanβ in a way as

∆τ ≃ 0.042

(

tanβ

50

)2

. (2.33)

With the help of eq. (2.31), one will get the RG-corrected neutrino mass matrix at ΛEW

Mν(ΛEW) ≃ Iα






Mν(ΛFS)−∆τ







0 0 Meτ

0 0 Mµτ

Meτ Mµτ 2Mττ












, (2.34)

from a neutrino mass matrix respecting the µ-τ reflection symmetry at ΛFS. By means of

the above-mentioned treatment, one may arrange Mν(ΛEW) in a form as given by eq. (2.6)

with ǫ2 = 2ǫ1 = ∆τ and ǫ3,4 = 0. The relations between the mixing-parameter deviations

and ∆τ can therefore be obtained by simply taking R2 = 2R1 = ∆τ and I1,2 = 0 in

eq. (2.13). As before, the mixing-parameter deviations have a linear dependence on ∆τ

and thus a square dependence on tan β. In figures 6–7 we display the mixing-parameter

deviations respectively arising from tan β = 50 and tan β = 30 against the absolute neutrino

mass scale for various combinations of ρ(0) and σ(0). By analogy with eq. (2.18) (with a

square dependence in place of the linear dependence), the mixing-parameter deviations

generated by other values of tan β can also be inferred from these results. Qualitatively,

the mixing-parameter deviations produced by ∆τ closely resemble those resulting from

R1,2 in a few aspects: (1) Their magnitudes tend to grow with the absolute neutrino mass
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m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

tanβ = 50 tan β = 50 tanβ = 50tan β = 50

IH ++ IH −+ IH +− IH −−

tanβ = 50 tan β = 50 tanβ = 50tan β = 50

Figure 6. The mixing-parameter deviations in the MSSM case with tan β = 50 (∆θ in black, ∆δ

in red, ∆ρ in green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or

IH) case for various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and

−− respectively stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

m
1
(or m

3
) [eV]

10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1

10−2

10−1

1

10

10−2

10−1

1

10
NH ++ NH −+ NH +− NH −−

tanβ = 30 tan β = 30 tanβ = 30tan β = 30

IH ++ IH −+ IH +− IH −−

tanβ = 30 tan β = 30 tanβ = 30tan β = 30

Figure 7. The mixing-parameter deviations in the MSSM case with tan β = 30 (∆θ in black, ∆δ

in red, ∆ρ in green and ∆σ in blue) against the lightest neutrino mass m1 (or m3) in the NH (or

IH) case for various combinations of ρ(0) and σ(0) with δ(0) = −π/2. The signs ++,−+,+− and

−− respectively stand for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2].

scale (except in the case of [ρ(0), σ(0)] = [π/2, π/2]). (2) ∆θ generally receives a modest

contribution from ∆τ in most cases, while ∆δ, ∆ρ and ∆σ may get remarkably magnified

for ρ(0) 6= σ(0). (3) |∆δ| and |∆ρ| are comparable to each other, while |∆σ| is somewhat

smaller. (4) ∆θ is always positive (negative) in the NH (IH) case. Quantitatively, the

allowed ∆θ and ∆δ from ∆τ ≤ 0.04 (for tan β ≤ 50) are as follows: (1) In the case of

m1 ≪ m2 ≪ m3 or m3 ≪ m1 ≃ m2, |∆θ| is smaller than 0.02. When the neutrino masses

are quasi-degenerate (except in the case of [ρ(0), σ(0)] = [π/2, π/2]), |∆θ| may receive a

contribution up to 0.3, implying that ∆τ ≃ 0.02 (corresponding to tan β ≃ 35) is large
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enough to generate |∆θ| ≃ 0.1. (2) |∆δ| is also smaller than 0.02 for m1 ≪ m2 ≪ m3. In

the case of m3 ≪ m1 ≃ m2 or m1 ≃ m2 ≃ m3, |∆δ| will be greatly enhanced to O(1) for

ρ(0) 6= σ(0) (even ∆τ of O(0.001) that corresponds to tan β ≃ 10 is sufficient for producing

|∆δ| of O(0.1)) but negligibly small for [ρ(0), σ(0)] = [π/2, π/2].

On the other hand, the analytical expressions for ∆θ, ∆ρ and ∆ are found to be

∆θ ≃
[

2(m1 −m3)(m2 −m3)
]−1[

m2
12 − (m11 −m3)(m22 +m3)

]

∆τ ,

∆δ ≃ − [T(m1 +m2)(m1 −m3)(m2 −m3)s13]
−1 [Tm12m3

(

m1 +m2 − 2m3s
2
13

)

−2(m11 +Tm12 +m3)(m1m2 −m22m3)s
2
13

]

∆τ ,

∆ρ ≃ −
[

2m1m3(m1 +m2)(m1 −m3)(m2 −m3)s̄13t12
]−1{

Tm12m
2
3(m1 +m2)

(

m11

−m3s
2
13 + 2m22t

2
12s

2
13

)

−m11

[

Tm12m3

(

m1 +m2 − 2m3s
2
13

)

− 2(m11 +Tm12

+m3)(m1m2 −m22m3)s
2
13

][

m3 +m11Ωs
2
13 −m22t

2
12s

2
13

]}

∆τ , (2.35)

with t12 = tan θ12, while ∆σ can be obtained from m1∆ρ/m2 by making the replacement

t12 → −1/t12. These results can help us understand the numerical results: (1) For m1 ≪

m2 ≪ m3, eq. (2.35) is simplified to

∆θ ≃
1

2
∆τ , ∆δ ≃

m2c12s12
m3s̄13

∆τ , ∆ρ ≃
c12s̄13
s12

∆τ . (2.36)

(2) In the case of m1 ≃ m2 ≫ m3, one will have

∆δ ≃
1

T
s̄13∆τ , ∆ρ ≃ −

[

m3 +m1

(

1− t212
)

s213
]

s̄13
2m3t12

∆τ , (2.37)

for ρ(0) = σ(0), or

∆δ ≃ −
8

|r|
c12s12s̄13∆τ , ∆ρ ≃

8
[

m3 +m1

(

c212 − s212
) (

1 + t212
)

s213
]

c312s12s̄13
m3|r|

∆τ ,

(2.38)

for ρ(0) 6= σ(0) together with ∆θ ≃ −1/2∆τ . (3) When the case of m1 ≃ m2 ≃ m3 ≃ m0 is

considered, the results become

∆θ ≃
2m2

0

∆m2
31

∆τ , ∆δ ≃
2m2

0

[

Trc12s12 − 2s213
]

T∆m2
31s13

∆τ , ∆ρ ≃
Tm2

0rc
2
12

∆m2
31s̄13

∆τ ;

∆θ ≃
2m2

0c
2
12

∆m2
31

∆τ , ∆δ ≃
2m2

0

(

r − 4s213
)

c12s12
∆m2

21s̄13
∆τ , ∆ρ ≃

8m2
0c

3
12s12s̄13

∆m2
21

∆τ ;

∆θ ≃
2m2

0s
2
12

∆m2
31

∆τ , ∆δ ≃ −
2m2

0

(

r + 4s213
)

c12s12
∆m2

21s̄13
∆τ , ∆ρ ≃

8m2
0c

3
12s12s̄13

∆m2
21

∆τ ;

∆θ ≃
∆m2

31

8m2
0

∆τ , ∆δ ≃ −
T∆m2

21c12s12 + 2∆m2
31s

2
13

8Tm2
0s13

∆τ , ∆ρ ≃
∆m2

31s̄13
8m2

0t12
∆τ ,

(2.39)

for [ρ(0), σ(0)] = [0, 0], [π/2, 0], [0, π/2] and [π/2, π/2]. One can see that these approximation

results agree well with the corresponding numerical results.
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3 Summary

To summarize, the µ-τ reflection symmetry deserves particular attention as it leads to the

interesting results θ23 = π/4 and δ = ±π/2 (which are close to the current experimental

data) as well as trivial Majorana phases. Nevertheless, it is reasonable for us to consider

the breaking of such a symmetry either from the theoretical considerations (e.g., the RG

running effect may provide a source for the symmetry breaking) or on the basis of ex-

perimental results (e.g., the newly-reported NOvA result disfavors the maximal mixing

scenario at a 2.6σ level). Consequently, we have performed a systematic study for the

possible symmetry-breaking patterns and their implications for the mixing parameters.

We first define some parameters measuring the symmetry-breaking strengths and then

derive an equation set relating them with the deviations of mixing parameters from the

special values taken in the symmetry context. By solving these equations in both a numer-

ical and analytical way, the sensitivity of mixing-parameter deviations to the symmetry-

breaking parameters for various neutrino mass schemes and the Majorana-phase combina-

tions are investigated in some detail. It turns out that ∆θ is most sensitive to R2 while ∆δ,

∆ρ and ∆σ to all the symmetry-breaking parameters. And the magnitudes of ∆δ, ∆ρ and

∆σ are generally much greater than that of ∆θ. This means that the symmetry-breaking

pattern with a sizable R2 will be favored if ∆θ is notable, but any symmetry-breaking

pattern may cause significant ∆δ, ∆ρ and ∆σ. The mixing-parameter deviations tend to

get remarkably magnified (a symmetry-breaking parameter of ≤ O(0.01) may give rise to

some mixing-parameter deviations of ≥ O(0.1)) in the case of m1 ≃ m2 ≃ m3 combined

with ρ(0) 6= σ(0). But they will be highly suppressed and inconsiderable in the case of

m1 ≃ m2 ≃ m3 combined with [ρ(0), σ(0)] = [π/2, π/2]. With these general results as

guide, one may easily find an appropriate specific way to break the µ-τ reflection symme-

try so as to generate the required mixing-parameter deviations when necessary. Finally, as

a unique illustration, the general treatment is applied to the specific symmetry breaking

induced by the RG running effect.
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