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Abstract

We give several linear time algorithms for the continuous quadratic knapsack prob

lem. We show that, out of the seven existing linear time algorithms, two can be

improved, and the remaining five faił on simpłe counterexamples.

Keywords. Nonlinear programming, eonvex programming, quadratie pro

gramming, separabie programming, singly eonstrained quadratie program.

1 Introduction

The eontinuous quadratie knapsaek problem is defined by

P: min f(x):= !xT Dx - aTx s.t. bTx = r, l:5 x :5u, (1.1)

where x is an n-veetor of variables, a, b,l, u E R n
, r E R, D = diag(d) with d > 0, so that

theobjeetive f is strietly eonvex. Assuming P is feasible, let x* denote its unique solution.

Problem P has applieations in resouree alloeation [BiH81, BrS97, HoH95], hierarehieal

produetion planning [BiH81], network flows [Ven91], transportation problems [CoH94],

multieommodity network flows [HKL80,· NiZ92, ShM90], eonstrained matrix problems

[CDZ86], integer quadratie knapsaek problems [BSS95, BSS96], integer and eontinuous

quadratie optimization over submodular eonstraints [HoH95], Lagrangian relaxation via

subgradient optimization [HWC74], and quasi-Newton updates with bounds [CaM87].

Specialized algorithms for P solve its dual problem by finding a Lagrange multiplier

t; that solves the equation g(t) = r, where g is a monotone pieeewise linear funetion

with 2n breakpoints (ef. §2). The earliest O(nlogn) methods [HWC74, HKL80] sort

the breakpoints initially, whereas the O(n) algorithms [Bru84, CalVI87, NldP89, PaK90,

CoH94, HoH95, MMP97] use rnedians of breakpoint subsets (see [BI(P93, JvleT93] for

extensions); [PaK90] also proposed an approximate median version with an average-ease
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tSystems Research Institnte, Newolska 6,01-447 Warsaw, Poland (kiwiel<Oibspan. waw.pf.)
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performance of O(n). Another class ofmethods wit h worst-case performance of O(n2
)

[BiH8l, Zip80, IvIic86, Ven9l, RJL92, BSS96] employs variable fixing [LuG75].

This paper focuses on linear time algorithms for P. We introduce a breakpoint searching

framework that is conceptually simpler than those in [Bru84, CaM87, MdP89, PaI{90,

CoH94, HoH95, MIvIP97]. Among other things, we give modifications of the first two

methods [Bru84, CaivI87] (with more efficient g-evaluations), and simple counterexamples

for the remaining methods [MdP89, PaK90, CoH94, HoH95, MMP97], showing that they

may deliver wrong solutions.

The paper is organized as follows. Basic properties of P are reviewed in §2. QUI' simplest

algorithm is introduced in §3 together with the standard g-evaluation of [Bru84, CaM87].

A more refined g-evaluation is derived in §4, and a complementary one in §5 (the latter

extends and corrects sorne ideas in [CoH94, HoH95]). To ease comparisons with related

methods, in §6 we state simplifications for quadratic resource allocation. Extensions of

the two median approach of [Bru84] and the additional breakpoint removal of [CaM87]

are discussed in §§7 and 8, respectively. Section 9 presents our counterexamples for the

rnethods of [MdP89, PaK90, CoH94, HoH95, MMP97]. Finally, prelirninary computational

results for large-scale problems are reported in §10.

2 Basic properties of the problem

Viewing t E lR as a rnultiplier for the equality constraint of P in (1.1), consider the

Lagrangian primal solution (the minimizer of J(x) + t(bTx - r) s.t. l :::;. x :::; u)

x(t) := min { max [l, D-1(a - tb) ] ,u }

(where the min and max are taken componentwise), its constraint value

(2.1)

(2.2)

and the associated multipliers for the constraintsI - x :::; °and x - u :::; 0, respectively,

j.L(t) := max {Dl - a +tb, O} and v(t):= max {a - tb- Du, O}. (2.3)

Solving P amounts to solving g(t) = r for a multiplier lying in the optimal dual set

T* := { t : g(t) = r } . (2.4)

Indeed, invoking the Karush-Kuhn-Tucker conditions for P as in [CaM87, Thm 2.1],

[HKL80, §2], [NiZ92, §1.2], [PaK90, Thm 2.1] gives the following result.

Fact 2.1. x* = x(t) iff t E T*. Further, the set T* is nonempty, and t, j.L(t) , v(t) are

Lagrange rnultipliers oj P whenevcr t E Ti,

As in [Bru84], we assume for simplicity that b > 0, because if b, = °then x, may be elim

inated (xi = nlin{nlax[li, ai/di], tLi}), whereas if b, < Othen we may replace {Xi, tu, bi , li, Ui}

by -{Xi, tu, bi , Ui, li} (in fact this transformation may be implicit).
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Figure 2.1: (a) Illustration of Xi(t) := min{max[li, (ai - tbi)/di],Ui}' (b) Illustration of

biXi(t) = min{rrlax[bili , (aibi - tb;)/di], biUi} (for b, > O).

By (2.1)-(2.2), the function g has the following breakpoints

(2.5)

with ti ~ t~ (from li ~ u; and b; > O), and each Xi(t) may be expressed as

(2.6)l
Ui if t ~ ti,

Xi(t) = (a; - tbi)/di if ti ::;t ::;t\,
li if t~ ~ t.

Thus g(t) is a continuous, piecewise linear and nonincreasing function of t (cf. Fig. 2.1).

Hence the optimal set T* of (2.4) is an interval (possibly infinite) of the form

T* = [ti, tu] nR with ti:= inf{ t : g(t) = r}, tu:= sup{ t : g(t) = r}, (2.7)

with g(tl) = r if tl > -00, g(tu) = r if tu < 00; clearly, g(t) > r iff t < tl, g(t) < r iff

tu < t. Denoting the minimal and maximai breakpoints by t~in := mini ti and t~nax :=

maxi tL we have g(t) = bTU2:r for all t ~ t~lin' g(t) = bTl ~ r for all t 2: t~ax'

3 The breakpoint searching algorithm

As shown in §2, the search for an optimal t, in T* can be restricted to the breakpoint in

terval [t~in' t~ax]' The algorithm below generates successive nondecreasing underestimates

tL of tl and nonincreasing overestimates tu of tu by evaluating g at trial breakpoints in

(tL,tu) until tt. and tu become two consecutive breakpoints; then g is linear on [tL, tu],

and t; is found by interpolation. Let N := {1: n}.

AIgorithm 3.1.

Step O (Initiai'ion). Set To := {t~hEN U {tiliEN, T := To, ti. := -00, tu :=00.

Step 1 (Breakpoint selection). Choose i in T.
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Step 2 (Computing g(t)). Caleulate g(t).

Step 3 (Optimality check). If g(t) = r then stop with t; := t.
Step 4 (Lower breakpoint removal). If g(t) > r then set tt. := t, T := {t ET : t < t}.

Step 5 (Upper breakpoint removal). If g(t) < r then set tu := t, T := {t E T : t < t}.

Step 6 (Stopping criterion). If T i- 0 then go to Step 1; otherwise, stop with

tu - tt.
t; := t t. - [g(tL) - r l ( ) . ( )' (3.1)

g tu - g it.

The following eomments elarify .the nature of the algorithm.

Remarks 3.2. (a) At eaeh iteration in Step 2 we have tL < tu, T* C [tL, tul and i E T =

Ton (tL, tu) (this follows by induetion from the properties of g given in §2).

(b) To compute g(t) efficiently, we may partition the set N into the following sets

L := { i : t~ ::; tL } , M:= { i : it.. tu E [t~t, t~] } , U := { i : tu ::; ty } ,

1:= {i: t~ E (tL, tu) Ol' tY E (tL, tu) },

whieh are disjoint beeause tL < tu and tiL ::; t~ ..Further, we have

I=IlUlu with I l : = { i : t ~ E ( t L , t u ) } , ' Iu:={i:tYE(tL,tu)},

and T = {t~}iEIl U {ti}iEl u ; henee III ::; ITI. Thus, by (2.2), (2.6) and (3.2),

g(t) = E biXi(t) + (p - tq) + s Vt E [tL' tu ],
iEI

where

(3.2a)

(3.2b)

(3.3)

(3.4) .

(3.7)

(3.6)

EbiXi(t) = E bi(ai- tbi)/di + E bili+ E biUi' (3.5)
iE/ iEI:tE(ti ,tU iEI:t~<t iE/:t<ti'

p := E aibi/di , q:= E b~ / d; and s:= E bili+E biUi.
iEM iEM iEL iEU

Setting I := N, p, q, s := Oat Step O, at Step 6 we may update I, p, q and s as follows:

for i E I do

if ti ::; ti. then I := 1 \ {i}, s := s + bili;

if tu ::; ti then I := I \ {i}, s := s + biUi;

if tL, tu E [ti, t~l then I := 1\ {i}, p := p + aibi/di, q := q+ b~ [d«.

This update and the calculation of g(t) require order III ::; ITI operations.

(c) When T beeomes empty, then I = 0 in (3.4), sa gis linear on [tL, tul and (3.1)yields

g(t*) = r. Note that g(tL) and g(tu) ITIUSt have been evaluated earlier; indeed, tu = 00

would imply tL = t~ax and g{tL) = bTZ ::; r, eontradieting g(tL) > r; similarly it. = -00

would yield tu = t~in and g(tu) = bTU ;?: r, another eontradietion. Alternatively, (3.4)
with 1=0 shows that (3.1) is equivalent to

t; := (p + s - r) / q. (3.8)

(d) Sinee eaeh iteration reduees the set T, Algoritlun 3.1 must terminate with t; E T*;

then x* = x(t*) (ef. Faet 2.1) is reeovered via (2.1) in order n operations (cf. (2.6)).
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The choice of i in T at Step 1 is crucial for efficiency, as explained below.

Remarks 3.3. (a) For an arbitrary choice of i, AIgoritlun 3.1 requires order n2 operations

in the worst case. The complexity can be improved to order n by selecting i ·as the

median of T, which requires order ITI operations; see, e.g., [AHU74, §3.6], [CLR9D, §10.3),

[BFP+72, SPP76]. Thus the complexity of each iteration is O(ITI). Since ITI is originally

2n and is halved at each iteration, the algoritlun makes O(logn) iterations in time O(n).
(b) As suggested by [PaI<9D], in practice it may be preferable to choose i in T at

random, with an expected number of iterations of O(logn) in an expected time O(n),
which can be derived as in [AHU74, Thm 3.11], [CLR90, §lD.2].

We now briefly describe several useful rnodifications.

Remarks 3.4. (a) Step Omay set tŁ := t ~ l i n ' tu := t ~ a x ' T := Ton (tŁ, tu), terminating

with t; := tt. if g(tŁ) = r, Ol' t; := tu if g(tu) = r, Ol' t; given by (3.8) if T = 0.
(b) If the set of fixed variables L= := {i : li = Ui} is nonempty, at Step O we may set

I := N \ L=, T := {tL ti}iE], with L replaced by L U L= in (3.2) and (3.6) and M, U, I

modified accordingly, terminating with t; given by (3.8) if T = 0.
(c) An extension to infinite bounds is easy, sinee t~ = 00 iff li = -00, ti = -00 iff

ii, = 00. Starting with it. := -"00, tu := 00 (Ol' ii. := t ~ i n ' tu := t ~ a x as in (a)), Step O

may set T := { t ~ h E / 1 U {ti}iE/u with I ł , 111, given by (3.3), terminating with t; given by

(3.8) if I = 0. Thus infinite breakpoints are effectively ignored.

4 More refined updates

In a simple implementation based on (3.4)-(3.7), certain sums of (3.5) are repeated in (3.7).

We now give a more refined version of Algorithm 3.1 that eliminates these redundancies.

Our refinement consists in using the following partition of I (cf. (3.3))

(4.1a)

J ł := { i : tf ~ t i. < t~ < tu} and J«> { i : ti. < t~' < tu ~ t~} , (4.1b)

with I = i; U Jł U i; I ł = i: U J ł, lu = i; U i: Thus i; = Ił n lu, J ł = Ił \ lu and

Ju = lu \ Ił index the middle, left and right breakpoints of T = {t~}iEJmU.J1 U {ti}iEJmUJu'
To shorten notation, for any subsets !VI, L, (; of N, we let

8ł(L):= I: bili, 811,((;):= I:biUi.
iEL iEU

(4.2)

Algorithm 4.1.

Step O(Initiation). Set t t. := -00, tu := 00 (Ol' tt. := t ~ l i I P tu := t ~ n a x asin Rems, 3.4(a,c)),

T := { t ~ h E J m U J I U {ti'}iEJmUJu with Jm , JI, Ju given by (4.1), p := p(1\1) , q := q(A1),

8 := 81(L) + 8 u (U) with 1\1, L, U given by (3.2). If I = 0, stop with t; given by (3.8).

Step 1 (Breakpoint selectiotu, Choose i in T.
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Step 2 (Computing g(t)). Set .ilm :== {i EJm : ti :::; t :::; t~}, NIL :== {i E Ji : t ::; t~},
ilu :== {i E L; : ti :::; t}, L :== {i E I, : t~ < t}, U :== {i E lu : t < ti}, fi :==

p + p(NIm ) + p(M1) + p(N/u ) , ij :== q + q(!\lm ) + q(!\11) + q(N/u), s :== s + sl(L) + Su(U),
g(t) == (fi - tij) + s.

Step 3 (Optimality check). If g(i) == r then stop with t; :== t.

Step 4 (Lower breakpoint removal). If g(t) > r then set tL :== t, T :== {t E T :i < t},

p :== p + p(1\lu ) , q :== q+ q(NIu ) , i l :== {i E lt : t~ == t}, s :== s + sl(L) + sl(ii).

Step 5 (Upper breakpoint removal). If g(t) < r then set tu :== t, T :== {t E T : t < t},
p :== p + p(1\1t), q :== q + q(Ml), t; :== {i E lu : ty == t}, s :==s + su(U) + su(iu).

Step 6 (Stopping criterion). If T =10 then go to Step 1, else stop with t; given by (3.8).

The sums in Step 2 require a single sean of I == Jm U Ji U Ju ; another sean suffiees

for updating Jm , Jland Ju at Step 4 or 5 (ef. (4.1); for brevity, explieit updates are

omitted). The work of Step 2 is eomparable to that in using (3,.4)-(3.5); however, relative

to (3.7), Steps 4 and 5 save the work needed for (re)eomputing the sums p(Mu ) , q(Mu ) ,

etc., available from Step 2. Thus the effieieney estimates of Remarks 3.3 remain valid for

Algorithm 4.1. It remains to show that the algorithm is eorreet.

Theorem 4.2. AIgorithm 4.1 terminates witk t*E T*.

Proof. To validate the ealeulation of g(t) at Step 2, suppose t E (tL, tu) and (3.6) holds

(this is true initially; ef. Step O). Then (3.3) and (4.~) imply that Mm' Mt and Mu form a

partition of M :=={i E I : ti ::; t :::; t~}, with Mm == Mn Jm, Mt == Mn Ji, Mu == Mn Je,
whereas M together with L == {i E I : t~ < t} and U== {i E I : t < ty} (use t-t. :::; t :::; tu)

form a partition of I. Henee (3.5) and (4.2) yield

L biXi(i) == p(it) - tq(M) + stel) + Su(U)
iEl

== p(Mm) + p(Mt) + p(Mu) - t [q(Mm) + q(Mt)+ q(Mu)] + stel) + Su(U).

Comblning this with (3.4) and (3.6)shows that Step 2 eomputes g(t) eorreetly.

Thus, as long as (3.6) holds, Algoritlun 4.1 may be identified with Algorithm 3.1. We

now show that (3.6) is maintained by the updates of Steps 4 and 5, using superseript +

for the updated quantities, e.g., »'.
First, suppose t Ł == Eat Step 4. Sinee tt. ::; tt and tu doesn't ehange, U+ == U by

(3.2) and I \ I+ splits into 1\/+ \ 1\/ and L+ \ L. The first set NI+ \ NI eonsists of i E 1

sueh that ti :::; t ::; t~ and ti :::; tu ::; tL so, sinee ti < tu Vi E I, it eoineides with

the interseetion of M and {i E I : tu :::; t~} == Ju (ef. (4.1)), whieh is Mu. The second

set L+ \ L equals L :== {i E I : t~ :::; t} (t! == i), with L == {i E Ii : t~ ~ E} (using

t < tu in (3.3)). Thus M+ == 1\1U itu with M n Mu == 0, L+ == L U L with L n t == 0,
U+ == U. Furthel', t == L U t, with L n i l == 0. Combining the preeeding relations

with (3.6) and (4.2) gives p+ == p(1\/) + p(1\lu ) == p(Jv/+), q+ == q(Jv/) + q(ilu ) == q(M+),

s+ == sl(L) +su(U)+sl(L) == sl(L+)+su(U+). Thus (3.6) holds for the updated quantities.
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Next, suppose tt = Eat Step 5. Since tt ::; tu and ti. doesn"t change, L+ = L by

(3.2) and I \ I+ splits into 1\11+ \ A;J and U+ \ U. The first set 1\11+ \ 1\;J consists of i E I

such that ti ::; E::; t~ and ti ::; tL ::; t~, so, since tL < t~ Vi El, it coincides with the

intersection of lVI and {i E I : ti ::; t L} = Ji (cf. (4.1)), which is lVIl. The second set

U+ \ U equals U := {i E I : E::; ti} (tt = E), with U = {i E lu : E::; ti} (using

tt. < i in (3.3)). Thus M" = 1\11 U lVIl with 1\11 n lVIl = 0, U+ = U u U with U n U = 0,
L+ = L. Further, U = Uu t, with Un t; = 0. Combining the preceding relations

with (3.6) and (4.2) gives p+ = p(M) + p(lCifl) = p(1\II+), q+ = q(A!f) + q(lVIl) = q(1\;J+),

s+ = sl(L)+su(U)+su(U) = sł(L+)+su(U+)' Thus (3.6) holds for the updated quantities.

It follows by induction that (3.6) always holds at Steps 2 and 6.

Upon termination with T = 0, t; E T* by Remark 3.2(c). D

5 Decrementing updates

Algorithm 4.1 works with the quantities p = p(M), q = q(M), s = Sł (L) + Su (U), incre

menting them when M, L and U grow. Using the set (cf. (3.2), (3.3))

1111 := { i : tL < t~ and ty <tu} = 1 U M = Ił U lu U Aif, (5.1)

we now describe a version of Algorithm 3.1 that employs the redefined quantities

p = P(IlvI ), q = q(llvI ) and s = sl(L) + su(U), (5.2)

decrementing p and q when IlvI shrinks.

AIgorithm 5.1.

Step O (lnitiation). Set ti. := -00, tu := 00 (Ol' tL := t ~ l i n ' tu := t ~ a x as in Rems.

3.4(a,c)), T := { t ~ } i E I l U {ti}iElu with li, lu given by (3.3), set p, q, s via (5.1)-(5.2) with

I,M, L, U given by (3.2). If I = 0 then stop with t; given by (3.8).

Step 1 (Breakpoint seleciioti). Choose i in T.

Step 2 (Computing g(t)). Set L := {i 'E Ił : t~ < i}, U := {i E lu : t < ti}, fi :=

p - p(t) - p(U), ij := q - q(L) - q(U), s := 8 + 8ł(t) + 8u(U), g(t) = ('fi - tij) + s.
Step 3 (Optimality check). If g(i) = r then stop with t; := i.

Step 4 (Lower breakpoint removal). If g(t) > r then set tL := t, T := {t E T : E< t},
ił := {i E Ił : t~ = E}, p := p - p(t) - p(il), q := q - q(L) - q(i ł), s := s + sł(L) + sl(i ł),
Ił := {i E I l : E< t~}, t; := {i E lu : E< ti}.

Step 5 (Upper breakpoint removal). If g(i) < r theri set tu := E, T := {t E T : t < i},

i; := {i E lu : ti = t}, p:= p-p(U) -p(iu ) , q := q- q(U) - q(iu ) , s := s+ su(U)+ su(iu),
Ił := {i E I l : t~ < E}, lu := {i E lu : ti < E}.

Step 6 (Stopping criterion). If T#-0 then go to Step 1, else stop with t; given by (3.8).

The work of Step 2 in computing 'fi, ij is proportional to ILI + IUI, whereas that of

Algorithm 4.1 is proportional to IJVfl, with IlVII + Iti + IUI = III (cf. the proof of Tlun

4.2). Hence again the efficiency estimates of Remarks 3.3 remain valid, and we only need

to show that the algoritlun is correct.
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Theorem 5.2. Algorithm 5.1 terminates uiiih. t; E T*.

Proof. To validate the calculation of g(t) at Step 2, suppose i E (tL, tu) and (5.2) holds

(this is true initially; cf. Step O). Using (2.6), (3.2), (3.3), (4.2), (5.1) and (5.2), we may

express g (t) := ~iEN bix, (i) as

g(t) = L biXi(t) +L bili+ L b.u; = L biXi(t) + s, (5.3a)
iEIM iEL iEU iElAl

where in the notation of Step 2 (with L, U C IlvI, L n U = 0 from ti ~ tD we have

L biXi(t) = L biXi(t) + L bili + L b.u,
iEIM iEIM\(Luu) iEL iEU

= [p (Ilvf \ (LUU)) -tq(IN/\(LUU))] + s ł ( L ) + s u ( U ) (5.3b)

= [p(IM) - pel) - p(U)] - E[q(IM) - q(L) - q(U)] + sł(L) + su(U),

Relations (5.3) and (5.2) show that Step 2 computes g(t) correctly.

Thus, as long as (5.2) holds, Algorithm 5.1 may be identified with Algorithm 3.1. We

now show that (5.2) is maintained by the updates of Steps 4 and 5, using superscript +
for the updated quantities, e.g., p+.

First, suppose tt = Eat Step 4. Let L := {i E Ił : t~ ~ i}. Then IM = rJj U L with

rt = {i : E< t~ and ti < tu} and rJj n L = 0 by (5.1) and (3.3), whereas the partition

(3.2) yields L U U = N \ IM and L+ U U+ = N \ rJj with U+ = U and L n U = 0, so

L+ = LUL with LnL = 0. Further, L = Lot, with i.r.t, = 0 at Step 2. Combining the

preceding relations with (5.2) and the rules of Step 4 gives p+ = p(IM) - pel) = pelt),

q+ = q(IM) - q(L) = q(lt), s+ = sł(L) + Su(U) + sł(L) == sł(L+) + su(u+), Thus (5.2)

holds for the updated quantities.

Next, suppose tt = i at Step 5. Let (; := {i E lu : i ~ ti}. Then IM = lt U (; with

lt = {i : tt. < t~ and ti < E} and rt n (; = 0 by (5.1) and (3.3), whereas the partition

(3.2) yields L U U = N\ IM and L+ U U+ = N \ It with L+ = L and (; n L = 0, so

u: = U U (; with U n U= 0. Further, (; = uU t; with Un t; = 0 at Step 2. Combining

the preceding relations with (5.2) and the rules of Step 5 gives p+ = P(IM)-P(U) =p(l"t),

q+ = q(IM) - q(i)) = q(lt), s+ = sl(L) + Su(U) + Sl(i)) = sl(L+)+ Su(U+). Thus (5.2)

holds for the updated quantities.

Thus, by induction, (5.2) always holds at Steps 2 and 6.

When T = {t~}iEIL U {ti}iElu becomes empty, Ił = lu = 0. Then (3.3) and (5.1) show

that (5.2) with IM = M reduces to(3.6), so t; E T* by Remark 3.2(c). D

Remark 5.3. An asymmetric version of Algorithm 5.1 is obtained by replacing L with

t := {i E Ii: t ~ ::; E} at Steps 2 and 4 with ił omitted; alternatively we may replace U
by i) := {i E lu : E ~ tit}, omitting pfiu), etc. In fact both replacements may be used

whenever l < u (since (5.3b) with L, Ureplaced by L, (; only needs Ln (; = 0).
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6 Sirnplifications for quadratic resource allocation

The quadratic resource allocation (QRA) problem is a special instance of P with li = O

and u; = 00 for all i. In this case Algoritlun 4.1 simplifies as follows (cf. Rem, 3.4(c)).

AIgorithm 6.1 (for QRA: li = O, u; = 00 Vi E N).

Step O (Initiation). Set tt. := ""-00, tu := 00, I := N, T := { t ~ } i E N , p := O, q := O, s := O.

Step 1 (Breakpoint selection). Choose t in T.

Step 2 (Computing g(t)). Set M := {i E I : t :s; t~}, fi := p + p(NI), ij := q + q(M),

g(t) = fi - tą.

Step 3 (Optimality check). If g(i) = r then stop with t; := t.

Step 4 (Lower breakpoint removal). If g(t) > r then set tL := t, T := {t E T : t < t},

I := {i E I : t < t~}.

Step 5 (Upper breakpoint removal). If g(t) < r then set tu := t, T := {t E T : t < t},

p:= fi, q:= ij, I := {i E I: t ~ < t}.

Step 6 (Stopping criterion). If T i= 0 then go to Step 1, else stop with t; given by (3.8).

Also Algorithm 5.1 may be simplified as follows.

Algorithm 6.2 (for QRA: li = O, Ui = 00 Vi E N).

Step O (Initiation). Set ti. := -00, tu := 00, I := N, T := { t ~ } i E N , p:= peN), q := q(N),

s:= O.

Step 1 (Breakpoint selection). Choose t in T.

Step 2 (Computing g(i)). Set t := {i E I : t~ < t}, fi := p - p(L), ą := q - q(L),

g(t) = fi - tą.

Step 3 (Optimality check). If g(t) = r then stop with t; := t.

Step 4 (Lower breakpoint removal). If g(t) > r then set tt. := t, T := {t E T : t < t},

l := {i E I : t~ = t}, p := fi - pel), q := Ej - q(l), I := {i E I : t < t~}.

Step 5 (Upper breakpoint r'emoval). If g(t) < r then set tu := t, T := {t E T : t < t},

I := {i E I : t~ < t}.

Step 6 (Stopping criterion). If T i= 0 then go to Step 1, else stop with t; given by (3.8).

Note the complementary features of both algorithms, and their modifications discussed

below.

Remarks 6.3. (a) For Nr := {'i E I : t < t~} and l := {i E I : t~ = t}, we have

NI = il U l with NI n l = 0, and pel) - tq(l) = Ofrom (ai - t~bi)/di = li = OVi E l; thus

p(NI) - tq(NI) = p(NI) - tq(l\l). Hence NI may replace NI at Step 2 of Algorithm 6.1, but

then Step 5 must set p ':= fi + pel), q := ą + q(l).

(b) In the asymmetric version of Algoritlun 6.2 (cf. Rem, 5.3), L := {i E I : t~ :s; t}
replaces t at Step 2, and Step 4 sets p := fi, q := Ej.

g



7 A double-median approach

In the spirit of [Bru84, §3], we now consider a modification of AIgoritlun 3.1 in which Steps

1-5 are replaced by a call to the following procedure that may update both tL and tu.

Procedure 7.1.

Step o: Set i:= median{t~hEI' If tu ~ i then go to Step 4.

Step 1: If g(i) = r then stop with t; := i.

Step 2: If g(i) > 'I' then set ii. := i and exit, else set tu := i.

Step 3: Set G:= {i E 1: tLty ~ (tL,tU)}' If IGI ~ łl11 then exit.

Step 4: Set t:= median{tY}iEb where j := {i E 1 : i ~ t~}.

Step 5: If g(t) = r then stop with t; := t.

Step 6: If g(t) > r then set tt. := t, else set tu := t.

After tL, tu are updated to tt, tt, 1 is updated to 1+ via (3.3).

Lemma 7.2. Procedute 7.1 either terminates or finds n, tt such that 11+1 ~ ~111.

Proof. At Step 0, tt. < i because t t: < t~ Vi E 1by (3.2). If Step 2 exits with tt = i,
then {i E 1 : t~ ~ i} C L+ C 1 \ 1+; otherwise, tu is decreased to i. If Step 3 exits then

C = I \ 1+. If Step 4 is entered from Step 3, then t E (tL, tu). Indeed, t ~ tL would

imply CM := {i Ej: ty ~ t} C C using tu = i, with ICMI ~ ~Ijl ~ łlII, whereas

tu .~ t would yield Cu := {i Ej: t ~ ty} C C with ICul ~ ~Ijl ~ ł111, contradicting

ICI < łlII· Also t E (tL,tu) if Step 4 is entered from Step 1 with tu ~ i, since by (3.3),

tu ~ i ~ t~ Vi E j implies ty E (tL,tu) Vi E j and hence t E (tL,tu). If tt = t at Step

6 then CM := {i Ej: ty ~ t} C NI+ from j C {i E I : tt ~ t ~ } , with ICMI ~ łlII.

Otherwise tt = t yields Ch:= {i Ej: t ~ ty} C U+ with IGh·1 ~ ł111. In each case 1\1+

contains a set of cardinality at least ł 1 1 1 ; hence 11+1 ~ ~III. D

Remarks 7.3. (a) The exits in Steps 2 and 3 of Procedure 7.1 are intended to save work

in finding t and g(t). Note that ICI is easily determined while computing g(i). Both exits

may be replaced by an exit at Step 4 when t ~ (tL, tu), still ensuring 11+1 ~ ~111; this

version corresponds to the algorithm in [Bru84, §3].

(b) Procedure 7.1 requires order III operations for g(i) and g(t) computed via (3.4)

(3.7) as in [Bru84, §3], 01' as in Algorithms 4.1 and 5.1. Of course, I =' 0 serves as the

stopping criterion. Since III is initially n and is reduced by at least a quarter at each

iteration, the overall complexity is O(n) as in the single median versions of Algorithms

3.1,4.1 and 5.1.
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8 Removing more breakpoints at each iteration

Consider the following modification of Algorithm 3.1 which removes rnore breakpoints from

the set T as in [CalvI87, Alg. 2.3]. Replace Steps 4 and 5 by

Step 4' (Lower breakpoint removal). If g(t) > r then find the right adjacent breakpoint

l := min{t E T : t < t}; if l < 00 and g(l) > r then set t L := l, T := {t E T : l < t}, else

set t t. := t, tu := rnin{tu, l} and stop with t; given by (3.1), Ol' (3.8) if tu = 00.

Step 5' (Upper breakpoint removal). If g(t) < r then find the left adjacent breakpoint

l := lnax{t E T : t < t}; if l > -00 and g(l) < r then set tu := l, T := {t E T : t < l},
else set tt. > max{tL, l}, tu :=t and stop with t; given by (3.1), Ol' (3.8) iftL = -00.

By (2.6) and (3.4), because t and l are consecutive breakpoints, we may compute

g(l) = g(t) - (l- t) [q+ q(If,i)] with If,l:= { i E I: t, l E [tY, t~] } (8.1)

in order III operations. Thus the complexity estimates of Remarks 3.3 remain valid.

Vet, relative to the original version, this modification will typically rernove only one more

breakpoint; it is not elear whether this is worth the additional effort in finding l and g(l).
The version of [CaM87, Alg. 2.3] is less aggressive, setting T := {t E T : l :::; t} in Step 4'

and T := {t E T : t :::; l} in Step 5'.

Ałgorithms 4.1 and 5.1 may be modified similarIy, using

(8.2)

for ij available from Step 2. Of course, l replaces t in Steps 4 and 5. More specifically, let

ił := {i E Ił : t~ = l}, i; := {i E lu: ti = l}, J ł := {i E Ji : ti = l}, Ju := {i E Ju : ti = l}.
In AIgorithm 4.1, p, q, s increase by p(Ju ) , q(Ju ) , sł(i ł) in Step 4, and by p(J ł), q(Jl ) ,

sł(i u ) in Step 5, respectively. In Algorithm 5.1, subtract p ( i ł ) , q ( i ł ) from p, q, and add

sł(i ł) to s in Step 4, and do the same in Step 5 with i ł replaced by i; The derivation of

these updates and of (8.2) is quite long, and hence omitted.

9 Relations with other methods

9.1 Dangerous modifications

Steps 4 and 5 of Algorithm 3.1 reduce T independently of how i E T is chosen. The

following examples (cf. Figs. 9.1-9.2) illustrate the need for such reductions when i :=

median(T) at Step 1. Let e := (1, ... , 1) E lRn denote the unit vector.

Example 9.1. Suppose Steps 4 and 5 of AIgorithm 3.1 set T := T n [tL, tu]. For the

problem with n = 3, d = b = e, a = 0, r = -1, l = (O, -1, -2), u = 0, we have T* = {0.5}'

and To = {O, 1,2,0,0, O}, but this version willloop infinitely with t == O, g(t) = o.

11
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Figure 9.1: (a) Illustration of Example 9.1. (b) Illustration of Example 9.2.
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Figure 9.2: (a) Illustration of Example 9.3. (b) Illustration of Example 9.4.
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Example 9.2. Consider QRA with n = 5, d = b = e, a = (1,1,0, O, O), r = 1, T* =
{0.5}. Algorithm 6.2, starting with T = {l, 1, O, O, O}, generates tL = i = 0, T = {l, l},
I = {l, 2}, then tu = E= 1, T = 0, tenninating with t; = 0.5. Now, suppose Step 5 sets

T := {t E T : t :::; E}, I := {i E I : t~ :::; E}, and Step 6 stops if ITI:::; 1. This version loops

infinitely with tu == E== 1, T = {l, l}.

Example 9.3. Consider QRA with n = 3, d = b = e, a == (0,0.1,0.2), r = 1, T* = {-~}.

Algorithm 6.1, starting with T = {O, 0.1, 0.2}, generates tu = i == 0.1, T = {O}, P = 0.3,

q = 2, then tu = t = O, T == 0, p = 0.3, q = 3, terminating with i; = -lo. Now,

suppose that when E= t~ł, at Step 1 for some m E I, Step 4 sets T:= {t E T: t < t}U{i},

I := {i E I : i < t~} U { m }, Step 5 sets T := {t E T : t < E}U { E}, I := {i E I·: t~ < t} U {m},
and Step 6 stops if ITI:::; 2. Then the first iteration terminates with t; = -~.

As will be seen, several methods f a i ł on the following simple example.

Example 9.4. Consider QRA with n = 3, d = b = e, a = (O, O, 2), r = 1, T* = {l}.
Algorithms 6.1 and 6.2, starting with T = {O, O, 2}, generate tt. = t = O, T = {2}, then

tu = i = 2, T = 0, terminating with t; = 1.

9.2 The algorithm of Pardalos and Kovoor

In our notation, the algorithrn of [PaK90, §2], starting with T := To U {-oo, oo}, set s

i := medianfF}, computes g(E) via (3.4), sets tt. := t if g(E) ~ r, tu := Eif g(t) :::; r,
T := T n [tL, tu), updating p, q, s as in (3.7) until I = 0. First, without reducingT, it

loops on Exarnple 9.1. Second, the updates of (3.7) are not valid when tt. = tu; this makes

it failon the following example.

Example 9.5. For n = 2, let d = b = e, a == 0, r = -2, l = (-2, -2), u = (-1, O). Then

T* = {1} (cf. Fig. 9.3) and x* = (-1, -1), but the algorithm of [PaK90, §2] delivers the

wrong solution (-0.5, -0.5).

9.3 The algorithm of Cosares and Hochbaum

In our notation, the algorithm of [CoH94, §1.2J differs from Algoritlun 6.2 in two (crucial)

aspects. First, assumming implicitly that III = 1 in Step 4, it fails on Example 9.4

(producing t; = -0.5). Second, it employs the modification of Example 9.2; hence it

cycles on that example.

9.4 The algorithm ofMaculan and de Paula

In our notation, the algorithm of [MdP89] differs from Algoritlun 6.1 in two aspects (note

that Step 3 in [:rvIdP89, §3] should set S := {xilj E J}). First, it employs the modification

of Example 9.3, but only stopping in Step 4 if ITI :::; 2, or in Step 5 if ITI :::; 1; hence it

cycles on that example (assuming medianjO, O.l} = 0.1). Second, its calculation of g(t) is

wrong: it tenninates on Example 9.4 with t; = -1.
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Figure 9.3: (a) Illustration of Example 9.5. (b) Illustration ofExample 9.6.

9.5 'I'he algorithm of Maculan, Minoux and Plateau

In our notation, the algorithm of [MMP97] differs from AIgorithm 6.1 in three aspects

(note that P-, Pl should be swapped with q-, ql in calculating a in [MMP97, §3]). First,

employing the modification of Example 9.3, it fails on that example (producing i; = -~).

Second, it fails on instances where g(i) < r never occurs, such as Example 9.4 (producing

t, = -5)' Third, for n ~ 2, it only yields t; = -5'

9.6 The algorithm of Hochbaum and Hong

The algorithm of [HoH95, §3] is cłose in spirit to the asymmetric version of AIgorithm 5.1

of Remark 5.3 (with L repłaced by L), modified as in Exampłe 9.2. However, its updates

of P, q, s and the f i n a ł f o r m u ł a for t; are wrong; hence it fails on the following exampłe.

Example 9.6. For n = 3, łet d = b = e, a = (O, -l, -2), r = 2, l = O, u = 3e;

then T* = {-~} (cf. Fig. 9.3). The asymmetric version of Algoritlun 5.1, starting with

T = {O,-1, -2, -3, -4, -5}, generates t Ł = i = -2, T = {O,-l}, then tu = i = -1,

T = 0, terminating with t; = -~. The algorithm of [HoH95, §3] stops with t; = 1 or

t; = O, depending on how medians are chosen.
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Table 10.1: Average, maximum and minimum run times in seconds for uncorrelated,

weakly correlated and strongly correlated problems with exact medians,

uncorrolated wcakly correl. strongly correl. overall

n avg max min avg max min avg max min avg max min

50000 0.22 0.28 0.16 0.21 0.22 0.16 0.21 0.33 0.16 0.21 0.33 0.16

100000 0.42 0.49 0.38 0.39 0.44 0.38 0.40 0.50 0.33 OAO 0.50 0.33

500000 1.79 1.87 1.75 1.81 1.87. 1.75 1.82 1.92 1.75 1.81 1.92 1.75

1000000 3.57 3.79 3.40 3.59 3.84 3.40 3.58 3.85 3.40 3.58 3.85 3.40

1500000 5.35 5.66 5.11 5.39 5.72 5.16 5.37 5.76 5.11 5.37 5.76 5.11

2000000 7.24 9.23 6.81 7.23 7.85 6.86 7.17 7.75 6.86 7.22 9.23 6.81

Table 10.2: Average, max:imum and minimum run times in seconds for uncorrelated,

weakly correlated and strongly correlated problems with approxirnate medians.

uncorrelated weakly correl, strongly correl. overall

n avg max min avg max min avg max min avg max min

50000 0.29 0.39 0.16 0.26 0.39 0.16 0.24 0.44 0.11 0.26 0.44 0.11

100000 0.45 0.82 0.33 0.45 0.77 0.27 0.45 0.77 0.28 0.45 0.82 0.27
500000 1.60 2.20 0.99 2.04 3.40 0.99 1.96 3.07 1.21 1.87 3.40 0.99

1000000 3.82 5.83 1.98 3.83 6.26 1.65 3.55 4.94 1.70 3.73 6.26 1.65

1500000 5.47 8.57 3.08 5.47 7.74 2.80 5.91 9.77 2.42 5.62 9.77 2.42
2000000 7.20 14.88 3.73 7.24 11.21 3.57 7.47 11.64 3.90 7.30 14.88 3.57

10 Numerical results

Two versions of Algorithm 4.1 were programmed in Fortran 77 and run on a notebook

PC (Pentium II 400 MHz, 256 MB RAM) under MS Windows 98. The first version

computed exact medians of T via subroutine dsel.f of Lin and M o r ć (available as part of the

incomplete Cholesky factorization code ICFS [LiM99] from www.mcs.anl.gov/Cmcre/icfs}.

The seconcl version chose i in T at random (cf. Rem. 3.3).

Our test problems were randomly generated with n ranging between 50000 and 2000000

(to avoid memory swapping). As in [BSS95, §2], all parameters were distributed uniformly

In the intervals of the following three problem classes: (1) uncorrelated: ai, bi,di E [10,25];

(2) weakly correlated: bi E [10,25], ai, di E [bi - 5, b, + 5]; (3) strongly correlated: b, E

[10,25], ai = d, = bi + 5; further, li, Ui E [1,15], i E N, r E [bTl, bTu]. For each problem

size, 20 instances were generated in each class.

Tables 10.1 and 10.2 report the average, maximum and minimum run times over the 20

instances for each of the listed problem sizes and classes, as wellas overall statistics. The

average run times grow linearly with the problem size. The relatively good performance

of the exact median version is due to the high efficiency of dsel.f.

More extensive numerical tests and comparisons with variable fixing methods [I<iw02]

are given in [I<iw03].

Acknowledgment. I would like to thank Jorge M o r ć for providing subroutine dsel.f.
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