BREAKUP OF LIQUID SHEETS AND JETS

S. P. LIN

Clarkson University, Department of Mechanical and Aeronautical Engineering

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.25/13 pt. System $\[AT_EX 2_{\mathcal{E}}\]$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data available

ISBN 0 521 80694 1 hardback

Contents

Notation	List	<i>page</i> xi
Preface		XV
1. Intro	duction	1
1.1	Overview	1
1.2	Governing Equations	2
1.3	Dimensionless Parameters	4
	Exercises	5
	References	5
2. Unife	orm Inviscid Liquid Sheets	7
2.1	Temporal Instability	7
	Exercises	11
2.2	Convective Instability	11
2.3	Absolute Instability	19
	Exercises	21
2.4	Summary	24
	References	25
3. Nonu	iniform Inviscid Liquid Sheets	26
3.1	Expanding Liquid Sheet	26
3.2	Plane Liquid Sheet Thinning Under Gravity	39
3.3	Curved Falling Sheet	44
3.4	Liquid Sheet Breakup Phenomena	47
	Exercises	50
	References	52
4. Visco	ous Liquid Sheet	55
4.1	A Viscous Sheet in an Inviscid Gas	55
4.2	A Viscous Sheet in Viscous Gas	70
4.3	Axially Expanding Viscous Sheets	82
4.4	Discussion	83

		Exercises	84
		References	85
5.	Wave	es on Liquid Sheets	87
	5.1	Generation of Plane Waves	87
	5.2	Waves on Uniform Inviscid Sheets	88
	5.3	Waves on a Falling Liquid Sheet	90
		Exercises	92
	5.4	Waves on an Expanding Sheet	93
		Exercises	93
	5.5	Waves on Viscous Sheets	94
	5.6	Broken Sheets	99
	5.7	Summary	100
		References	101
6.	Phene	omena of Jet Breakup	102
	6.1	Geometry of Liquid Jets	102
	6.2	Regimes of Jet Breakups	103
		References	106
7.	Inviso	cid Jets	108
	7.1	Stability Analysis of Inviscid Jets	108
	7.2	An Infinite Jet	111
	7.3	Semi-Infinite Inviscid Jets	113
	7.4	Effects of Velocity Relaxation	115
	7.5	Effects of Surrounding Gas	116
	7.6	Effects of Gas Velocity	118
	7.7	Effects of Compressibility	118
	7.8	A Jet with a Swirl	125
	7.9	Initial Instability	127
		Exercises	127
		References	128
8.	A Vis	scous Jet	130
	8.1	Onset of Instability	130
	8.2	Viscous Jets in a Vacuum	132
	8.3	Effects of Surrounding Gas	134
	8.4	Spray Angles and Intact Length	138
	8.5	Effects of Swirl in Gas	143
		Exercises	144
		References	144
9.	Roles	Played by Interfacial Shear	146
	9.1	Basic Flow	146
	9.2	Equations Governing Disturbances	147
	9.3	Energy Budget	149

	9.4	Stability Analysis	151
	9.5	Chebyshev Polynomial Expansion	152
	9.6	Numerical Eigenvalue Evaluation	154
	9.7	Convective Instability	155
	9.8	Absolute Instability	157
	9.9	Comparisons with Experiments	159
	9.10	Comparisons with Related Work	163
	9.11	Mechanism of Jet Breakup	164
	9.12	Summary	169
		References	170
10.	Annu	lar Liquid Jets	172
	10.1	An Annular Jet	172
	10.2	Stability Analysis of the Annular Jet	176
	10.3	A Pseudo-Spectral Method of Solution	178
	10.4	Parametric Responses in an Encapsulation Process	180
	10.5	Summary	198
		Exercises	199
		References	200
11.	Nonli	near Capillary Instability of Liquid Jets and Sheets	201
	11.1	Experiments	201
	11.2	Nonlinear Perturbation Theories	205
	11.3	Numerical Simulation	210
	11.4	Nanojets	217
	11.5	Nonlinear Instability of Liquid Sheets	219
		References	220
12.	Epilo	gue	223
	12.1	Satellite Formation	223
	12.2	Breakoff of a Drop	227
	12.3	Microdrop Formation by Suction	233
	12.4	Microsized Monodispersed Sprays	235
	12.5	Branching Liquid Jets	239
	12.6	Shaped-Charge Jets	247
	12.7	Intermittent Sprays	247
	12.8	Viscous Beads	248
		References	250
Ap	pendix	es	254
A.	The C	Drr–Somerfeld System in the Chebyshev Space	254
B.	Eiger	value Solution Algorithm	258
Aut	hor In	dex	261
Sul	oject In	dex	267

Notation List

Symbol	Usual meaning	Any exception
а	nozzle inner radius	initial disturbance amplitude
С	speed of sound	
d_0	nozzle diameter	
d	displacement from	
	free surface	
f	dimensionless free	
	surface displacement	
g	gravitational	
	acceleration	
h	dimensionless half	enthalpy
	sheet thickness	
(i , j , k)	unit vectors in (x, y, z)	
	direction	
k	complex wave number in	
	flow direction	
k	complex wave vector	
l	radius ratio, thickness	characteristic length
	ratio	
n	wave number in	
	θ -direction	
n	unit normal vector	
0	magnitude as small as	
p	dimensionless pressure	
r	dimensionless position	
	vector	
(r, θ, z)	dimensionless cylindrical	
	coordinates	

Notation List

S	distance along surface	
t	time	
$\mathbf{v} = (u, v, w)$	dimensionless velocity	
	vector in (x, y, z)	
	direction	
(x, y, z)	dimensionless Cartesian	
	coordinates	
$A = Re/(WeQ)^{1/2}$	Taylor parameter	
B_0	Bonds number = We/Fr	
C_a	capillary number =	
	We/Re	
C_p	constant pressure	
-	specific heats	
C_v	constant volume	
	specific heats	
D	characteristic matrix	
D	characteristic	
	determinant	
$Fr = W_0^2/gH_0$	Froude number	
G	inverse Fourier	
	transform of	
	disturbance	
Н	position vector of solid	amplitude vector
	surface	
H_i	dimensional half <i>i</i> th	
	layer thickness	
H_0	characteristic length	
Ι	identity matrix	Fourier integral
$J = \left[SH_0 / \left(\rho_1 \nu^2 \right) \right]^{1/2}$	Ohnesorge number	
K	adiabatic module of	initial rate of axial
	elasticity	stretching
L	characteristic length	intact length
Μ	kinematic viscosity	Mach number W_1/c_2
	ratio	
$Ma = S_{,T} T_0 / \rho_1 U_0^2 H_0$	Marangoni number	
M_i	Mach number in fluid <i>i</i>	
$N = \bar{N}_2 = \mu_r$	dynamic viscosity ratio	
$N_j = v_j / v_1$	kinematic viscosity	
	ratio	

xii

$\bar{N}_{\alpha} = \mu_{\alpha}/\mu_1$	dynamic viscosity ratio	
0	magnitude as large as	
$Oh = \left[SH_0 / \left(\rho_1 v_1^2 \right) \right]^{1/2} = J$	Ohnesorge number	
P	pressure	
$Q = Q_2 = \rho_r$	gas to liquid density	
$\sim \sim $	ratio	
Ò	volumetric flow rate	
$\tilde{(R, \theta, Z)}$	dimensional cylindrical	
	coordinate	
$Re = \rho_1 U_0 H_0 / \mu_1$	Reynolds number	
$St_0 = Re/Fr$	Stokes number	
S	surface tension	
Τ	temperature	period of oscillation
U_0	characteristic velocity	
$\mathbf{V} = (U, V, W)$	dimensional velocity vector	
$We = \rho_1 U_0^2 H_0 / S$	Weber number	
α	wave number in flow	
	direction	
β	wave number in direc-	
	tion perpendicular to	
	flow	
$\gamma = C_p / C_v$	specific heat ratio	swirl number =
-		Γ/R_0W_1
δ	Dirac delta function	,
ε	small parameter	
τ	dimensionless time	
au	deviatory stress	
5	dimensionless sheet or	
	jet thickness	
η	dimensionless free	
	surface displacement	
θ	azimuthal angle	phase angle,
		spray angle
К	mean curvature	
λ	wavelength	
μ	dynamic viscosity	
v	kinematic viscosity	
	5	

Notation List

ρ	density	
ψ	stream function	
ϕ	velocity potential	amplitude of ψ
σ	stress tensor	
$\omega = \omega_r + i\omega_i$	complex wave	dimensional
	frequency	frequency
Ω	dimensional frequency	
∇	gradient operator	
Γ	circulation	
Superscripts		
•	time rate of change	
Т	transpose	
/	perturbation	differentiation
^	amplitude	
Subscripts		
adj	adjoint	
,	partial differentiation	
i	inner surface	<i>i</i> th interface
0	reference quantity	outer surface
A, B	fluids A, B	
1, 2, 3	fluids 1, 2, 3	
α	αth layer	
l	liquid	
g	gas	

xiv

1

Introduction

1.1. Overview

When a dense fluid is ejected into a less dense fluid from a narrow slit whose thickness is much smaller than its width, a sheet of fluid can form. When the fluid is ejected not from a slit but from a hole, a jet forms. The linear scale of a sheet or jet can range from light years in astrophysical phenomena (Hughes, 1991) to nanometers in biological applications (Benita, 1996). The fluids involved range from a complex charged plasma under strong electromagnetic and gravitational forces to a small group of simple molecules moving freely with little external force. The fluid sheet and jet are inherently unstable and breakup easily. The dynamics of liquid sheets was first investigated systematically by Savart (1833). Platou (1873) sought the nature of surface tension through his inquiry of jet instability. Rayleigh (1879) illuminated his jet stability analysis results with acoustic excitation of the jet. In some modern applications of the instability of sheets and jets, it is advantageous to hasten the breakup, but in other applications suppression of the breakup is essential. Hence knowledge of the physical mechanism of breakup, aside from its intrinsic scientific value, is very useful when one needs to exploit the phenomenon to the fullest extent. Recent applications include film coating, nuclear safety curtain formation, spray combustion, agricultural sprays, ink jet printing, fiber and sheet drawing, powdered milk processing, powder metallurgy, toxic material removal, and encapsulation of biomedical materials. Current applications can be found in the annual or biannual conference proceedings of several professional organizations, such as the International Conference on Liquid Atomization and Spray Systems (ICLASS) and the Institute for Liquid Atomization and Spray Systems (ILASS) organizations in the Americas, Europe, and Asia, and European and American Coatings Conferences.

Because of the diverse applications, books on the subject tend to focus on specific applications. For example, the book by Lefebvre (1989) centers

Introduction

around internal combustion, and that of Masters (1985) focuses on powdered milk formation. Intended for immediate practical applications, these books rely heavily on phenomenological correlations. The book by Yarin (1993) provides a mathematical treatment of recent applications involving non-Newtonian fluids. In contrast, this book deals exclusively with Newtonian fluids, which are encountered in most of the known applications. It does not cover such topics as atomization and emulsification of liquid in liquid (Kitamura and Takahashi, 1986; Grandzol and Tallmadge, 1973; Villermaux, 1998; Richards, Beris, and Lenhoff, 1993). Electromagnetic effects on the jet breakups (Balachandran and Bailey, 1981), or the electromagnetic effects on atomization and drop formation (Bailey, 1998; Fenn et al., 1989).

We address first the issue of the origin of the breakup or the physical reasons for the breakup. Therefore the mathematical tool used is linear stability analysis, which predicts the onset of jet and sheet instability. The disturbance consisting of all Fourier components is allowed to grow both spatially and temporally in the sheet or jet flows. If only the classical temporally growing disturbance is considered, one arrives at a paradoxical situation as illustrated in the first section of the next chapter. The onset of instability appears to largely dictate the ultimate outcome of the breakup, as exemplified by Rayleigh's linear stability analysis of a liquid jet. However, the detailed process leading to the eventual breakup requires nonlinear theories to describe. Nonlinear descriptions are given in Chapter 11. The results related to the last stage of breakup and topics that still need further development will be addressed in the Epilogue.

1.2. Governing Equations

The governing equations and the corresponding boundary conditions listed below will be referred to in subsequent chapters. Their derivation can be found in standard text books, some of which are given at the end of the chapter. The same notation will be used to denote the same physical variable throughout the book, with few exceptions. When such exceptions on notation take place they will be pointed out; otherwise the same symbol will not be redefined after its first appearance. A list of notations is provided at the front of the book.

Newton's second law of motion applied to a fluid particle gives

$$\rho \frac{\mathrm{D}\mathbf{V}}{\mathrm{D}t} = \mathbf{g} + \nabla \cdot \boldsymbol{\sigma}, \qquad (1.1)$$
$$\frac{\mathrm{D}\mathbf{V}}{\mathrm{D}t} \equiv \mathbf{V}_{,t} + \mathbf{V} \cdot \nabla \mathbf{V},$$

where ρ is the fluid density, **V** is the velocity vector, and *t* is the time. The subscript variable following a comma signifies partial differentiation with that variable, D/D*t* is the substantial derivative as defined, ∇ is the gradient operator, *g* is the gravitational acceleration, and σ is the stress tensor. For an incompressible Newtonian fluid

$$\boldsymbol{\sigma} = -P\mathbf{I} + \mu \left[\nabla \mathbf{V} + (\nabla \mathbf{V})^T \right], \tag{1.2}$$

where I is the identity matrix, μ is the dynamic viscosity, P is the pressure, and the superscript T denotes transpose.

The conservation of mass requires

$$\frac{\mathrm{D}\rho}{\mathrm{D}t} + \rho \nabla \cdot \mathbf{V} = 0. \tag{1.3}$$

For an incompressible fluid $D\rho/Dt = 0$, and (1.3) is reduced to

$$\nabla \cdot \mathbf{V} = \mathbf{0}.\tag{1.4}$$

Equations (1.1) to (1.4) are valid for each fluid involved in a flow. The *i*-th interface between two adjacent fluids is infinitesimally thin and is mathematically defined by a function $F_i(\mathbf{r}, t) = 0$, \mathbf{r} being the position vector. The balance of forces exerted on a unit area of interface gives

$$S_i \nabla \cdot \mathbf{n} + [\mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{n}]_{B_i}^{A_i} + \nabla_{\boldsymbol{\eta}} S_i = 0, \qquad (1.5)$$

where *S* is the interfacial tension, **n** is the surface unit normal vector positive if pointed from fluid B_i to fluid A_i on the opposite side, $\nabla_{i'}$ is the surface gradient operator, and

$$[\mathbf{n} \cdot \boldsymbol{\sigma} \cdot \mathbf{n}]_{B_i}^{A_i} \equiv \mathbf{n}_i \cdot \boldsymbol{\sigma}_{A_i} \cdot \mathbf{n}_i - \mathbf{n}_i \cdot \boldsymbol{\sigma}_{B_i} \cdot \mathbf{n}_i,$$
$$\mathbf{n}_i = \nabla F_i / |\nabla F_i|.$$

For viscous fluids, the kinematic condition at the interface is

$$[\mathbf{V}]_{B_i}^{A_i} = 0, (1.6)$$

$$W_i = \frac{\mathrm{D}F_i}{\mathrm{D}t},\tag{1.7}$$

where W_i is the component of the *i*-th interfacial velocity in the direction in which the distance F_i from a reference position to the interface is measured. If a fluid is inviscid, then (1.6) does not hold, and (1.7) must be applied for each fluid separately. A viscous fluid sticks to a nonpermeable solid surface, and thus $\mathbf{V} = 0$ at the solid-viscous fluid interface. If the fluid is inviscid, then it is allowed to slide along the solid surface, but is not allowed to penetrate it. Derivations of Equations (1.1) to (1.7) can be found in the books on fundamental fluid mechanics cited in the references section at the end of the chapter. Note that non-Newtonian fluids as well as more general interfacial conditions allowing phase changes to take place are not treated in this work.

1.3. Dimensionless Parameters

Even for simple Newtonian fluids, the number of dimensionless groups involved in interfacial fluid dynamics is relatively large. To bring out the relevant dimensionless parameters, we nondimensionalize the governing differential system. Identifying the characteristic velocity and length with U_0 , length with H_0 , time with H_0/U_0 , and stress with $\rho_1 U_0^2$, where ρ_1 is the density of the fluid designated by subscript 1, we have the following dimensionless governing equations for incompressible Newtonian fluids:

$$Q_i \frac{\mathbf{D}\mathbf{v}_i}{\mathbf{D}\tau} = \frac{Q_i}{Fr} - \nabla p_i + \frac{N_i}{Re} \nabla^2 \mathbf{v}_i, \qquad (1.8)$$

$$\nabla \cdot \mathbf{v}_i = 0, \tag{1.9}$$

kinematic interfacial condition,

$$w_i = h_{i,\tau} + \mathbf{v}_i \cdot \nabla h_i, \qquad h_i = F_i / H_0$$

dynamic interfacial condition,

$$We_i^{-1}\nabla\cdot\mathbf{n}_i = [\mathbf{n}\cdot\boldsymbol{\tau}\cdot\mathbf{n}]_{B_i}^{A_i}, \qquad (1.10)$$

and the no-slip condition at the solid wall at \mathbf{H}/H_0 , where \mathbf{H} is the position vector defining the solid wall. The lower case letters are used to denote dimensionless variables corresponding to their dimensional counterparts expressed in capital letters, except for τ and τ , which are dimensionless time and stress respectively. The dimensionless groups revealed in these equations are

density ratio
$$Q_i = \rho_i / \rho_1$$
,
viscosity ratio $N_i = \mu_i / \mu_1$,
Reynolds number $Re = \rho_1 U_0 H_0 / \mu_1$,
Froude number $Fr = \rho_1 U_0^2 / g H_0$,
Weber number $We = \rho_1 U_0^2 H_0 / S$,
geometric parameters \mathbf{H} / H_0 , H_i / H_0 .
(1.12)

The interface is considered to be homogeneous, otherwise Marangoni numbers associated with $\nabla_{n}S$ in (1.5) will arise. The interface is also assumed to be isotropic. The quantitative sensitivity of the dynamics of the flow to the variation of these dimensionless groups will be used to reveal the relative importance of shear, inertial, body, and surface forces in various modes of interfacial instabilities.

Exercises

- 1.1. Show that if temperature varies along an interface, the surface gradient term in (1.5) leads to the temperature Marangoni number $Ma = S_{,T} T_0/\rho U_0^2 H_0$, where $S_{,T}$ is the change of surface tension per unit change of temperature, T_0 is a reference temperature, and U_0 is a characteristic velocity. If the fluids on both sides of the interface are stationary, what is the relevant expression for U_0 ?
- 1.2. If the solute concentration varies along an interface, find the expression of the solute Marangoni number.
- 1.3. Show that the Bond number $B_0 = We/Fr$, the capillary number $C_a = We/Re$, and the Stokes number $St_0 = Re/Fr$ represent respectively the ratios of body force to surface force, viscous force to surface force, and body force to viscous force.
- 1.4. Show that if $U_0 = 0$, the Ohnesorge number $\equiv [SH_0/(\rho v^2)]^{1/2}$ is a parameter representing the ratio of the surface force to the viscous force.
- 1.5. Show that the mean curvature $\nabla \cdot \mathbf{n}$ in (1.10) at a point on a surface $z = h(x, y, \tau)$ in the Cartesian coordinate (x, y, z) is given by

$$\nabla \cdot \mathbf{n} = -\frac{h_{,xx} + h_{,yy}}{\left(1 + h_{,x}^2 + h_{,y}^2\right)^{3/2}}.$$
(1.11)

1.6. Show that the mean curvature of a surface $r = h(z, \theta, t)$ is given by

$$\nabla \cdot \mathbf{n} = \frac{1}{q^2} (h_{,z} q_{,z} + h_{,\theta} q_{,\theta} / h^2) + \frac{1}{q} \left(\frac{1}{h} + h_{,\theta}^2 / h^3 - h_{,zz} - h_{,\theta\theta} / h^2 \right), \qquad (1.12)$$

where $q = [1 + (h_{\theta} / h)^2 + h_{z}^2]^{1/2}$.

References

Bailey, A. G. 1998. Electrostatic Spraying of Liquids. Wiley, New York.
Balachandran, W., and Bailey A. G. 1981. J. Electrostatics 10, 189–196.
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.
Benita, S. 1996. Microencapsulation. Marcel Dekker.
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic stability. Oxford University Press.

- Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F., and Whitehouse, C. M. 1989. Science 246, 64.
- Grandzol, R. J., and Tallmadge, J. A. 1973. Water jet atomization of molten steel. *AIChE Journal*, **19**, 1149–1158.
- Hughes, P. A. 1991. Beams and Jets in Astrophysics. Cambridge University Press.
- Joseph, D. D., and Renardy, Y. Y. 1992. Fundamentals of Two-Fluid Dynamics. Springer-Verlag.
- Kitamura, Y., and Takahashi, T. 1986. Stability of liquid-liquid jet systems. *Encyclopedia* of Fluid Mechanics. **3**, 474–510.
- Landau, L. D., and Lifshitz, E. M. 1982. Fluid Mechanics. Pergamon Press.
- Lefebvre, A. H. 1989. Atomization and Sprays, Hemisphere Publishing.
- Masters, K. 1985. Spray Drying Hand Book. John Wiley & Sons.
- Panton, R. L. 1996. Incompressible Flow. John Wiley & Sons.
- Platou, J. 1873. Satique Experimentale Et Theoretique Des Liquid Soumie Aux Seuls Forces Molecularies. Canthier.
- Rayleigh, L. 1879. Proc. Lond. Math Soc. 10, 4.
- Richards, J. R., Beris, A. N., and Lenhoff, A. M. 1993. Steady laminar flow of liquidliquid jet at high Reynolds numbers. *Phys. Fluids*. A 5, 1703–1717.
- Savart, F. 1833. Ann. Chim. Phys. 54, 55-87, 113-145.
- Savart, F. 1833. Ann. de Chim. Phys. 55, 257-310.
- Villermaux, E. 1998. Mixing and spray formation in coaxial jet. J. Propul. Power. 14, 807–817.
- Yarin, A. L. Free Liquid Jets and Films: 1993 Hydrodynamics and Rheology. John Wiley & Sons.