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ABSTRACT Convolutional Neural Network (CNN) models are a type of deep learning architecture 
introduced to achieve the correct classification of breast cancer. This paper has a two-fold purpose. The first 
aim is to investigate the various deep learning models in classifying breast cancer histopathology images. 
This study identified the most accurate models in terms of the binary, four, and eight classifications of breast 
cancer histopathology image databases. The different accuracy scores obtained for the deep learning models 
on the same database showed that other factors such as pre-processing, data augmentation, and transfer 
learning methods can impact the ability of the models to achieve higher accuracy. The second purpose of our 
manuscript is to investigate the latest models that have no or limited examination done in previous studies. 
The models like ResNeXt, Dual Path Net, SENet, and NASNet had been identified with the most cutting-
edge results for the ImageNet database. These models were examined for the binary, and eight classifications 
on BreakHis, a breast cancer histopathology image database. Furthermore, the BACH database was used to 
investigate these models for four classifications. Then, these models were compared with the previous studies 
to find and propose the most state-of-the-art models for each classification. Since the Inception-ResNet-V2 
architecture achieved the best results for binary and eight classifications, we have examined this model in our 
study as well to provide a better comparison result. In short, this paper provides an extensive evaluation and 
discussion about the experimental settings for each study that had been conducted on the breast cancer 
histopathology images. 

INDEX TERMS Breast cancer, histopathology medical images, deep learning, transfer learning, data 
augmentation, pre-processing, classification.  

I. INTRODUCTION 

According to the World Health Organization (WHO) [1], 
breast cancer is the most common cancer among women 
globally. Every one out of three affected women will die. 
Several methods including mammography, magnetic 
resonance imaging (MRI), and pathological tests are the 
current investigation modalities of breast cancer. Among those 
methods, the histopathology images are considered as the gold 
standard to improve the accuracy of the diagnosis for patients 
who have already undergone other investigations such as 
mammograms [2]. Moreover, the histopathological 
examination can provide more comprehensive and reliable 
information to diagnose cancer and assess its effects on the 
surrounding tissues [3]–[5]. 

In order to obtain the histopathological slides from breast 
cancer tissues of the patients, the laboratory technicians first 
apply hematoxylin to stain the cell nuclei blue before counter-
staining the cytoplasmic and non-nuclear components with 
eosin in different shades to highlight the different parts of 
transparent tissue structures and cellular features [6], [7]. 
Then, digital histopathological images are obtained from the 
microscopic examination of the stained biopsy tissues of 
breast cancer [3], [8], [9]. 

Although these images provide pathologists (human) with 
an all-inclusive view, mistakes can still happen when the 
diagnosis becomes too time-consuming due to the large-sized 
slides [6], [10]–[15]. 
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To overcome this problem, more researches are focusing on 
utilizing deep learning approaches to examine the 
histopathological images to improve the accuracy of the 
cancer diagnosis [14], [16]. The methods of breast cancer 
diagnosis using digital histopathology images can be 
categorized as detection, classification, and segmentation [17]. 

This study aimed to show deep learning techniques in the 
field of breast cancer histopathological image classification. 
The challenges for the breast cancer pathology image 
classification were identified and the solutions to these 
challenges were discussed. 

The paper is structured as follows: Section II provides an 
overview of breast cancer and its subcategories. Subsequently, 
section III includes several parts, such as public databases, 
data augmentation methods, and pre-processing techniques. 
Section IV covers two main parts: deep learning models and 
transfer learning methods. Next, Section V delivers a 

comparison analysis based on previous reviews. Moreover, in 
this part, the most current deep learning models that have been 
identified and examined will be compared with previous 
studies and discussed. Finally, a conclusion that consists of 
critical discussions and an overview of the future works are 
outlined. 

II. BREAST CANCER TYPES AND SUBTYPES 

Although there are about 20 major types of breast cancer, the 
majority can be classified into two main histopathological 
classes: Invasive Ductal Carcinoma (IDC) and Invasive 
Lobular Carcinoma (ILC) [16], [18]. Among these two types 
of breast cancer, IDC is given more focus by the researchers. 
Fig. 1 shows the progression of breast cancer from hyperplasia 
to invasive carcinoma. 
 

 

FIGURE 1.  The progression of breast cancer disease at different stages. The first two pictures on the top left depict (a) Normal duct and (b) Usual 
ductal hyperplasia. However, breast cancer encompasses the progress from (c) Atypical hyperplasia, (d) Ductal carcinoma in-situ (DCIS), to (e) 
Invasive cancer [6]. 

  
The IDC type of breast cancer can either be benign or 

malignant. There are five malignant or carcinoma subtypes 
under IDC: tubular, medullary, papillary, mucinous, and 
cribriform carcinomas. Benign IDC includes adenosis, 
fibroadenoma, phyllodes tumor, and tubular adenoma [16]. 
Fig. 1 shows the different stages of breast cancer disease. Each 
stage has its distinct features that can be helpful in the 
diagnosis process. Moreover, due to the heterogeneity in 
breast cancer and certain restrictions concerning the 

histopathological classifications, a proper evaluation approach 
based on cell morphological features such as shape, size, and 
object-counting must be conducted to detect any abnormalities 
[16]. As for any cancer, an accurate detection of the type and 
proliferation of the disease is vital for the physicians to treat 
breast cancer disease optimally [6], [19]–[21]. For instance, 
the treatment for early IDC usually involves a combination of 
surgery, radiation therapy, chemotherapy, hormone therapy, 
and/or HER2-targeted therapy [22], [23]. 
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III. ANALYZING 

A. DATABASES 

1) NATURAL IMAGE DATABASES 

Based on the previous studies, the majority of the researchers 
applied pre-trained models with weights initiated from the 
natural image databases, including ImageNet, an object-
centric database [24] with more than 14 million (M) labeled 
images. 

2) PATHOLOGY DATABASES 

Contrary to other deep learning research fields, one of the 
challenges in the medical field is the lack of annotated data 
such as GoogLeNet to train the models with deep layers. 

Several public pathology databases, including Cancer 
Metastases in Lymph Nodes (Camelyon), have been 
introduced to provide a large amount of annotated data to 
overcome this issue [25]. In this paper, we discussed several 
breast cancer histopathology image databases that have been 
examined by other papers. All of the discussed pathology 
databases were similar since they consisted of whole-slide 
images generated from breast tissue biopsy samples stained 
with hematoxylin and eosin (HE). Thus, the generated images 
were all colorful with three channels. However, each database 
had different magnification factors as different hardware 
equipment was used [26]. Thus, the images were different in 
terms of the resolution, possibly impacting the diagnosis. The 
pathology databases highlighted by other researchers are 
discussed in the following paragraphs. 

First, the Breast Cancer Histopathological Image 
Classification (BreakHis) is a pathology dataset that consists 
of 7,909 breast cancer histopathology images from 82 patients 
with different magnification factors, including 40×, 100×, 
200×, and 400× [8]. The 7,909 images include 2,480 benign 
and 5,429 malignant sample images with all the subtypes 
mentioned above [16]. 

The second database is the Stanford Tissue Microarray 
(TMA) database, a public resource with an access to 205,161 
images [27]. All the whole-slide images have been scanned by 
a 20× magnification factor for the tissue and 40× for the cells 
[28]. 

Third, the Cancer Metastases in Lymph Nodes (Camelyon) 
was established based on a research challenge dataset 
competition in 2016. This database comprises of 400 whole-
slide images with a size of 218,000 × 95,000 pixels [ 15]. The 
whole-slide images are stored in a multi-resolution structure, 
including 1×, 10×, 40× magnifying factors. It also has both 
benign and malignant images [30]. The training dataset in this 
database has 270 whole-slide images, 160 of which are normal 
slides and 110 slides containing metastases [29]. As this 
database has been published in a whole-slide image format, 
the size of the patches can be defined by the individual 
researchers using this database [31]. 

The fourth database contains Breast Cancer Histopathology 
(BACH) images obtained from ICIAR 2018 Grand Challenge. 

This database includes 400 images with equal distribution of 
the four different classes, including normal (100), benign 
(100), in situ carcinoma (100), and invasive carcinoma (100). 
The high-resolution images are digitized with the same 
conditions and magnification factor of 200× [32]. All the 
images in this database have a fixed size of 2048 × 1536 pixels 
[33]. 

Lastly, the fifth database, the Bio-Image Semantic Query 
User Environment (BISQUE), contains only a small number 
of histopathological images of breast cancer. The size of the 
photos is 896 × 768 pixels. It contains both benign (32 images) 
and malignant images (26 images) [33]. 

B. DATA AUGMENTATION 

The main challenges encountered while training deep learning 
models are insufficiently labeled data and imbalanced number 
of classes [25]. The lack of labeled data causes the models to 
generate biased results or also known as “overfitting problem” 
[34]. Meanwhile, the imbalanced classes can prevent efficient 
classification performance [35]. In order to address these two 
challenges to produce an efficient classification, data 
augmentation methods are necessary [25], [36]. 

Most of the data augmentation methods applied in breast 
cancer histopathology are listed in Table I, II, and III. The 
methods include: 
1) Random cropping: Randomly select several valid corner 

points before cutting one image into multiple images. 
This method ensures no duplication in the cropped 
images. 

2) Rotation: An image is rotated based on an angle, e.g. 45 
degrees, and the rotation is repeated continuously [37]. 

3) Color Shifting: This method adds or subtracts numbers to 
the three channels of red, green, blue (RGB). It can help 
to create different color distortions to become more 
purplish, yellowish, or bluish. 

4) Flipping: The images can be flipped horizontally or 
vertically. 

5) Intensity variation: The intensity of the images can be 
varied between −0.1 to 0.1 or 2.0 to make them brighter 
or darker. 

6) Translation: The image pixels can be adjusted with ±20 
pixels. 

C. PRE-PROCESSING 

This section discusses the pre-processing methods that have 
been applied to breast cancer histopathology images to address 
challenges such as low resolution and noisy pictures [25]. 
Since these issues affect the performance of the models during 
the classification, pre-processing techniques are needed to 
eliminate the noise in the histopathological images resulted 
from the staining procedures [25], [38]. 

1) RESIZING 

Resizing is applied by researchers to change the input pictures 
into specific sizes tailored to the deep learning models [39]. 
Although this method is often applied before feeding the 
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images into the models, Chen et al. [30] performed the resizing 
process with a fully convolutional layer as part of the network 
to conduct a real-time experiment. 

2) RE-BALANCING THE CLASSES 

According to some studies, the application of datasets with 
unidentical classes may create a bias that leans towards the 
majority and produce false values in the model [36]. Methods 
such as data augmentation, under-sampling, or over-sampling 
are proposed by previous researchers to rebalance the number 
of classes. 

3) NORMALIZATION 

As the color in the histopathological images is very intense, 
researchers can apply standardization or normalization to map 
the numbers to a range between zero and one to decrease the 
distribution and the intensity of the colors [40]. 

4) IMAGE CONTRAST ENHANCEMENT 

In the following sections, the image enhancement method for 
grayscale images will be explained based on a previous study 
[41]. While the breast cancer histopathology images follow the 
RGB color model with three channels, this operation will be 
conducted for the red, green, and blue color scales separately. 
Additionally, the image contrast enhancement algorithm can 
improve the brightness of the image uniformly by mapping the 
lowest gray level to 0 and the highest value to 255. By using 
this method, the values of the gray level would spread in the 
histogram. However, the overall shape of the histogram would 
be unchanged, except for becoming wider to fill the range (0, 
255). 

5) MULTIRESOLUTION SEGMENTATION 

In a previous study [42], multiresolution segmentation was 
used to convert pixels into superpixels. This method can be 
used as an optimization approach to deal with large-scale 
breast cancer histopathological images. The creation of 
superpixels begins by growing the pixels of the image objects 
before merging them by classifying similar pixels to be 
adjacent to one another. This method is carried out based on 
several similarities, such as scale, compactness, shape 
(correlated with color), and layer weights of the images. 

6) STAIN NORMALIZATION 

This method was utilized by Nawaz et al. [43] to normalize 
breast cancer histopathological images. The algorithm of stain 
normalization was proposed in another study [44] as explained 
below: 

For RGB slides, the output is stained normalized images as 
shown in Fig. 2. 
1) Convert RGB to optical density (OD) [where OD = 

−log10(RGB image)]. 
2) Remove transparent pixels or data with lower than 

threshold β. 
3) Compute singular value decomposition (SVD) for OD 

tuples. 
4) Create a plane from the SVD directions corresponding to 

the two largest singular values (higher variance). 

5) Project the values onto the plane spanned by the 
eigenvectors corresponding to the two largest 
eigenvalues. 

6) Calculate the angle of each point for the first SVD 
direction. 

7) Determine the stain concentrations by finding robust 
extremes, αth and (100−α)th percentiles of the angle. 

8) Convert the extreme values back to OD space (normalize 
stain concentrations). 

9) Deconvolve the image using the determined stain vectors 
according to Ruifrok et al. [45]. 

 

FIGURE 2.  Histological image stain normalization. Left: (a) Original 
image. Right: (b) Image after normalization [43]. 

 

7) STAIN NORMALIZATION WITH COLOR TRANSFER 
BETWEEN IMAGES 

The method of color transfer between images was first 
introduced by Reinhard et al. [46]. This method was later 
applied by Vesal et al. [47] to normalize the histopathological 
images by matching the statistical color histogram of one 
image as the source image for another one. This method first 
converts the RGB to CIE LAB color space to decorrelate the 
channels, i.e. L* (white), a* (red/magenta), and b* (blue). 
Then, the mean and standard deviation for each channel are 
calculated separately to correct the colors. The following steps 
should be taken to normalize the stain pictures by using a 
target image; where  shows the channel as in (1), I is the 
normalized image as in (2), (3), (4),  is the standard deviation, S is the stained source image, and T is the target image. 

 =  (𝑙, 𝛼, 𝐵) (1) 𝐼 = 𝑡 
𝑠                                                (2) 𝐼 = 𝐼  (𝑆  −  𝑚𝑒𝑎𝑛 (𝑆))    (3) 𝐼 = 𝐼 +𝑚𝑒𝑎𝑛 (𝑇) (4) 

V. DEEP LEARNING  

Deep learning dates back to the 1980s. However, training such 
models was not applicable because of the lack of data and the 
limited power of the hardware equipment back then. 
Nowadays, with a large amount of data and sophisticated 
hardware, deep learning models can be applied easily. 

Due to the variation and complexity of image data in the 
medical field, the features should be extracted manually. Thus, 
the traditional learning models used in other fields are not as 
suitable and reliable. Furthermore, the learning models are not 
able to learn fast as the raw data cannot be fed efficiently [48].
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 Thus, the Convolutional Neural Network (CNN) models, a 
type of deep learning architecture, are introduced to solve the 
enormous number of parameters in the traditional neural 
network while working with the images. As images have 
highly correlated pixels, the CNN models can extract the most 
significant features that play the most fundamental roles in the 
image classification. 

According to a previous study [49], the most fundamental 
parts of the CNN models are convolutional layers, pooling 
layers (for subsampling), and fully connected layers. For the 
convolutional layers, the critical part is the filter (or kernel) by 
which the features in the input images can be extracted. Each 
kernel has a certain width, height, and the number of channels. 
Different width and height of kernels in the convolutional 
layers create the different spatial sizes of the output image. 

Moreover, the number of channels in the kernel corresponds 
to the number of feature maps. In each step of the CNN model, 
as the size of the image decreases, the size of the feature maps 
increases. This trend can be observed in most of the CNN 
models. After the convolutional layers, subsampling is 
conducted using pooling layers, for example, maximum (max) 
or average pooling. 

Similarly, pooling layers have kernels and they can also 
extract the max or average features. With the aid of 
subsampling, the spatial size (width and height) of the images 
can be decreased with no computational complexes since the 
kernels related to the pooling layers do not need to be trained. 
Furthermore, the number of stride and padding can help the 
layers to preserve or change the size of the image. Finally, the 
fully connected layers, along with the SoftMax functions, are 
utilized to perform the classifications. 

According to Litjens et al. [25], it is challenging to choose 
an architecture of the deep learning models based on the input 
formats. In the following sections, the models of deep learning 
suitable for breast cancer histopathological images are 
outlined. 

A. DEEP LEARNING MODELS  

1) CLASS STRUCTURE-BASED DEEP CONVOLUTIONAL 
NEURAL NETWORK (CSDCNN) 

This model was applied by Han et al. [50]. It consists of three 
convolution layers with kernel sizes of 3 × 3, 5 × 5, and 7 × 7. 
Moreover, the stride in each step is two, and before the fully 
connected layers, Han et al. [50] applied the mean-pooling 
strategy with a 7 × 7 receptive fields and a stride of one to 
flatten the layers. The final input of this model is 256 × 256 × 
3. 

2) ALEXNET 

The AlexNet model was proposed by Krizhevsky et al. [51] 
after being inspired by LeNet-5 in another study [49]. This 
model was implemented to input RGB images with a size of 
227 × 227. 

Furthermore, this architecture has eight layers with five 
convolutional layers. Three of the layers are followed by max-
pooling layers while another three are fully connected layers. 

The 1000 SoftMax activations were used to classify the 
outputs. 

In this model, the size of the input image in each layer 
decreases while the number of channels increases. This 
enables the model to extract more features. After the 
extraction, the fully connected layers will provide the feature 
weight so that the final SoftMax layer can classify the output. 
However, AlexNet has 60 M parameters. A significant number 
of trainable parameters in this model may affect the 
computational operations negatively. 

3) VISUAL GEOMETRY GROUP NETWORK(VGGNET) 

This network was introduced by Simonyan and Zisserman 
[52]. According to He et al. [53], the 19 layers of VGG 
architecture consist of six parts. The first two parts have two 
convolutional layers and the next three parts have four 
convolutional layers. The final part consists of three fully 
connected layers for classification. The trend of the layers in 
this architecture is simple. The number of channels increases 
by a factor of two whereas the spatial resolution (width and 
height) decreases by half in each step. Furthermore, the filter 
in all convolutional layers is 3 × 3, making the learning faster 
than previous models. Moreover, the simplicity of this model 
makes it attractive to researchers. As VGG-16 has 138 M 
parameters compared to VGG-19 with 144 M parameters, 
most of the researchers usually prefer to work with the VGG-
16. 

4) VGG-M 

According to Mahmoud [54], VGG-M consists of eight layers 
and uses five convolutional layers. This model is different 
from the VGG models discussed earlier. The kernel size for 
the first and second layers does not follow the rule of 3 × 3. 
Furthermore, the numbers of the width and height do not halve 
by the factor of two like the other VGG models. Furthermore, 
the input size suitable for this model is 224 × 224 with three 
channels. 

5) DEEP RESIDUAL LEARNING (RESNET) 

As explained previously, the number of the convolutional 
layers in the VGG models can reach up to 19 layers. In 
practice, increasing the number of layers hinders the training 
tasks as it increases the error rate [53]. In order to have deeper 
layers with no complexity, ResNet blocks with shortcut 
connections are proposed by He et al. [53]. Furthermore, 
Rectified Linear Units (ReLU) is applied as the activation 
function in this block. 

Moreover, if the output of the two convolutional layers or 
F(x) within the block is zero, the ResNet block output is equal 
to x. In other words, the shortcut connection helps the model 
learn the identity function in a short time with low complexity. 
However, in certain best-case scenarios when F(x) is not zero, 
the model can enhance. 

To build a ResNet model, He et al. [53] applied VGG-19 as 
the reference network and added more layers to eventually 
create a plain 34-layer model. Following that, the author 
applied shortcut connections after every two blocks of the
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convolutional layer in the 34-layer plain network to improve it 
into a deep residual network. The dotted shortcuts are applied 
in a 34-layer residual, indicating that the channels increase by 
a factor of two. 

By comparison, the number of the parameters for ResNet-
34 is 21.8 M, ResNet-50 is 25.6 M, ResNet-101 is 44.5 M, and 
ResNet-152 is 60.2 M. Therefore, the number of the trainable 
parameters increases as more layers are added to the 
architectures. Thus, the following network is applied to build 
a deeper network with fewer parameters. 

6) NETWORK IN NETWORK (1×1 CONVOLUTION) 

A one-by-one convolutional layer was introduced by Lin et al. 
[55] to address the operational complexes. This convolutional 
layer applies a 1×1 kernel size to change the number of 
dimensions. This network is embraced by almost all the 
inception models and the DenseNet model to build deep and 
accurate networks as explained below. 

7) INCEPTION-V1 (GOOGLENET) 

GoogLeNet network was proposed by Zeng et al. [56] to build 
a model with more layers and fewer parameters to increase the 
accuracy as discussed in previous studies [52], [53], [56]. This 
model is built by the inception block. By using a one-by-one 
network as a bottleneck in this block, the number of the 
channels (or dimensions) is then reduced before passing the 
input to the next layers with a 5 × 5 or 3 × 3 filter size. 

In this model, nine inception blocks are tightened together 
to build a 22-layer GoogLeNet architecture. Moreover, this 
model consists of max pooling, average pooling, 
convolutional layers, fully connected layers, and SoftMax 
layers. 

In a recent study, Zeng et al. [56] utilized two auxiliary 
classifiers in which the prediction has been done by the 
GoogLeNet model beforehand. The classifiers were then 
compared with the ultimate result. The auxiliary classifier is 
designed to help the GoogLeNet model by providing 
regularization to tackle the vanishing gradient problem [57]. 

According to Szegedy et al. [58], at the end of the training, 
the network with auxiliary branches outperformed the network 
without any auxiliary branch in terms of accuracy. 
Additionally, Zeng et al. [56] also attempted to overcome the 
congestion problem in the fully connected layers by applying 
the 70% dropout techniques. In this model, the number of the 
parameters is 5 M. It is considerably smaller than that of the 
ResNet models, including the 34-layered ResNet. 
Consequently, the development of a deeper network with less 
trainable parameters actually started from this model. 

8) INCEPTION-V2 / BATCH NORMALIZATION (BN)-
INCEPTION  

Inception-V2 was proposed by Szegedy et al. [58] with three 
kinds of inception modules. This model is explained below. 

First, the inception module with two 3 × 3 convolutions is 
adopted instead of using one block of 5 × 5. Szegedy et al. [58] 
used two blocks of 3 × 3 in order to decrease the size of kernels 
but ended up with computational complexes. 

After the factorization into smaller convolutions, Inception-
V2 blocks have fewer parameters than Inception-V1. For 
instance, instead of using convolutional layers with a kernel 
size of 7 × 7 (49 parameters), the author used 1 × 7 or 7 × 1 
(14 parameters).  

Third, Szegedy et al. [58] improved the dimensional 
representation by using an expanded filter block. With more 
activations per tile, the model can be trained faster. 

Finally, the author employed a batch normalization 
algorithm in this model. This algorithm is based on two 
fundamental concepts: normalization and distributions [59], 
[60]. 

In every batch, the following steps are computed. The 
values of xi are the input for the mini-batch 𝐵 of size 𝑚, and 
B is the mean of the specific mini-batch (5). Meanwhile,  is 
the mini-batch variance (6) and yi is the output corresponding 
to each input in the batch (8). Gamma (γ) and beta (β) are 
known as scale and shift parameters respectively and they 
have to be trained. 

𝐵 ← 1𝑚  ∑ 𝑥𝑖𝑚𝑖=1  (5) 

𝐵2 ← 1𝑚  ∑ (𝑥𝑖 − 𝐵)2𝑚𝑖=1  (6) 𝑥 𝑖 ← 𝑥𝑖 − 𝐵 √𝐵2 + 𝜖 (7) 

𝑦𝑖 ← 𝛾𝑥 𝑖 + 𝛽 ≡ 𝐵𝑁𝛾,𝛽(𝑥𝑖) (8) 

Batch normalization completes. 

9) INCEPTION-V3 

This model is the same as Inception-V2 except that it applies 
batch normalization in auxiliary classifiers [58], [59]. This 
model is very popular among the researchers for medical 
imaging [25]  

10) INCEPTION-V3 – FULLY CONVOLUTIONAL 
NETWORK (FCN) 

To expand Inception-V3, Chen et al. [30] proposed a new and 
cost-effective real-time method composed of a deep learning 
model with an augmented reality microscope (ARM). The 
deep learning architecture was set in a computer connected to 
the ARM through a software pipeline to produce real-time 
results. 

This deep learning model consists of two parts: FCN and 
Inception-V3. The first part of this model is fully comprised of 
convolutional networks. This part converts the architecture to 
an application-agnostic platform so that large-scale images 
can be resized before being fed into the next section. The 
second part is the Inception-V3 with modified blocks. The 
same padding replaces the context of the image with zeros. 
Thus, instead of using the same padding in the inception 
blocks, the author did not apply any padding (or valid padding) 
to keep to the context. Furthermore, with the advantage of the 
cropping layer added to the inception blocks, the size of the 
images can be reduced before concatenation. 
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11) INCEPTION-V4 

Inception-V4 was introduced by Szegedy et al. [61]. This 
model originated from Inception-V2 and Inception-V3 with 
batch normalization. In this model, the input image size is 299 
× 299 × 3, and it has three types of inception modules. After 
passing through the stem, the image size decreases but the 
number of channels increases. Each inception block is 
followed by a block of reduction to decrease the image size 
and increase the channels. Finally, the dropout keeps 80% of 
the weights to 1000 SoftMax to classify the output. 

12) INCEPTION-RESNET-V2 

Inception-ResNet-V2 schema originated from the ResNet 
module and Inception-V4. The overall network is explained as 
follows: 

First, the spatial input image size for this model is 299 × 299 
and the number of the RGB channels is three. 

Next, the stem part comprises six layers. The input for this 
part is 299 × 299 × 3 and the output is 35 × 35 × 384. The 
stride of two along with valid or no padding (V padding) is 
adopted to reduce the size of the image. On the contrary, the 
convolutional layers without V padding preserve the size of 
the image (same padding). 

Thirdly, the block of 5× Inception-Resnet-A can change the 
number of channels with ease with the aid of one-by-one 
convolutional layers [61]. Thus, compared with the previous 
inception blocks without identity connection, this block can be 
learned faster. The output of this block is 35 × 35 × 384. 

Fourthly, the Reduction-A block decreases the size of the 
image from 35 × 35 to 17 × 17 with the aid of a stride of 2 and 
V padding while increasing the number of channels. The 
output of this reduction block is 17 × 17 × 1154. 

With that, in the 10× Inception-Resnet-B, a factorization 
along with identity connection is applied in this block to 
achieve an output of 17 × 17 × 1154. 

In the sixth step, for Reduction-B, with the stride of two and 
V padding, the size of the image decreases from 17 × 17 to 8 
× 8 and the output size is 8 × 8 × 2048. 

Following that, the 5× Inception-Resnet-C module has an 
output of 8 × 8 × 2048 and it is also equipped with factorization 
and identity connection. 

In the eighth step of average pooling, with the kernel size of 
8 × 8, the image size is flattened to 1 × 1 [61] since the average 
pooling selects one average number out of 8 × 8 (64). The 
output of this layer is 1 × 1 × 2048. 

That step is followed by dropout in which 0.2 of the 
connections will be removed and the model keeps 80% of the 
weights. 

Lastly, the SoftMax layer is used for the classification of 
1000 classes. 

13) RESNEXT 

After the introduction of the ResNet models by researchers 
[53], the residual connection was considered as an essential 

factor. Subsequently, wide residual networks were introduced 
by researchers [62] to increase the width of the network 
instead of its depth. Since parallelizing width operations in the 
wider network appeared to be computationally efficient, Xie 
et al. [63] built another cutting-edge model entitled ResNeXt. 
This model is made up of in-built wide residual networks 
along with identity connections. The width of the network 
becomes a new hyperparameter that has been added to this 
model. This is known as cardinality and it can improve the 
accuracy and ability to withstand the complexity. Unlike the 
Inception models with deep and complicated architectures, the 
ResNeXt model delivers simplicity with the aid of cardinality. 
Basically, the complexity of a ResNeXt with 50 layers is equal 
to a ResNet model with 101 layers. Besides that, the number 
of parameters changes due to the number of cardinalities. For 
instance, ResNeXt-101 with 32 cardinalities has 44.18 M 
parameters and ResNeXt-101 with 64 cardinalities has 83.46 
M parameters. Moreover, the input size of this model is 224 × 
224 × 3. 

14) SQUEEZE AND EXCITATION NETWORK (SENET) 
Squeeze and Excitation block (SE) was introduced by Hu et 

al. [64]. This block has three parts: squeezing, excitation, and 
scaling. First, the squeezing part of this block applies global 
average pooling to make use of the contextual information 
along with the local receptive field. This part changes the size 
of the image (U) from H x W x C (height, width, and channel) 
to 1 × 1 × C. 

Next, the excitation part exploits the information collected 
in the first part via two fully connected (FC) layers. The first 
FC layer, with the size of 1 × 1 × C/r, (r = hyperparameter 
reduction ratio with the default value of 16 for SE-ResNet-50) 
is followed by the ReLU function to learn the nonlinear 
interactions between the channels. The second FC, with a size 
of 1 × 1 × C, is accompanied by a sigmoid function to capture 
the mutual relationships between channels.  

Finally, the scaling part rescales the output of the excitation 
part (sc) by channel-wise multiplication of sc and feature maps 
of the input image (uc). By simply piling a group of SE blocks, 
we can form an SE network with ease. The number of 
parameters of this model depends on the number of SE blocks 
applied in the model. For instance, SENet-154 has 115.09 M 
parameters. Furthermore, the size of the input image for this 
model is fixed to 224 × 224 × 3. The SE module can be added 
to a residual block for the block to transform into the SE-
ResNet module. By employing the SE module within the 
blocks of ResNet-50 architecture, Hu et al. turned this model 
into SE-ResNet-50 and increased the accuracy by 0.26%. In 
addition to that, another study discussed the flexibility of this 
module as other networks can be added onto it, for example, 
VGG, Inception, Inception-ResNet, ResNeXt, and others [39]. 
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15) BREAST CANCER HISTOPATHOLOGY IMAGE 
CLASSIFICATION NETWORK (BHCNET-N) 

Jiang et al. [65] applied the SE approach and introduced a 
small SE-ResNet module to build a BHCNet-N structure. 
Small SE-ResNet module uses factorizations by adopting two 
convolutional layers of 1 × 3 and 3 × 1 instead of two 3 × 3 
convolutional layers, reducing the number of parameters to a 
great extent. This model consists of three parts. The first part 
is the single convolutional layer, the second part is N small SE-
ResNet modules, and the third is a fully connected layer along 
with the output layer for classifications. The number of N after 
BHCNet indicates the number of small SE-ResNet modules 
applied in the model. For example, BHCNet-3 has three small 
SE-ResNet modules. 

16) DENSE CONVOLUTIONAL NETWORK (DENSENET) 

Introduced by a group of researchers [66], the Dense 
Convolutional Network uses the ResNet [53] identity 
connections for all the layers. The DenseNet network consists 
of three parts, including the dense blocks, transitional layers, 
and one classifier layer. 

First, the dense block consists of several convolutional 
layers whereby each is connected to the successive layers. The 
transitional layer is followed by the dense block. Using the 1 
× 1 convolutional layer and pooling layer decreases the feature 
maps to a fixed number [67]. Unlike the previous models, the 
feature maps are fixed in this model. Thus, the number of 
parameters and computational complexes decreases to a 
greater extent. For instance, the number of parameters of the 
DenseNet-121 model is 7.98 M. Moreover, the size of the 
input image for the DenseNet model is 244 × 244 with three 
channels. 

17) DUAL PATH NETWORK (DPN) 

This model was proposed by Chen et al. [68] by adopting both 
ResNet and DenseNet blocks [66] to form a new architecture. 
Since residual blocks reuse features and DenseNet blocks 
explore new features, the concatenation of the strengths of 
both modules leads to the introduction of a new macro-block. 
With this module, the accuracy can be improved and the 
computational complexes can be decreased. Each macro-
block has three convolutional layers of 1 × 1, 3 × 3, and 1 × 1. 
The last convolutional layer is split into two paths. The first 
path is for the addition of the residual, like ResNet, while the 
second one is for the concatenation of densely connected parts, 
like DenseNet. In order to obtain more efficiency, the grouped 
convolution approach can be used to increase the width of the 
model that has been employed in the ResNeXt model [63] as 
introduced by researchers in a published study [51]. 
Interestingly, the lower number of parameters in the DPN 
model makes it more computationally efficient compared to 
the ResNeXt models. For example, the number of the 
parameters for DPN-131 is about 79.25 M. The suggested 
input size for this model is 224 × 224 × 3. The DPN-92 has 
0.63% higher top-1 accuracy score than ResNeXt -101, and 
the DPN-98 consumes about 25% less FLOPs than ResNeXt-
101(64 × 4d). 

18) NEURAL ARCHITECTURE SEARCH NETWORK 
(NASNET) 

Despite the cutting-edge results gained by the neural networks 
so far, designing a network suitable for a specific database is 
still time-consuming and prone to errors [69]. NASNet model 
is inspired by the automated neural architecture search (NAS) 
method introduced by Zoph et al. [70]. 

NASNet architecture was designed by Zoph et al. [71]. The 
author applied a recurrent neural network (RNN) and trained 
this network using a reinforcement learning approach to 
generate a network with the maximum expected accuracy on 
the validation dataset. Furthermore, in this model, the author 
benefitted from a new regularization method called 
ScheduledDropPath. Moreover, from the advantage of using 
Controller Recurrent Neural Network (CRNN), CNN, and 
reinforced evolutionary algorithm, this model is able to choose 
the best cell candidate to form the blocks and end up building 
the best architecture depending on the database [72]-[73]. In 
this model, the controller RNN generates sample architecture 
with a sample probability by using a set of operations. Then, 
the CNN model trains a child network with sample 
architecture to obtain a target accuracy result. Next, the 
controller RNN will update the sample architecture based on 
the gradient computed by using the sample probability and 
scale it by the target accuracy. There are three types of 
NASNet models: A, B, and C (Fig. 3). NASNet-A-Large has 
received the highest accuracy results. The input image size of 
this model is 331 × 331 × 3 and it has 8,89,49,818 parameters. 
Furthermore, the blocks are operational modules, including 
normal convolutions, separable-convolutions, max-pooling, 
average pooling, and identity mapping in the NASNet 
architecture, and the cell is the combination of these blocks. 
The number and types of these cells and blocks are optimized 
based on the selected database. The network is formed based 
on three factors, including the number of cells to be stacked 
(N), the number of filters in the first layer (F), and the 
combination of the N and F that are fixed during the search. 
The hidden layers are built through pairwise combinations and 
updated by a concatenation operation within each cell. Each 
block receives the hidden layers that are the output of the 
previous cells, and maps them into one output feature map that 
will be fed to the next cells as an input. 

The ball chart in Fig. 3 shows a comprehensive comparison 
between almost all the deep learning models trained by the 
ImageNet dataset. The ball chart is based on the accuracy top-
1 (Y-axis), operational complexes (X-axis), and trainable 
parameter size (the size of the balls shows the parameters in a 
million). The models proposed by the previous studies listed 
in Table I, II, and III for breast cancer histopathological images 
are all highlighted in Fig. 3 with red rectangular marks. Based 
on Fig.3, the most recent and accurate models are ResNeXt-
101(32 × 4d), ResNeXt-101(64 × 4d), DualPathNet-131, 
SENet-154, and NASNet-A-Large, and they are illustrated 
with dark blue rectangular marks. Since there has been no or a 
limited number of studies investigating these models using the
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 breast cancer histopathology image databases, they were 
examined in our study to determine the ones with the best 
results for these databases. Besides that, the Inception-ResNet-
V2 was examined in our study as this model gained the best 
accuracy results for BreaKHis databases according to a study 
[14]. 

Some studies have shown a combination of the most 
accurate models as depicted in Fig. 3 for the breast cancer 

histopathological images. For instance, the BHCNET-N 
architecture was formed by N small (factorized) SE-ResNet 
modules. As illustrated in Fig. 3, the SENet module was added 
to the ResNet and ResNeXt skeletons to create SE-ResNet or 
SE-ResNeXt that produced better accuracy. In addition to that, 
ResNeXt-50, DPN-26, VGG-M, CSDCNN, and BHCNET-N 
models were not included in the comparison in Fig. 3. 
However, in our review, we will discuss them all. 

 

FIGURE 3.  Ball chart reporting the Top-1 accuracy vs. computational complexity i.e. floating-point operations per second (FLOPS) in computing. The 
size of the balls shows the parameters. [74]. 

 

B. TRANSFER LEARNING  

Without a doubt, the deep CNN models are more capable to 
gain significant results. However, training a model from 
scratch is not the most practical strategy due to the 
computational costs, convergence problems, and the 
insufficient number of high-quality labeled pathology images 

[67], [75]. Furthermore, for a large amount of data, the training 
of a model can be highly time-consuming due to the hardware 
limitations [76]. 

To solve these challenges, transfer learning methods are 
employed by researchers [77]. The methods of transfer 
learning are as follows: 
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1) PRE-TRAINED 

The community of deep learning believes in sharing. 
Therefore, other models that have been pre-trained by 
ImageNet can be applied. Nowadays, pre-trained models can 
be accessed via libraries such as Keras [62]. For example, we 
managed to implement a pre-trained model with the weights 
initiated from ImageNet [10]. 

2) FEATURE EXTRACTION  

In this technique, all the layers are frozen except the SoftMax 
(last) layer. Moreover, the classification numbers in the last 
layer can be modified based on needs. For example, to classify 
the types of breast cancer, there can be two classes, either 
benign or malignant. Besides that, multiple classifications can 
be applied when classifying the subtypes of breast cancer. 

3) FINE-TUNING  

This method applies the pre-trained model, the same as feature 
extraction. However, unlike the feature extraction in which 
only the last layer is changed [75], this fine-tuning technique 
enables the researchers to retrain several layers based on the 
new data [75], [78]. 

V. COMPARISON ANALYSIS 

A. TWO-CLASS CLASSIFICATION 

1) PREVIOUSLY PUBLISHED LITERATURE REVIEWS 

In this section, previously published literature related to deep 
learning models for histopathological images are compared 
and discussed. The review focuses on the examination of pre-
trained deep learning models with weights initiated with the 
ImageNet database since models gained higher performance 
by using natural images than pathology ones [79]. 

The comparison conducted in this study is shown in three 
separate tables based on the number of classifications. Table I 
shows the experiments conducted for the binary classification 
of breast cancer, namely benign and malignant cancers on the 
BreakHis database. Table II illustrates the studies that include 
four classifications (normal, benign, in-situ carcinoma, and 
invasive carcinoma) on the BACH database. Besides that, 
Table III compares the experiments performed for eight 
classes, including all the breast cancer subcategories 
(adenosis, fibroadenoma, phyllodes-tumor, tubular-adenoma, 
ductal carcinoma, lobular-carcinoma, mucinous-carcinoma, 
and papillary-carcinoma) on the BreakHis database. As the 
BreakHis database supplies images in four different 
resolutions, multiple resolutions were used to assess the 
models. The models compared the average accuracy of all 
resolutions. 

The results based on each resolution are outlined in the table 
based on the average accuracy scores. Each table provides a 
comparison based on the models and their average accuracy 
scores. Moreover, the different methods, such as data 
augmentation, pre-processing, transfer learning, optimization, 
and regularization were compared. Additionally, the database 
column in each table shows the equality or inequality of the 
classes and the total number of patches applied in the study. 

Since the input images were resized at the pre-processing stage 
and batch normalization was implemented in almost all the 
studies, these two methods were excluded from the tables. 

Subsequently, the papers that included the examination of 
the models through different databases, such as TMA, 
Camylon, and BISQUE, were discussed. In addition to that, 
different items in the experimental settings, such as hardware, 
software, train and test split, learning rate, batch size, epoch, 
and iteration, were explained according to the studies. 

Table I shows the comparison between the previous studies 
and our examination of the most current models conducted on 
the binary classification for benign and malignant breast 
cancer images on the BreakHis database. In this section, the 
studies performed on the binary classifications will be 
discussed and then our examinations will be explained in the 
next section. 

In this table, the highest level of accuracy for binary 
classification was achieved by the pre-trained Inception-
ResNet-V2 and feature extraction method examined by them 
[14]. 

There were two experiments conducted by Xie et al. [14]. 
The first one was performed on the BreakHis database with 
imbalanced classes and 7,909 breast cancer histopathology 
images. In the second experiment, data augmentation 
techniques, including turning and clockwise rotation, were 
applied. The number of classes was balanced and the average 
accuracy was improved from 97.90% to 99.79%. The 
accuracy improvement in this model highlights the importance 
of data augmentation techniques in increasing the size of the 
database and balancing the classes. Furthermore, the highest 
accuracy score (99.79%) in this study was achieved by using 
the 40× resolution. Apart from that, other pre-processing 
techniques, including normalization between -1 and 1, cutting 
border, and saturation adjustment, were also applied by Xie et 

al. [14]. 
Similarly, the BHCNet-3 model proposed by Jiang et al. [65] 
with three small SE-ResNet modules gained an average 
accuracy score of 98.87 ± 0.10%. The result for this model was 
achieved using the BreaKHis database for binary 
classifications with an imbalanced number of classes. Unlike 
other studies, the transfer learning method was not adopted 
[65]. In other words, BHCNet-3 was trained from scratch but 
it obtained a satisfactory result. This study shows the 
importance of the SE modules that can be embedded in the 
lightweight architectures to improve the accuracy score. 
Besides that, we have performed several experiments on 
SENet-154 model, and this model gained the highest level of 
accuracy for binary and four classifications in comparison 
with other studies and other examined models in our study. 
This model will be explained in the next part. Moreover, 
according to the study [80], applying a large number of 
parameters to pre-trained models offers little extra efficiency 
over smaller models in the medical field. 
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TABLE I 

COMPARATIVE STUDY OF TWO-CLASS CLASSIFICATION USING BREAKHIS DATABASE 

Study 
Pre-trained 

Model 
Database 

Data 
Augmentation 

Pre-processing Transfer-learning 
Optimization/ 
regularization 

Results (Accuracy %) 

40 × 100 × 200 × 400 × Avg 

Our 
method 

SENet-154 
Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned the last three 
FC Layers 

Adam/Dropout 0.5 - - - - 99. 87 

Our 
method 

DualPathNet-
131 

Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned all the layers 
of the network 

Adam/Dropout 0.5 - - - - 99.74 

Our 
method 

Inception-
ResNet-V2 

Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned the last three 
FC Layers 

Adam/Dropout 0.5 - - - - 99.74 

Our 
method 

ResNeXt-
101(32×4d) 

Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned the last three 
FC Layers 

Adam/Dropout 0.5 - - - - 99.49 

[14] 
Inception-
ResNet-V2 

Even /Total: 
27,262 

Turning/ 
clockwise rotation 

Normalization [-1,1]/cutting 
border/ adjust saturation 

Feature extraction 
Adam/ exponential 
decay method 

99.79 99.37 99.43 99.10 99.42 

Our 
method 

ResNeXt-
101(64×4d) 

Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned the last three 
FC Layers 

Adam/Dropout 0.5 - - - - 99.36 

Our 
method 

NASNet-A-
Large 

Uneven/Total:
7,909 

Rotation, flip Normalization  
Fine-tuned the last three 
FC Layers 

Adam/Dropout 0.5 - - - - 99.24 

[65] 

BHCNet-3 
(with 3 small 
SE-ResNet 
module) 

Uneven/Total:
7,909 

Height and width 
shift, horizontal 
flip, constant fill 
mode 

Down sampling, zero-mean 
normalization 

- 
SGD + momentum 
0.9/weight decay 
of 1e-4. 

98.87±
0.10 

99.04 
± 0.10 

99.34 
± 0.06 

98.99 
± 0.17 

99.06±
0.11 

[36] 
Inception-V3 
 

Even/ Total: 
4,960 

Rotation, shift, 
flip, zooming 

under-sampling (EUS 
SVMs) 

Fine-tuned the last three 
layers 

RMSprop/ weight 
decay le-6 

- - - - 98.00 

[14] 
Inception-
ResNet-V2 

Uneven/Total:
7,909 

- 
Normalization [-1,1]/, 
cutting border, adjust 
saturation 

Feature extraction 
Adam/ exponential 
decay method 

97.90 96.88 96.88 96.88 97.13 

[36] VGG-16 
Even / Total: 
4,960 

Rotation, shift, 
flip, zooming 

under-sampling (EUS 
SVMs) 

Fine-tuned the last three 
layers 

Adam/ weight 
decay (le-6) 

- - - - 97.00 

[14] Inception-V3 
Uneven/ total: 
7,909 

- 
Normalization [-1,1]/, 
cutting border, adjust 
saturation 

Feature extraction 
Adam/exponential 
decay method 

96.84 96.76 96.49 94.71 96.2 

[81] AlexNet 
Uneven/Total:
7,909 

- - 
Fine-tuned the last three 
layers 

SGD + 
momentum/L2-
regularised 
 

90.96 
± 1.59 

90.58 
± 1.96 

91.37 
± 1.72 

91.30 
± 0.74 

91.05±
1.5 

[81] 
AlexNet- fc6 
+ VGG16-fc6 
+ SVM 

Uneven/Total:
7,909 

- - Feature extraction 

SGD + 
momentum/L2-
regularised 
 

84.87 
± 1.14 

89.21 
± 1.44 

88.65 
± 2.41 

86.75 
± 4.21 

87.37±
 2.55  

[81] 
AlexNet- fc7 
+ VGG16-fc7 
+ SVM 

Uneven/Total:
7,909 

- - Feature extraction 

SGD + 
momentum/L2-
regularised 
 

84.58 
± 1.49 

89.03 
± 1.46 

88.31 
± 3.20 

86.00 
± 4.08 

86.23±
2.55 

[54] VGG-M Uneven/7,909 - - Feature extraction 
SGD + momentum 
0.5 / dropout 0.5 

86.2±2
.7 

85.9±0
.5 

87.2±3
.6 

86.3±1
.7 

86.4±2
.12 
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Among all the studies conducted on Inception-V3 listed in 
Table I, the highest level of accuracy (98%) was achieved by 
Lim et al. [36]. They conducted fine-tuning on the last three 
layers of this model [36]. Furthermore, the total number of 
histopathological images used in this study was 4,960, and the 
number of classes was balanced by an under-sampling 
method. In this study, the author applied data augmentation 
techniques, such as rotation, shift, flip, and zooming. They 
also conducted another examination on VGG-16 with fine-
tuning on the last three layers. This model achieved a 97% 
accuracy score using the BreaKHis database with balanced 
data. 

Likewise, in a study by Xie et al., Inception-V3 achieved a 
96.84% level of accuracy using the BreaKHis database, with 
the total number of 7,909 imbalanced types of breast cancer 
histopathological images [14]. 

Additionally, the fine-tuned AlexNet was used by Deniz et 

al. [81]. According to them, it achieved 91.05±1.5% level of 
average accuracy on the BreakHis database, with uneven 
classes and 7,909 histopathological images. They followed up 
with a second experiment on the concatenation output of the 
sixth and seventh layers of the AlexNet and VGG-16 model 
before classifying the results with a support vector machine 
(SVM) model. By using the features extracted from the sixth 
layer of AlexNet and VGG-16, this architecture could gain an 
average score of 87.37 ± 2.55%. Furthermore, by using the 
features extracted from the seventh layer, this model was able 
to reach 86.23 ± 2.55% of accuracy. 

In other words, this study has shown that the breast cancer 
classification for the AlexNet model had a better result than 
the concatenation and SVM of AlexNet with VGG-16. 
However, this study did not apply any pre-processing and data 
augmentation techniques. 

The lowest accuracy score on the BreakHis database by 
VGG-M in Table I was obtained by Mahmoud [54]. The score 
was 86.4 ± 2.12%. In this study, the pre-processing and data 
augmentation techniques were eliminated and the numbers of 
classes were imbalanced. 

In the subsequent sections, the deep learning models 
examining different databases containing breast cancer 
histopathological images will be discussed and reviewed. 

First, Habibzadeh Motlagh et al. [16] combined BreaKHis 
and TMA databases with different resolutions. The number of 
types and subtypes were then balanced with data augmentation 
techniques [16]. The total number of input images in this study 
was 16,846. They also employed pre-processing techniques, 
such as normalization, and color-distortion before examining 
all the layers in the model with fine-tuning techniques. In the 
same study, several experiments on ResNet models, including 
ResNet-152, ResNet-101, and ResNet-50 were conducted, 
obtaining 98.70%, 98.40%, and 97.80% scores of accuracy, 
respectively. By using the same techniques and databases, this 
study illustrated the importance of the deep layers in which 
ResNet-152 achieved the highest accuracy among all ResNet 
models. 

In another study, Inception-V4 and Inception-V3 were 
examined by Habibzadeh Motlagh et al. [16] using images 
from TMA and BreaKHis. Inception-V4 gained a lower 
accuracy score (77.70%) than Inception-V3 (82.20 %). By 
comparison, the accuracy scores gained by Inception-V3 for 
the BreakHis database were 96.2 and 98% in a study by Xie et 

al. [14] and Lim et al. [36], respectively. Thus, this model 
gained better accuracy scores when investigating the BreakHis 
database in comparison with the database collected from TMA 
and BreaKHis. The experiment by Habibzadeh applied 
techniques such as data augmentation and pre-processing. 
Moreover, the total number of histopathological input images 
was as high as 16,846, and all the types and subtypes of breast 
cancer were approximately balanced. 

Besides that, Inception-V3 was implemented with FCN on 
the database that combined Camelyon and a private database 
[30]. The total number of patches applied for training the 
model was 216,000, which was gained from 27,000 whole-
slide images. Furthermore, the total number of images for 
evaluating the model was 1,000, all originated from a private 
database. The FCN architecture acted as a catalyst to make the 
size of the images smaller for the Inception-V3 architecture. 
During the training phase, Inception-V3-FCN was trained 
using a pathology database that contained patches sized 911 × 
911 × 3 pixels. After the input images were passed through the 
FCN, their sizes were reduced to 111 × 111 × 192. However, 
during the evaluation, the input size would change as the 
observer’s field of view (FOV) of the microscope device 
captured 2,560 × 2,560 × 3 pixels of whole-slides each time. 
With regards to this, the FCN model is considered as highly 
flexible as it is also able to feed images with more than 2,560 
× 2,560 × 3 pixels. The size of the photos can be changed based 
on the region of interests, and the context of significance to the 
pathologists and deep learning models to better distinguish the 
tumor. This model could gain up to 96% accuracy, thus 
indicating the positive impact of FCN on this architecture. 

In another two studies, the researchers investigated 
Inception-V1 and obtained different accuracy scores while 
utilizing different databases [16], [79]. In the first study, 
Inception-V1 obtained an accuracy score of 93.60% with a 
combination of the BreaKHis and TMA databases [16]. As 
mentioned earlier, the number of classes was balanced and the 
total number of input images was 16,846. Moreover, the data 
augmentation and pre-processing techniques were used in this 
experiment. The researchers also managed to reach 91.80% 
accuracy by using Inception-V1 on the combination of TMA 
and OUHSC databases. The total number of the input images 
in this study was 36,192 and there was an even number of all 
types of breast cancer. However, in this study, data 
augmentation techniques and optimization algorithms were 
not applied, and the model was only fine-tuned on the last two 
fully connected layers. Moreover, in the pre-processing phase, 
multi-resolution methods and contrast enhancements were 
adopted for the input images. Based on the study by Du et al. 
[79], AlexNet reached an 88.70% level of accuracy with TMA
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 and OUHSC databases. Although Du et al. [79] applied pre-
processing methods, even classes, and a higher number of data 
in their experiment, this model actually achieved lower 
accuracy with TMA and OUHSC databases compared to the 
BreakHis database. 

Evidently, studies that applied data augmentation 
techniques and balanced classes gained better accuracy scores 
than those that did not, as shown by Xie et al. [14]. As 
mentioned earlier, according to Litjens et al. [25], factors that 
affected the performance of the deep learning models during 
practical applications included low resolution and the 
existence of noise. Furthermore, the models showed different 
accuracy scores with different databases or resolutions. Based 
on a study [82], models such as VGG-19 and DenseNet-201 
achieved the highest accuracy scores on the BreakHis database 
compared to the other four publicly available databases: 
BreakHis, PatchCamelyon, ICIAR, and Bioimaging. 
Moreover, according to the investigation in this study, most 
models gained better accuracy scores on the BreaKHis 
database than other databases. Additionally, the models gained 
different results when images from the BreakHis database 
were examined with different resolutions.  

The mini-batch or normal batch gradient descent can create 
several isolated movements, resulting in high noise for the 
path to reach the converging point to train larger data. 
Applying the momentum algorithm can prevent steep steps so 
that it can work faster [83]. 

In Table I, Xie et al. [14] achieved the highest accuracy with 
Adam optimization for Inception-ResNet-V2 (99.79%). 
Another study used Adam optimization for VGG-16 and 
RMSprop for Inception-V3 [36]. RMSprop is an unpublished 
adaptive learning rate method proposed by Geoff Hinton [83]. 
Besides that, the second rank of the accuracy in this table was 
gained by Jiang et al. [65] who employed Stochastic Gradient 
Descent (SGD) with a momentum of 0.9. Other studies also 
employed SGD with momentum while working on VGG-M 
and AlexNet [54], [81]. Since only one study [81] in Table I 
implemented L2, it can be deduced that most researchers 
preferred dropout and weight decay over other regularization 
methods. 

The pre-processing method is likely to improve accuracy as 
these techniques were shown to improve the efficiency in the 
majority of the studies. Although transfer learning methods 
helped the models gain satisfactory results, a study managed 
to achieve a successful outcome without using this method 
[65]. Besides that, three other optimization methods, including 
Adam, RMSProp, and SGD were also employed with the 
momentum technique. Nevertheless, the most favorable ways 
for the regularization were the dropout method and weight 
decay. 

As binary classifications by previous studies show cutting-
edge results, we have applied several current models in order 
to compare our results with the other studies. To ensure the 
reliability and accuracy of some examinations done on 
Inception-ResNet-V2, we have performed several 

experiments on this model and compared this model with the 
most current models. Our investigation for binary 
classifications will be discussed in the following section. 

2) OUR EXAMINATIONS 

For the two classifications in our study, we have applied the 
BreaKHis dataset with two classes of benign and malignant. 
The number of classes in our experiments was uneven. In all 
of the experiments, we have normalized the input images 
between -1 and 1. Normalizing helps to keep the network 
weights near zero, in turn making backpropagation more 
stable. Without normalization, the networks will tend to fail to 
learn. Subtracting the mean centers the data around zero and 
dividing by the standard deviation yields values of between -1 
and 1. Furthermore, we matched the normalization when the 
models were trained. Hence, since we have applied pre-trained 
models on the ImageNet data set, in order to abide the 
normalization method applied for this data set, each color 
channel was normalized separately; the means were [0.485, 
0.456, 0.406] and the standard deviations were [0.229, 0.224, 
0.225]. Moreover, two methods of data augmentation 
techniques, including random rotation 45 degrees and vertical 
and horizontal flipping were applied. Besides that, Adam's 
method for optimization had been chosen while using 
backpropagation in our models. The dropout method had been 
practiced as a regularization method in our study. Moreover, 
in this part, we had employed six models with the best 
accuracy results on ImageNet as depicted in Fig.3. In order to 
have a comprehensive comparison, we have added and 
ordered these models to Table I ascendingly based on their 
acquired accuracy. These models are explained as follows. 

During our investigation, a pre-trained SENet-154 network 
gained the highest accuracy score among all examined models. 
The size of the input images for this model was set to 244 ×2 
44 × 3. All the layers of this model had been frozen except the 
last three fully connected layers with the size of 1024. The 
number of parameters of the last three fully connected layers 
was about 3 M. This model was retrained for 100 epoch and 
the highest accuracy score achieved by this model was 99.87% 
in epoch 27 which was quite a state of the art. Using data 
augmentation methods, the accuracy score improved by 
0.63% from 99.24% to 99.87% and loss error decreased from 
0.021 to 0.006 for the test dataset.  

The second rank of accuracy results was gained by 
DualPathNet-131. In our examinations, we have used a pre-
trained model and retrained all the layers of the network for 
100 epochs by the size of input of 224 x 224 x 3 and the batch 
size of 32. With the aid of data augmentation techniques, we 
could improve the accuracy score by almost one percent from 
98.73% to 99.74% for this model. The accuracy score with the 
data augmentation was received in epoch 50 and the error loss 
score in this epoch was 0.015. The number of parameters of 
DPN-131 was 79.25 M for 1000 classes, yet this number had 
decreased to 76.57 M due to the fact that we had replaced the 
1000 classes with 2 classes in the last linear layer.
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Inception-ResNet-V2 gained the highest accuracy results 
among all investigated previous reviews. In our investigation, 
this model gained 99.74% of the accuracy and 0.057 scores of 
the loss function in epoch 67. All the layers were frozen and 
we had added three fully connected layers whose number of 
parameters was about 2.6 M. Our examination ensured both 
accuracy and readability of this model, and the examination 
conducted by them [14]. 

The next cutting-edge model we explored was ResNeXt-
101(32 × 4d). We had fine-tuned this model with three fully 
connected layers with the size of 1024. In this experiment, 
ResNeXt-101(32 × 4d) obtained 99.49% of the accuracy score 
and 0.006 scores of the test loss in epoch 66. The number of 
parameters of the last three fully connected layers was 3.149 
M that were set to be trainable. This model gained 99.36% of 
the accuracy score and the loss score for the test dataset was 
0.023 in epoch 83. By using a fine-tuning technique, 3.14 M 
of the parameters were dedicated to these trainable layers. 

The highest test set accuracy score for the NASNet-A-Large 
model was gained in epoch 55, with 99.24% and the test loss 

score of 0.025. We had applied a fine-tuning technique with 
three fully connected layers of 1024 perceptrons. In this 
experiment, a pre-trained model on the ImageNet dataset had 
been applied, and all the layers were frozen except the last 
three layers. This model required a fixed input size of 331 × 
331 × 3. 

As discussed by Han et al. [50], accurate multi-
classifications provided more valuable information for breast 
cancer diagnosis or prognosis than binary classifications. The 
staging of breast cancer is very important to help physicians in 
deciding the treatment modality [19]–[21]. However, the 
heterogeneity of color distribution of breast cancer 
histopathological images might lead to subtle differences or 
noisy labels in multiple classes that complicate the multi-
classifications [50], [84]. In order to recognize the suitable 
models and techniques to deal with multi-classifications, 
several studies were compared and discussed in this review. 

 

 
TABLE II 

COMPARATIVE STUDY OF FOUR-CLASS CLASSIFICATION USING BACH DATABASE

Study 
Pre-trained 

Model 
Database Data augmentation Pre-processing 

Transfer-
learning  

Optimization/ 
regularization 

Accuracy 
% 

200 × 
Our 
method 

DPN-131 Even/ Total:400 patches  Rotation, flipping 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 97.5 

Our 
method 

NASNet-A-
Large 

Even/ Total:400 patches  Rotation, flipping 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 97.5 

Our 
method 

ResNeXt-
101(32×4d) 

Even/ Total:400 patches  Rotation, flipping 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 97.5 

Our 
method 

Inception-
ResNet-V2 

Even/ Total:400 patches  - 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 97.5 

Our 
method 

SENet-154 Even/ Total:400 patches  Rotation, flipping 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 97.5 

[47] Inception-V3 

Even/ Total:400 whole-
slide, (for training: 33,600 
patches with data 
augmentation) 

Random vertical 
and horizontal 
flipping, rotation of 
90, 180, 270◦ 

Stain 
normalization 
with color 
transfer between 
images 

Fine-tuning two 
last FCs (1024 
units and 
output units) 

SGD + 
momentum 0.9/- 

97.08 

Our 
method 

ResNeXt-
101(64×4d) 

Even/ Total:400 patches Rotation, flipping 
Resizing, 
Normalization 

Feature 
extraction 

Adam/- 95 

[85] 

Inception 
V3+ IDPN-
26 +GBM, 
logistic 
regression, 
SVM 

Even/ Total:400 whole-
slide 

Randomly flipped 
vertically and 
horizontally, 
randomly rotated by 
90 

Stain 
normalization, 
color perturbation 
scheme 

Fine-tuning for 
Inception-V3 

RMSprop+ 
momentum 0.9 / 
L1 

87.50 

[86] 
Inception-
Resnet-V2 

Even/ Total:400 whole-
slide, 5,600 patches 

Random vertical, 
horizontal flipping, 
rotation 90, 180, 
270◦  
Random HSV color 
space augmentations 

- 

Fine-tuning FC 
with 2048 units 
and output 
units. 
 

SGD+ 
momentum 0.9/ 
50% dropout 

87.00 

[33] ResNeXt-50 
Even /Total:432 whole-
slide 

Random, rotations, 
reflections, cropping 

- 
Fine tuning the 
last two FCs 

SGD/ dropout 81.00 

B. FOUR-CLASS CLASSIFICATION 

1) PREVIOUSLY PUBLISHED LITERATURE REVIEWS 

Table II compares the four classifications studies performed 
using the BACH database. As mentioned earlier, this database 

contains all four classes of breast cancer (normal, benign, in-
situ carcinoma, and invasive carcinoma). The highest 
accuracy, 97.08%, was achieved by Inception-V3 [47]. In this 
study, the number of images was tripled to 33,600, employing 
data augmentation. Additionally, the pre-processing method
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 was applied; the transfer color between images was used to 
normalize the histopathological images. The comparison 
between the two studies showed that Inception-V3 [47] gained 
a 10% higher accuracy than Inception-Resnet-V2 [86]. 

Similarly, Vang et al. [85] applied Inception-V3 with the 
dual-path network (DPN) to separate the class of in-situ 
carcinoma from invasive carcinoma. Two other studies also 
employed Inception-V3 and shared the same data 
augmentation and transfer learning methods [47], [85]. Thus, 
a decent pre-processing method was more important than ever 
because these two studies were different in terms of the pre-
processing methods. Furthermore, Vesal et al. [47] showed 
that Inception-V3 alone could gain better accuracy than the 
combination of Inception-V3 with DPN as done by another 
study [85]. Therefore, as more experiments conducted with 
DPN are needed to reach a better conclusion on the efficacy of 
this model for breast cancer histopathological images, we have 
examined DPN per se in our study on the same database to 
gain better insights. This model will be explained in the next 
part. 

In another study, ResNeXt-50 was examined by using the 
combination of BACH and BISQUE databases [33]. As the 
BISQUE database consists of few but precious images, it was 
included in Table II. This model gained the lowest accuracy 
score (81%) among all the studies (Table II). All the pre-
processing methods were eliminated, thus showing the 
significance of this technique in improving accuracy. Besides 
that, ResNet models with more layers were more accurate 
compared to the same model with fewer layers as shown in 
Table I. Thus, since further studies on ResNeXt models with 
more layers are needed to reach a comprehensive conclusion 
on the accuracy scores of these models, we have examined this 
model and compared the results in Table II. 

In another study, the SDG optimizer was applied together 
with momentum but without the regularization method [47]. 
The SDG optimizer was also utilized with dropout 
regularization by researchers in another two studies [33], [86]. 
Among all the studies in Table II, only one study employed 
RMSprop and momentum for optimization, and L1 for 
regularization [85]. 

2) OUR EXAMINATIONS 

Several experiments have been conducted in our study on the 
pre-trained models, including DPN-131, NASNet-A-Large, 
ResNeXt-101, Inception-ResNet-V2, SENet-154, to examine 
their performance on four classifications using the BACH 
database. We had applied feature extraction techniques in all 
of the experiments. The input images were normalized 
between -1 and 1. We had resized the images before fitting the 
models. Adam optimizer had been utilized in our study and as 
there was no fully connected layer, no regularization method 
was applied. Furthermore, through data augmentation 
techniques, including rotation (45°), and horizontal and 
vertical flipping, we could improve the results for almost all 

the models, except for Inception-ResNet-V2 and ResNeXt-
101(32 × 4d). For instance, for DPN-131, we could improve 
the accuracy score from 92.5% to 97.5% by utilizing these 
methods. Moreover, by using data augmentation methods, the 
test accuracy results for NASNet-A-Large, SENet-154, and 
ResNeXt-101(64×4d) increased by 10%, 2.5%, and 2.5% 
respectively. However, this metric for Inception-ResNet-V2 
decreased to 2.5% while using the data augmentation 
techniques, and for ResNeXt-101(32 × 4d), it remained 
unchanged. Additionally, the loss error scores for DPN-131, 
NASNet-A-Large, ResNeXt-101(32×4d), Inception-ResNet-
V2, SENet-154, and ResNeXt-101(64×4d) were 0.05, 0.07, 
0.1, 0.22, 0.28, and 0.37, respectively. We had trained all the 
models for 100 epochs and the best results for DPN-131, 
NASNet-A-Large, ResNeXt-101(32×4d), Inception-ResNet-
V2, SENet-154, and ResNeXt-101(64×4d) were gained in 
epoch 42, 90, 54, 11, 62, and 86, respectively. 

C. EIGHT-CLASS CLASSIFICATION 

1) PREVIOUSLY PUBLISHED LITERATURE REVIEWS 

According to Table III, the experiment done by Xie et al. [14] 
with Inception-ResNet-V2 achieved the highest accuracy of 
97.63% for the eight classifications. In this experiment, the 
data augmentation techniques were applied to increase the 
number of images of each subtype besides balancing them, 
improving the accuracy from 92.07% to 97.63%. After 
increasing the number of images by the augmentation 
technique, the input images for benign tumors subtypes 
included adenosis (1,335), fibroadenoma (3,045), phyllodes-
tumor (1,362), and tubular-adenoma (1,710). As for malignant 
tumor subtypes, the input images included ductal carcinoma 
(3,451), lobular carcinoma (1,881), mucinous-carcinoma 
(2,379), and papillary-carcinoma (1,683). Furthermore, pre-
processing techniques such as normalization, cutting border, 
and saturation adjustment were used in this study. Although 
the researchers did not apply the fine-tuning method, the 
model of Inception-ResNet-V2 gained the best result 
(97.63%), followed by DenseNet (95.40%) [67]. As this 
model consisted of only a few trainable parameters, the 
researchers [67] retrained all of them using fine-tuning. The 
third rank of accuracy level of 95% was achieved by Nawaz et 

al. [43] whom employed ResNet-50 and fine-tuning 
techniques. The number of classes also became balanced 
through data augmentation methods. Furthermore, with the 
advantage of stain normalization as the pre-processing 
method, the extreme values in the breast cancer 
histopathological slides were normalized. 

In general, based on a study by Han et al. [50], the 
CSDCNN model achieved a 93.20% accuracy score with data 
augmentation, pre-processing, and fine-tuning of the last layer. 
Among all the Inception models, Inception-V3 obtained the 
highest level of accuracy score (90.28%) for eight imbalanced 
classes [14]. 
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TABLE III 

COMPARATIVE STUDY OF EIGHT-CLASS CLASSIFICATION USING BREAKHIS DATABASE 

Study Pre-trained Model Database Data augmentation Pre-processing Transfer-learning  
Optimization/ 
regularization 

Results (Accuracy %) 
40 × 100 × 200 × 400 × Avg  

[14] 
Inception-
ResNet-V2 

Even /Total: 27,262 
Turning, clockwise 
rotation 

Normalization [-1,1]/, 
cutting border, adjust 
saturation 

Feature extraction 
Adam/ exponential 
decay method 

97.63 97.00 96.89 97.49 97.25 

Our 
method 

SENet-154 Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the last 
three FC Layers 

Adam/Dropout 0.5 - - - - 96.33 

Our 
method 

ResNeXt-
101(32×4d) 

Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the last 
three FC Layers 

Adam/Dropout 0.5 - - - - 96.20 

Our 
method 

ResNeXt-
101(64×4d) 

Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the last 
three FC Layers 

Adam/Dropout 0.5 - - - - 95.81 

Our 
method 

Inception-
ResNet-V2 

Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the last 
three FC Layers 

Adam/Dropout 0.5 - - - - 95.44 

[67] DenseNet-121 Uneven/Total: 7,909 - - 
Fine-tuning all the 
layers 

Adam/dropout 
93.64 97.42 95.87 94.67 95.40 

 
Our 
method 

DualPathNet-131 Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the 
Layers 

Adam/Dropout 0.5 - - - - 95.32 

[43]  ResNet-50 
Even /Total: More 
than 7,909 

Rotation, flipping 
to left and right, 
cropping 

Stain normalization, 
normalizing to [0, 1] 

Fine-tuning all the 
FC layers 

RMSProp/ dropout  
- - - - 95.00 

Our 
method 

NASNet-A-Large Uneven/Total:7,909 Rotation, flip Normalization  
Fine-tuned the last 
three FC Layers 

Adam/Dropout 0.5 - - - - 95.32 

[65] BHCNet-6  Uneven/ Total:7,909 

Height and width 
shift, horizontal 
flip, constant fill 
mode 

Down sampling to 
change image size, 
zero-mean 
normalization 

- 
SGD + momentum 
of 0.9/ weight 
decay of 1e-4. 

94.43 
± 
0.28 

94.45 
± 
0.15 

92.27 ± 
0.08 

91.15 
± 0.43 

93.07
±0.23 

[50] CSDCNN 
Even /Total: More 
than 7,909 

Intensity variation, 
rotation, flip, 
translation, and 
random 
combination of all 

Over-sampling, data 
augmentation to 
balance the classes 

Fine-tuning the 
last layers 

SGD/L2 

92.8 
± 2.1 

93.9 
± 1.9 

93.7 ± 
2.2 

92.9 ± 
1.8 

93.32
±2.0 

[50] CSDCNN 
Even /Total: More 
than 7,909 

- 
Over-sampling, data 
augmentation to 
balance the classes 

Fine-tuning the 
last layers 

SGD/L2 
89.4 
± 5.4 

90.8 
± 2.5 

88.6 ± 
4.7 

87.6 ± 
4.1 

89.1±
4.17 

[14] 
Inception-
ResNet-V2 

Uneven/Total:7,909 - 
Normalization [-1,1]/, 
cutting border, adjust 
saturation 

Feature extraction 
Adam/ exponential 
decay method 

92.07 88.06 87.62 84.50 88.06 

[14] Inception-V3 Uneven/Total:7,909 - 
Normalization [-1,1]/, 
cutting border, adjust 
saturation 

Feature extraction 
Adam/ exponential 
decay method 

90.28 85.35 83.99 82.08 85.42 
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Furthermore, by using six small SE-ResNet modules in the 
BHCNet-6 architecture, Jiang et al. [65] gained a better 
accuracy score of 92.24% in comparison with Inception-V3 
models in another study [14]. However, for all eight 
classifications, the BHCNet-6 showed a lower accuracy score 
compared to ResNet-50 [43]. Both of these studies differed in 
terms of pre-processing and optimization methods [43], [65]. 
Furthermore, one of the studies utilized the BreakHis database 
with imbalanced classes [65]. 

As shown in Table I, BHCNet-3 [65] gained 1.8% more 
accuracy score than ResNet-50 [16] for the binary 
classifications. However, for the eight classifications (Table 
III), BHCNet-6 [65] scored 2.76% less in terms of accuracy 
than ResNet-50 [43]. Experiments by the ResNet-50 model in 
both of these studies differed in terms of pre-processing 
techniques and the number of classifications. Thus, it can be 
concluded that pre-processing methods such as stain 
normalization utilized by Nawaz et al. [43] can improve 
accuracy. 

2) OUR EXAMINATIONS 

Like the two classifications, in this section, we had employed 
six pre-trained models; DualPathNet-131, SENet-154, 
ResNeXt-101(32×4d), ResNeXt-101(64×4d), Inception-
ResNet-V2, and NASNet-A-Large to classify the data images 
into eight classes. Each pre-trained model had been trained for 
about 100 epochs, and the data augmentation techniques like 
rotation and flipping were used. In all of the experiments, we 
had normalized the input images between -1 and 1. To have a 
comprehensive comparison, we added all of the examinations 
to Table III and arranged them ascendingly based on the 
accuracy scores. The results of each model are explained as 
follows. 

Like the two classifications, SENet-154 reached the highest 
accuracy score for the eight classifications among all the 
examined models in our study. The accuracy score for this 
model was 96.33% for the test dataset with the loss error score 
of 0.12 in epoch 100. Additionally, all the layers of the model 
were frozen except the three fully connected layers with the 
size of 1024. In the binary classifications, this model obtained 
higher accuracy results compared to previous researchers [14], 
but for the eight classifications, this model was capable of 
obtaining the second rank of accuracy (Table III). 

The next experiment on ResNeXt-101(32 × 4d) showed 
96.20% of accuracy in epoch 63 for the eight classifications 
using the BreaKHis database (Table III). The loss error 
received by this model in epoch 63 was 0.21. Similarly, the 
experiments on ResNeXt-101 (64 × 4d) showed 95.81% of the 
accuracy score. Furthermore, the loss error function of this 
model was 0.11 in epoch 29. 

We obtained a 95.44% of accuracy score by using a fine-
tuned Inception-ResNet-V2 model with three fully connected 
layers with the size of 1024 in epoch 57. This model had a 0.14 
score of loss error. Although previous studies showed a 
97.25% accuracy score by using the feature extraction method 
with a large number of data images, we gained 93.44% of the 

accuracy score by these techniques. Previous studies had 
shown the impact of using a large amount of data images to 
improve the accuracy score; hence, a study [14] gained 
97.25% of the accuracy score by using 27, 262 number of 
images which was almost 3.5 times more than ours. As 
examined by Xie et al. [14], for the two classifications, the 
author improved the accuracy score by 2% by increasing the 
number of input images. Thus, in our experiment, this model 
could have reached a higher level of score accuracy if a higher 
amount of input data was used. Thus, our examination assured 
the reliability and accuracy of this model to gain the best 
results for the eight classifications. 

We had retrained all the layers of the pre-trained 
DualPathNet-131 model. This model gained 95.32% of the 
accuracy score and 0.13 of the loss error in epoch 75. 

Similarly, in our investigation, NASNet-A-Large gained 
93.67% of the accuracy score in epoch 63 and the loss error 
function was 0.18. This model gained the least accuracy score 
during our study. 

Table III shows that the two highest accuracy scores are 
gained through experiments using Adam optimizer [14], [67]. 
Thus, in all of our experiments, we had applied this method to 
gain better results during training and evaluation. Only one 
study [43] used RMSProp while the other studies employed 
SGD [50], [65]. Likewise, only one study applied L2 
regularization methods [50] while the rest preferred other 
methods, such as dropout or weight decay. Thus, the drop out 
method had been chosen and applied in all of our experiments. 

Similarly, Inception-ResNet-V2 achieved the best accuracy 
for all the eight classes. However, all the models compared in 
Table III used only images from the BreakHis pathology 
database. Therefore, further research on other databases is 
needed to achieve a comprehensive conclusion for the eight 
classifications. 

As shown in Table I, Habibzadeh Motlagh et al. [16] 
performed a binary classification on the BreakHis database. 
After separating the benign and malignant types of breast 
cancer, the author conducted other experiments for the four 
subclasses of benign and malignant cancer, respectively. The 
input images for the benign subtype of breast cancer included 
adenosis (1,335), fibroadenoma (3,045), phyllodes-tumor 
(1,362), and tubular-adenoma (1,710). The input images for 
the malignant subtypes included ductal-carcinoma (3,451), 
lobular-carcinoma (1,881), mucinous-carcinoma (2,379), and 
papillary-carcinoma (1,683). 

In another study [16], two histopathological databases 
(BreaKHis and TMA) were used to conduct experiments on 
the four classifications. Data augmentation methods, such as 
resizing, rotating, cropping, and flipping were also applied in 
their study. In addition to that, they also applied pre-processing 
techniques of normalization and color distortion, along with 
the RMSProp optimizer, dropout, and batch normalization. 
Based on this study, the highest accuracy in classifying the 
benign subtypes was achieved by ResNet with 50 layers 
(94.80%) and ResNet with 152 layers (94.50%). Similarly, the 
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highest accuracy score to classify the malignant subtypes was 
96.40% as accomplished by ResNet with 152 layers [16]. 
Since the four classifications conducted on the subtypes of 
benign and malignant cancer in this study were different from 
the classes illustrated in Table III, this study was not added to 
the table. 

Based on the previous studies that examined breast cancer 
histopathological images, there were a few types of transfer 
learning techniques. Among the studies, the Inception-
ResNet-V2 model gained far better accuracy scores with the 
feature extraction method [14] compared with only fine-tuning 
the last fully connected layers [86]. 

Moreover, the studies showed that Inception-V3 gained 
more immeasurable accuracy when the fine-tuning of the last 
fully connected layers was done [36], [47] compared to feature 
extracting [14] and fine-tuning all the layers [16]. Meanwhile, 
ResNet models gained satisfactory results by both fine-tuning 
the last fully connected layers [43] and all the layers [16]. 
Similarly, the DenseNet model that fine-tuned all the layers 
achieved more satisfactory results [67] compared to the other 
models such as CSDCNN [50], ResNeXt-50 [33], AlexNet 
[81], and VGG-16 [36] that fine-tuned only the last fully 
connected layers. 

Although the pre-trained deep models achieved a high level 
of accuracy, the BHCNet-N model could also achieve 
competent results by using small SENet without using transfer 
learning [65]. Thus, it can be concluded that simple models 
without transfer learning are able to achieve acceptable results 
whereas pre-trained deep models are prone to 
overparameterization [80]. Besides that, a pre-trained SENet-
154 model had been examined for the eight classifications in 
our study, and this model gained the second rank of the 
accuracy score among all the investigations. 

D. EXPERIMENTAL SETTINGS 

1) PREVIOUSLY PUBLISHED LITERATURE REVIEWS 

Among all of the discussed studies, the ones that explained the 
experimental settings are outlined below. 

First and foremost, in experimental settings, most of the 
studies applied GPU in their experiments. However, instead of 
using GPU, the study by Deniz et al. [81] used core i7 CPU 
with 32 GB memory RAM for the AlexNet model with 61 M 
parameters. Consequently, this study showed that it was 
possible to conduct experiments on the models with the same 
size of AlexNet, and that a lack of GPU would not hinder the 
process. 

As for the software, the TensorFlow framework [87] was 
popular in the majority of the studies discussed earlier. 
However, only Du et al. [79] applied Caffe [88] as the 
framework. Another two studies applied MATLAB [89] to 
perform the pre-processing and data augmentation jobs [79], 
[50]. Besides that, libraries such as Keras [90] and Pytorch 
[91] were utilized in two of the studies [36], [33]. Among the 
different types of programming languages, Python [92] was 
the most popular language. Apart from that, some researchers 

[16], [43] conducted their experiments using Linux operating 
systems such as Centos [93] and Ubuntu [94]. 

With regard to the training and test split rates, the rates of 
70/30 and 80/20 were mostly adopted. Only two studies used 
a validation set of 20% [85] and 25% [50]. Other methods like 
exponential decay, weight decay, or Gaussian error scheduler 
were also applied to decrease the learning rate in studies that 
showed satisfactory results. The majority of the researchers 
used 32 batch sizes. 

2) OUR EXPERIMENTAL SETTINGS 

In our experiments, Pytorch, an open-source machine learning 
library based on the Torch library [95], had been utilized. We 
also benefitted from the pre-trained models on the ImageNet 
database. We had applied the forward method to return the 
log-SoftMax for the output. Since SoftMax is a probability 
distribution over the classes, the log-SoftMax is a log 
probability. By using the log probability, computations are 
often faster and more accurate [96]. To get the class 
probabilities later, we employed exponential to inverse the log 
function. Since the model's forward method returned the log-
SoftMax, we used the negative log loss as our criterion to 
calculate the loss function [97]. We also chose to use Adam 
optimizer, a variant of stochastic gradient descent which 
included momentum along with the learning rate of 0.0002. 
We also used ReLU activations for fine-tuning the layers, 
followed by drop out 0.5 to return the logits from the forward 
pass. We used dropout in the network to measure validation 
loss and accuracy, but in the inference phase, we did not use 
dropout. Otherwise, the network would appear to perform 
poorly because many of the connections were turned off. 
Hence, in the training mode, dropout and autograd were turned 
on while in the evaluation mode, they were turned off. Thus, 
before feeding our data into the model, we normalized, and 
resized the input images for each model. 

Then, we trained the model through the batches in our 
dataset for 100 epochs, sent the data through the network to 
calculate the losses, obtained the gradients, and then run the 
optimizer. We also examined DualPathNet-131 through two 
rates of divisions. We examined this model by using a 65/35 
rate of training and test dataset. Even though the data 
augmentation methods like rotation and flipping were applied, 
we obtained 97.72% of the accuracy in epoch 75. Yet, by the 
division of the database to 90/10 for the training and the test 
dataset, we reached to 99.74% of the accuracy score. 

The results showed the superiority of the bigger number of 
training datasets over the smaller ones. Thus, we applied a 
90/10 rate of division for all the examinations. We trained the 
models on 7,118 number of images and evaluated the models 
on 790 number of images in each epoch. 

Our examinations were performed on Google Colaboratory 
(also known as Colab) which provided a runtime fully 
configured for deep learning based on Jupyter Notebooks [98]. 
We had applied the Colab service pro version with GPUs, like 
T4 or P100, and 27.4 Gigabytes of the available RAM. Using 
this service, models like Inception-ResNet-V2, ResNeXt-101
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 (32x8d), and SENet-154 were managed to be trained in less 
than 12 hours. Nonetheless, other models, such as NASNet-A-
Large, DualPathNet-131, and ResNeXt-101(64x4d) required 
more time to be trained for 100 epochs, and we could train 
them within 24 hours. 

Furthermore, the settings of the Colab Pro service enabled 
us to train the models, like Inception-ResNet-V2, SENet154, 
DualPathNet-131, and ResNeXt-101 (32 x 8d) with the batch 
size of 32. However, we had the difficulty to retrain ResNeXt-
101(64 x 4d) with the 32-batch size because of the number of 
the parameters and the size of input images. Hence, we 
decreased the batch size to 16 while training this model to 
avoid GPU memory error. Moreover, NASNet-A-Large had 
been trained by using a batch size of 8 due to this error. Finally, 
during the evaluation, the batch size of one was applied. 

VI. CONCLUSION 

In the medical field, CNN models are preferred over 
traditional learning models due to the advantages in terms of 
speed and reliability. In this paper, the most current and 
relevant studies were scrutinized for the binary, four, and eight 
classifications of breast cancer histopathological image 
databases. For the binary and eight classifications, the studies 
that examined the deep learning models on the BreaKHis 
database were compared and outlined in Table I and Table III, 
respectively. Additionally, Table II shows the studies that 
compared the models using the BACH database for the four 
classifications. We also have examined the most current 
models with high accuracy results on the ImageNet database. 
These examinations were added to these tables and arranged 
based on the accuracy results. Among all the examinations, 
SENet-154 showed the highest accuracy results. Moreover, we 
have re-examined Inception-ResNet-V2 in our study and 
gained almost the same accuracy results for this model even 
though we had applied almost 3.5 times less amount of data 
while training this model. This examination ensured the 
accuracy of Inception-ResNet-V2 as this model had the best 
accuracy for both binary and eight classifications on the 
BreakHis database. 

Although this model could not gain a satisfactory result for 
the four classes on the BACH database by the other 
researchers, during our examination, Inception-ResNet-V2 
gained the highest accuracy results for the four classifications 
on the BACH database. Moreover, DPN-131, SENet-154, 
NASNet-A-Large, and ResNeXt-101 with 32 cardinalates 
gained the same accuracy results as Inception-ResNet-V2 in 
our examinations. Moreover, the highest rank of accuracy 
score for the four classifications on the BACH database was 

obtained by Inception-V3 by previous studies. Other studies 
that examined other pathology databases such as TMA and 
Camelyon were also discussed in this study. 

Although SENet-154 could outperform the Inception-
ResNet-V2 model in terms of two classifications even with 
less amount of data, this model achieved almost 1% of the 
accuracy results than that of Inception-ResNet-V2 trained on 
a larger amount of data with even numbers of images for the 
eight classifications. Therefore, the size of the database and 
balanced classes are important to improve the accuracy results 
for the eight classifications. 

Furthermore, the application of the same deep learning 
models with different techniques can result in different 
accuracy scores, indicating the possibility of other significant 
factors that impact performance. The findings from this study 
revealed that data augmentation and balance class techniques 
could be used to improve the accuracy of the models. 
Moreover, to solve the unbalanced classes and lack of 
sufficient data, the generative adversarial networks [99] are 
suggested to generate more data and even out the classes. 

Besides that, almost all the studies with high accuracy 
results applied pre-processing methods such as normalization. 
Other methods such as optimization and regularization 
methods were also discussed in this study. Although the pre-
trained models showed more effective performances, the 
BHCNET-N model achieved an impressive result without the 
use of transfer learning. Thus, further study is needed to assess 
SENet blocks as they have the potential to be easily embedded 
in other cutting-edge models to improve accuracy. SENet-154 
was also examined in our study, showing cutting edge results 
that ensured the efficacy of these blocks. 

In short, this study shows that different results were 
obtained when models were examined using different 
resolutions. This differentiation indicates that deep learning 
models are weak against the low resolution and high noise. 
Thus, it is vital to work with the breast cancer 
histopathological images of suitable resolution and quality. 
However, the high cost of equipment, such as cutting-edge 
scanners and data storage, represents the challenges in 
acquiring high-resolution images [100]. To solve this 
challenge, super-resolution methods like super-resolution 
generative networks (SRGAN) [101] have been examined and 
found to successfully improve the resolution of the breast 
cancer histopathological images [26], [102]. Thus, future 
research should focus on investigating the performance of the 
deep learning models after employing SRGAN models for the 
pathology images. 
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