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Abstract: Breast cancer is a primary cause of human deaths among gynecological cancers around
the globe. Though it can occur in both genders, it is far more common in women. It is a disease
in which the patient’s body cells in the breast start growing abnormally. It has various kinds (e.g.,
invasive ductal carcinoma, invasive lobular carcinoma, medullary, and mucinous), which depend on
which cells in the breast turn into cancer. Traditional manual methods used to detect breast cancer
are not only time consuming but may also be expensive due to the shortage of experts, especially in
developing countries. To contribute to this concern, this study proposed a cost-effective and efficient
scheme called AMAN. It is based on deep learning techniques to diagnose breast cancer in its initial
stages using X-ray mammograms. This system classifies breast cancer into two stages. In the first
stage, it uses a well-trained deep learning model (Xception) while extracting the most crucial features
from the patient’s X-ray mammographs. The Xception is a pertained model that is well retrained by
this study on the new breast cancer data using the transfer learning approach. In the second stage, it
involves the gradient boost scheme to classify the clinical data using a specified set of characteristics.
Notably, the experimental results of the proposed scheme are satisfactory. It attained an accuracy, an
area under the curve (AUC), and recall of 87%, 95%, and 86%, respectively, for the mammography
classification. For the clinical data classification, it achieved an AUC of 97% and a balanced accuracy
of 92%. Following these results, the proposed model can be utilized to detect and classify this disease
in the relevant patients with high confidence.

Keywords: breast cancer classification; deep learning; CNN; equivocal mammogram; BI-RADS
classification; machine learning; artificial intelligence

1. Introduction

Following cardiovascular diseases, cancer has been the second-leading cause of human
deaths on our planet. Based on the Saudi Ministry of Health, it is the most frequent type of
cancer among Saudi women, which could also be observed in men but rarely [1]. It has
been observed that the eastern region of Saudi Arabia has the highest breast cancer rate [2].
It has also been observed that the hereditary factor in breast cancer accounts for less than
10% of the total recorded cases. Within the regional context, the eastern region exhibits the
highest incidence rate of 48%. It is worth noting that breast cancer is the leading cancer
affecting women worldwide, with an annual incidence exceeding two million cases, which
results in over half a million deaths each year.

Over the past few decades, there have been significant advances in computing ma-
chines in terms of both hardware and software. Today, most desktop PCs are equipped
with large on-chip caches, GPUs, and multicore CPUs to efficiently process computationally
expensive data, e.g., images and/or videos. Due to these advances, researchers around
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the globe are using these machines for machine learning applications such as artificial
intelligence. With the advent of the latest deep learning technologies, it has now become
practical to train different learning models (e.g., convolutional neural networks (CNN)) on
large-scale datasets.

No doubt, the field of deep learning has significantly evolved over the past few years.
In this regard, the research community has developed numerous robust and resilient algo-
rithms. However, researchers also developed different large-scale image and video datasets
for the purpose of training deep learning models. Most importantly, some developers went
one step ahead and trained many deep CNN models (e.g., Xception, VGG16, ReseNet50,
GoogleNet, and SqueezeNet) on large-scale datasets to learn about features of a vast variety
of images such as cups, planes, watches, flowers, mice, and others. These trained CNN
models (called the pretrained deep CNN (P-DCNN) model) are now open for the public to use
for any other application.

With the approach of transfer learning, the P-DCNN models can be well-trained even on
small image datasets, thereby bringing slight modifications to their last 2D-convolutional
and classification layers. Due to this reason, today the medical imaging community and
researchers are both trying their level best to use these deep learning schemes to increase
cancer screening accuracy. Though breast cancer is serious and challenging to treat, it is
preventable if detected in the preliminary stages, as compared with other cancers.

According to the Saudi Ministry of Health, early detection using mammography may
significantly reduce the mortality rate, e.g., up to 30%. However, its late detection may
worsen the patient’s condition and result in the patient’s death [3]. Based on the spirit of
these highlights, this study is strongly focused on the following aspects:

• Reviewing the state-of-the-art in the breast cancer paradigm.
• Surveying the standard image processing breast cancer detection schemes.
• Analyzing contemporary deep learning schemes for cancer detection.
• Training DCNN models on the local hospital (King Fahad University’s Hospital Medical) data

and reporting the final classification accuracy as well.
• Developing a fully automated tool to extract keywords describing the mammogram images

according to the BI-RADS descriptors from the unstructured report and then using it to
classify the resultant breast cancer, if any.

• Building two models for detecting breast cancer: one using mammogram images and the other
using clinical reports.

Figure 1a–c shows three types of breast cancer: benign, malignant, and normal mam-
mograms, respectively. The early detection of breast cancer using a mammogram is an
essential tool. It may reduce the breast cancer mortality rate and improve prognosis by
detecting the subtle signs of early malignancy that can be easily missed by a general ra-
diologist or less experienced breast radiologist [4]. Usually, a small, node-negative tumor
under 10 mm in diameter may be effectively treated in nearly 90% of cases. However, this
percentage lowers to about 55% when local-regional nodal involvement is present and 18%
when distant metastases are present [5].

Several innovative algorithms for digital mammography based on deep learning have
been developed due to increased interest in using AI for medical imaging. The employment
of AI-based systems as independent readers for mammography interpretation has been
shown in several studies to boost radiologist productivity in terms of turnaround time,
sensitivity, and specificity [6–10]. Most radiologists are using the BI-RADS (Breast Imaging-
Reporting and Data System) lexicon and reporting framework for breast imaging, including
mammography, ultrasound, and MRI. The American College of Radiology created it as a
quality control and risk assessment tool [11].

Mammograms are more suspicious of cancer if the mass is not circumscribed, has
a high density, has a non-conforming shape, or is associated with macrocalcifications
such as those found in the amorphous, coarse heterogeneous, fine-pleomorphic, or fine-
linear branching forms in a grouped, linear, or segmental pattern [11]. Expert radiologists
were never surpassed by the AI algorithms; however, an AI algorithm integrated with
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the judgment of radiologists in a single-reader screening module improves the overall
system’s accuracy.
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Numerous AI algorithms can be used to construct a robust system for detecting and
classifying breast cancer. In the following sections, the authors highlight a selection of
the commonly used AI schemes and P-DCNN models. Both machine learning and deep
learning are used in a variety of medical research areas, such as diagnosis, prognosis, and
decision support systems [12,13].

1.1. Gradient Boost (GB)

In terms of prediction speed and accuracy, gradient boosting is an approach that stands
out among others. Errors are a common occurrence in machine learning algorithms, e.g.,
bias errors and variance errors. The gradient boost approach aids in reducing the model’s
bias accuracy. The gradient-boosting approach gives equal weight to all data points in a
decision tree. As a result, the misclassified points are given more weight than the points
that were classified correctly. These models are provided with their decision stump to
improve the initial stump’s forecast accuracy [14].

1.2. InceptionV3

Since 2014, the P-DCNN models have become widespread, delivering significant
advances in many benchmarks. More extensive models and huge processing costs increase
the quality of most tasks. At the same time, computational efficiency and low parameter
counts are critical for use cases such as mobile vision and enormous data. With an error
rate of 21.2% and 5.6%, Inception-V3 sets a new standard for single crop assessment using
the 2012 ILSVR classification.

The approach requires far less computation than the best previously reported solutions
for denser networks. Additionally, Inception-V3 proved that high-quality findings might
be obtained with as little as (79 × 79) pixel, and receptive field resolution. This might
benefit systems that detect small objects. The use of batch-normalized auxiliary classifiers
and label smoothing in combination with a low parameter count allows for the training of
high-quality networks on training sets that are inherently small [15].

1.3. Xception

Xception is a term referring to Google’s extreme version of Inception. It is a unique P-
DCNN model inspired by Inception in which the modules of Inception are substituted with
depth-wise separable convolutions. Furthermore, it shows that the architecture of Xception
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outperforms that of Inception-V3 marginally on the ImageNet dataset for which Inception-V3
was built. Moreover, it also outperforms Inception-V3 incredibly on a more extensive image
classification dataset, including 350 million pictures and 17,000 classes. Since Xception’s
structure has the same parameters as Inception-V3, the performance gains are not due to
increased capacity but to more efficient usage of the model’s hyperparameters [16].

1.4. InceptionResNetV2

The Inception-ResNet-V2 is pre-trained on a set of millions of images. Those images
may be divided into one thousand different categories (i.e., classes) using the network’s
164 layers. Thus, the network’s feature representations for various images have become
more complex. Class probabilities are calculated using a collection of image input di-
mensions of (299 × 299) pixels. It is created using Inception’s structure and the residual
link. The convolutional filters of many sizes are merged with residual connections in the
Inception-Resnet block. In addition to avoiding the degradation issue caused by deep
structures, residual connections help save training time [17].

1.5. CNN

Convolutional neural networks (CNN) are a form of the artificial neural network
(ANN) model. It enables the extraction of more complex representations for picture
material despite traditional image recognition, which requires the user to specify the
characteristics of the target picture. The CNN accepts images; raw pixel data trains the
model and automatically extracts features for improved categorization. However, CNN is
prone to overfitting if not managed appropriately, i.e., the model may get over-trained to
the point that it is unable to generalize to new data [18].

The rest of the article is structured as follows: Section 2 describes background work,
which includes binary and multi-level classifications of breast cancer. Section 3 elaborates
on the structure and design of the proposed “AMAN” system. Results and discussions are
carried out in Section 4. Finally, the conclusion and future work are highlighted in Section 5.

2. Related Work

Literature reveals that breast cancer is the earliest kind of cancer that has been known
in humans. Although this illness has been extensively investigated and studied to mitigate
its consequences, it is still considered the worst disease ever. In the last few years, many
new procedures and strategies have been developed for the early identification of breast
cancer in contemporary cancer detection and diagnostics using artificial intelligence. Most
of these approaches use cutting-edge technology, e.g., image segmentation. This section
offers numerous implementations of AI-based cancer detection and diagnostic systems,
including but not limited to breast cancer, lung cancer, and liver cancer.

Deep learning is a subset of artificial intelligence (AI), which has made tremendous
progress in medicine over the past few years. No doubt, early detection has always
played a vital role in cancer detection. It can boost long-term survival rates, as medical
imaging is commonly used to diagnose, track, and follow-up after cancer therapies [19].
Deep learning technology can help expert clinicians’ qualitative understanding of cancer
imaging, such as volumetric tumor delineation, cancer stage, mutations, and an assessment
of the effect of diseases on neighboring organs and the intensity of anti-cancer therapies [20].
Deep learning schemes are used in numerous cancer applications, e.g., lung, liver, gastric,
esophageal, and breast cancer, which is mentioned in Section 2.2.

Gulum et al. [21] argued that it is essential to include medical staff in the design process
of any deep learning algorithm. This act would result in reducing the misclassification
rate and building trust between the system, medical staff, and patients. For high-risk
decisions such as cancer, just defining where the network should look is insufficient, as
most AI models for cancer detection do via post-hoc methods. As a result, the research is
currently focused on easily interpretable deep learning for cancer detection and a novel
ad-hoc method for developing explanations for deep learning models in a medical context.
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2.1. Binary Classification of Breast Cancer

Priyanka et al. [22] review the limitations of machine learning in medical images, espe-
cially for cancer detection, which have been surpassed by the optimization of deep learning
techniques. Xiong et al. [23] showed a three-dimensionality increasing in the identification
of breast cancer, particularly abnormal and less malignant tumors. Both screening and
identification mammography help screen the population. Three-dimensional (3D) mam-
mography identified an increased rate of breast tumors in the axillary nodes. In addition, it
also identified an increased number of breast cancers in the axillary lymph nodes.

Yi et al. [24] proposed a scheme to determine the tumor diagnostic performance of a
digital breast biopsy in patients with non-calcified breast cancer. In this study, 106 females
with invasive non-calcifying breast tumors who had DBT and FFD mammography were
analyzed. Two radiologists who were blinded to the clinicopathological information
assessed all DBT and FFDM pictures to determine the tumor grade (1–3) and analyzed the
clinicopathological and imaging characteristics associated with the tumor visibility. Adding
DBT to FFDM did not increase the early identification of non-calcified breast tumors in
women with high-density breasts.

Lin et al. [25] advocated the merging of adversarial networks to deal with the mam-
mography category imbalance and data scarcity. By merging the mass patches with the
healthy breast pictures, a generative model is utilized to mimic mass development on nor-
mal tissue. The produced synthetic pictures are then used as complementary aberrant data
to improve the stability of deep learning-based mass detector training and, consequently,
the robustness of the final model. Breast mammograms contain synthetic masses, as pos-
itive samples may be generated using existing normal images. Extensive studies on the
widely available breast dataset indicated a considerable increase in detection performance,
demonstrating the usefulness of the suggested technique.

Kim et al. [26] elucidated the mechanisms underlying mammography screening’s
inability to identify second cancer in females with a personal history of breast tumors.
Individuals with later tumor recurrence and monitoring mammography within one year
of recurrence are included in the data. When cells grow out of control in the breasts
and form a tumor, breast cancer starts. Breast cancer signs include an increase in breast
size, fluid discharge from the nipple, pain, and a lump in the breast [27]. Detecting
and classifying breast cancer in the early stages of its growth can allow patients to have
successful treatments to improve survival and healing [20].

In optical mammograms, the method of mass detection is image preprocessing and
image segmentation, which divide an image into regions such that in each field one or
more properties are homogeneous. Feature extraction is the method of image segmenta-
tion used in the classification of micro-calcifications. Classifiers play a significant role in
implementing computer-aided mammography diagnosis, and the selection of features (FS)
is an essential part of any machine learning task [28]. In real life, the principal available
methodology to examine breast cancer is mammography (which is a type of X-ray). It is
based on human observation, knowledge, and perception. Zanona et al. [29] proposed
image processing with the aid of ANN computation for computerized sign detection and
breast cancer exploration with an accuracy of almost 99%.

Badawy et al. [30] carried out a study to detect breast cancer using mammogram
segmentation by using a double thresholding procedure to apply borders to the original
image in the final segmented image. This approach is used for all biomedical images. One
of its significant benefits is the reduction in processing time and storage area. The outcome
indicates whether a person has breast cancer and shows the sections where the tumor is
developing, providing satisfactory results for detecting breast cancer. Watanabe et al. [31]
performed an early-stage analysis to detect breast cancer using the cmAssis algorithm, an
AI-based deep learning CAD algorithm, to generate a successful result. As AI is used in
cancer detection, its accuracy is based on several things. Researchers search for the effect of
focus quality on the cancer detection algorithm’s efficiency. The results showed a steady
decrease in the efficiency of the cancer detector with the expected out of focus (OOF).
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Kohlberger et al. [32] developed a CNN (ConvFocus) to detect and rate OOF regions
automatically at an accuracy level that suits a pathologist across the types of tissue, biopsy,
and stain. Kumari et al. [33] proposed a system to predict breast cancer. The k-nearest
neighbor (k-NN) classifier produced the highest accuracy compared with linear regression
(LR) and support vector machines (SVM). In addition, researchers also used the filter
method to pick the pertinent features from the available ones. This system reduces the cost
of therapy because it can predict breast cancer at an early developmental stage.

Khan et al. [34] proposed a framework using transfer learning to detect and classify
breast cancer. The goal of transfer learning is to apply the information learned during
the solution of one problem to another in a similar scenario. In the proposed framework,
features have been extracted from breast cytology images using three different CNN
architectures (e.g., ResNet50, GoogleNet, and VGG16). Using transfer learning, all CNN
architectures are integrated to improve classification accuracy, and then the researchers
used the average pooling classification to classify the cells into malignant and benign.

Gao et al. [35] suggested a shallow-deep CNN distinguish breast cancer cases, whether
benign or malignant, by combining two models. Firstly, they developed a shallow CNN
that forms virtual recombinant images from low-energy images. Secondly, they developed
a deep CNN to extract new features from low-energy images. The ensemble models are
then recombined to classify the case using a decision tree called a gradient-boosting tree. A
new mammogram categorization model using CNN was implemented by Mohsin et al. [36]
for breast cancer detection, which categorizes cases into normal, malignant, and benign.
They proposed two algorithms: convolutional neural network-discrete wavelet (CNN-DW)
and convolutional neural network-curvelet transform (CNN-CT). Their findings validate
the importance and effect of the proposed model.

Nasser et al. [37] suggested using super-resolution images to enhance the efficiency
of CAD system texture analysis methods based on ultrasound images. To find tumors
and differentiate between benign tumors. When a tumor is not spreading to the body, it
is not cancer. It is classified as a malignant tumor when it can spread to other parts of the
body [38]. Consequently, they demonstrated that their super-resolution-based approach
increases the measured texture methods’ efficiency and exceeds the state of the art to
classify benign/malignant tumors [37].

A breast computer-aided diagnosis (CAD) approach was suggested by Wang et al. [39]
using mammogram images for the premature diagnosis, identification, and treatment of
breast cancer based on feature fusion with deep CNN features. The mass detection process
was based on deep sub-domain CNN features, and this approach was clustered by US-ELM
to isolate the abnormal tissues. Using CNN, morphological features, texture features, and
density features, the feature integration process incorporates deep features. After that, to
distinguish benign and malignant breast masses, the mass diagnosis phase used ELM. The
ELM has a better impact on classification than classifiers of multi-dimensional features.
This experiment is superior to most existing methods of breast cancer diagnosis.

Chen et al. [40] proposed DenseNet, which is a deep learning classification model
trained on 7173 historical tests before Sep 2017 and thereafter on 1194 instances. For the
cross-validation and test sets, receiver operating characteristics generated by the DenseNet
model predictions were greater than those generated by radiologist assessments. The
DenseNet model produces excellent diagnostic performance, with an AUC score of 79%.
Shah et al. [41] demonstrated breast cancer detection by classifying mammograms as
malignant or benign using a range of variables. The proposed algorithm collects features
from mammography pictures using a DCNN based on a highway network.

For the purpose of identifying breast masses via the use of textural description, spec-
tral clustering, and support vector machines, Ahmadi et al. [42] proposed a full process-
integrated technique for constructing a CAD system. Breast regions of interest are discov-
ered automatically from mammogram images using gray-scale improvement and data
cleaning to achieve this. Yamanaka et al. [43] showed the importance of machine learning.
The recent improvement in AI-based image analysis may help in routine pathology de-
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tection. These studies may help pathologists make more exact and prompt diagnoses of
patients. Furthermore, GradCAM finds previously unknown essential histological features
for newer pathological findings and research goals for disease comprehension.

To enhance the accuracy of breast cancer detection, Sun et al. [44] examined feature
fusion diagnosis using images from several modalities. Two hundred and one individuals
with mammography and breast MRIs were retrospective. When compared to a single
modality, the accuracy of MRI is superior to that of mammography.

Lahoura et al. [45] claimed that an extreme learning machine (ELM) is a form of ANN
with great promise for classification. Three academic disciplines are brought together in
the scope of this research paper: For starters, ELM is used in the detection of breast cancer
in women who have already been diagnosed. After that, characteristics of no consequence
are omitted using the gain ratio feature selection strategy. Finally, a remote breast cancer
diagnostic technique is proposed that uses ELM, a cloud computing-based technology. The
cloud-based ELM’s performance compared to that of many innovative illness detection
systems. The WBCD data set proves that the cloud-based ELM technique beats the other
models. Both the standalone and cloud settings, which were evaluated, yielded excellent
performance results for ELM. The most important outcomes of the experiment show that
the accuracy attained was high.

Kavitha et al. [46] proposed a new novel. The suggested method uses adaptive fuzzy-
based median filtering to remove noise from mammogram images. Image segmentation
is utilized by multi-level thresholding. An extractor model of cabinet-based features is
proposed for the detection of breast cancer with this new detection approach. Rath and
Sahoo [47] utilized a suitable threshold based on the Legendre neural network with a single
layer and developed a computational technique for detecting and segmenting breast cancer.
The three main steps of the method are image preprocessing, segmentation of mammograms
using adaptive thresholding, and post-processing. The suggested segmentation method
has a training stage with thirty images and a testing stage with 151 images from the MIAS
standard database. The proposed model has high accuracy.

Das et al. [48] discussed two methods. In the first technique, pre-trained models
were developed from scratch. The second approach employs the same principles as the
first, except that all models have been fine-tuned via transfer learning. For this effort,
the research explored convolutional neural network modifications. Experiments were
conducted on two distinct datasets, and both datasets showed superior performance
from the fine-tuned network. Rampun et al. [49] utilized deep ensemble learning. The
proposed approach is built upon AlexNet with modifications to fit the classification problem.
Following that, model selection selects the top three outcomes based on their validation
accuracy throughout the validation phase. The results of the experiments show that
combining the best models (ensemble networks) results in over 80% classification accuracy
and area under the curve.

Masni et al. [50] introduced a unique computer-assisted diagnosis technology. The
proposed CAD system can detect and classify simultaneously. The system was trained and
evaluated using a public dataset. The method distinguishes benign from malignant tumors
with high accuracy. For detecting breast cancer, Alhanahnah et al. [51] proposed a novel
high-accuracy technique. This approach includes two stages. The first stage is preparing
input images (mammography) for feature and pattern extraction using image processing
methods. In the last stage. The collected features are then fed into two kinds of supervised
learning models: the back propagation neural network (BPNN) model and the logistic
regression (LR) model. According to the results, the LR model used more characteristics
than the BPNN.

Choudhury et al. [52] compared three widely used machine learning algorithms and
approaches for breast cancer prediction: Random Forest, k-NN (k-Nearest-Neighbor), and
Naïve Bayes. As a training set, the Wisconsin Diagnosis Breast Cancer data set was used to
assess the performance of several machine learning algorithms in terms of essential metrics
such as accuracy and precision. The random forest, k-NN, and Naïve Bayes had exceeded
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the accuracy of 94.7%, 95.9%, and 94.4%, respectively. To predict breast cancer, M.O.F.
et al. [53] proposed a deep neural network with feature selection algorithms. The proposed
method is evaluated using several assessment benchmarks, such as train accuracy. The
suggested method’s simulation results are promising, with an accuracy of 99.42%. The
proposed technique is considered efficient and exact in predicting breast cancer based on
experimental simulations and statistical data analysis.

The emergence of computer-assisted diagnostics programs aided radiologist mammog-
raphy screening significantly. Since RCNN is computationally expensive, faster R-CNN
was combined with an integrated mammographic CAD in this work by Jamil et al. [54]
for simultaneous mass detection and segmentation. Bordering the lesions boxes with
information on the lesions positions and sizes was performed for breast cancer detection
and categorization of malignant or benign lesions. The bordered boxes were manually
labeled by an expert radiologist for the image preprocessing part, and the CAD used a
vertical and horizontal rotation of images to enhance the training dataset.

This retrospective study by Frazer et al. [55], which is based on artificial intelligence
prediction models and ResNet as its foundation, proves the integration of mammography
characteristics extraction and cancerous and non-cancerous regions detection in the image.
To enhance the data quality, contrast adjustment, and background cropping with text
removal (BCTR) have been proven to increase the performance of pre-trained models.
Furthermore, using more training data shows a consistent improvement in performance.
The study used mammographic images that were annotated by radiologists to show the
regions of proven cancer by biopsy.

This study by Shen et al. [8] developed an approach—a prediction algorithm capable
of effectively establishing the diagnosis on screening mammography that can aid radiolo-
gists. This method trained the images in two ways: the first one used the mammograms’
interpretations by the radiologists, while the second one only relied on the cancer status that
was mentioned on the mammogram image. Krithiga and Geetha [56] used a deep-CNN
approach to contribute to the detection, segmentation, and labeling of cell nuclei in breast
tumors using anisotropic diffusion and a multilevel model in detecting the nuclei, which
were then combined to produce a highly accurate nMSDeep-CNN model with a notice-
ably short computation time. Following detection, the cells are sorted into two categories:
normal and cancerous, using a 10-fold cross-validation procedure.

Conte et al. [57] discovered that MRI has the highest sensitivity for detecting benign
and malignant tumors. Consequently, they developed and validated a two-step CAD
technique using DCE–MRI images to identify infiltrated from situ breast tumors. The first
phase employs a threshold algorithm to find tumor-like patches. Using a machine-learning
technique for feature extraction, the second stage classified the site as invasive breast cancer.
The ROI Hunter software recognized 75% of tumor volumes during the segmentation
process, but it also had an interactive feature that allowed the manual insertion of regions
overlooked by the automatic detection/segmentation procedure.

Liu et al. [58] utilized the images of breast cancer slides in this research. To train and
assess the model, researchers used two freely available datasets from the Internet. The
images were randomly sampled into patches, and this study contributes to the reduction
of false positives by increasing the ratio of these patches in the sample. As a result, the
AUC and efficiency both improved significantly. Ruiz et al. [59] compared 101 radiologist
evaluations of DM test groups against an AI system’s ability to diagnose malignancy. Each
DM exam was scored by a radiologist, and the real detection rate was calculated. In total,
there were 7 malignancies and 52 false positives among the 5082 screenings. In the seven
tumors discovered through screening with low-risk ratings, all but one were considered
clearly visible.

Kristina et al. [60] The application of artificial intelligence to identify benign breast
mammography images in the context of breast cancer detection is discussed and evaluated
in this article. One of the models proposed by A. Rodriguez-Ruiz et al. was investigated.
The proposed artificial intelligence system is capable of accurately determining if a breast
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is cancer-free while also significantly lowering the number of false positives. As a result,
artificial intelligence could boost digital mammography’s reliability. Sechopoulos et al. [61]
report that multi-layered CNNs have made significant advancements in AI-based computer
systems for detecting breast cancer risks. Mammography reveals the location of a suspicious
breast mass. As a result, any method that involves automated DM image assessment should
flag any suspect findings. The study suggested therapeutic applications for AI-assisted
digital breast tomosynthesis interpretation and decision-making.

Transpara is a mammography-based automated breast cancer detection system. The
system was employed by Ruiz et al. [7] The main functionality of the system is that it uses
CNN and image analysis by combining data from various locations, knowing that each
location has a value between 1 and 100 that represents the likelihood of malignancy (with
100 representing the highest suspicion). A final algorithm compares all locations discovered
in the right and left breast images from 1 to 10, with 10 being the most likely to have cancer.
Mayo et al. [62] AI-based and FDA-approved CAD algorithms were evaluated in terms of
false positives per image (FPPI) on mammograms. A retrospective review of 250 full-field
digital mammograms was conducted. Cases with no AI-CAD markings made up 48%
of the total, while only 17% of the cases had conventional CAD markings. Research has
shown that decreasing FPPI by 69 percent can reduce the reading time per case by 17%.

Swapna et al. [63] review the approaches recently considered to identify breast cancer.
According to the findings of this study, using mammogram images as a dataset is the
most effective method of detecting breast cancer. Patients will receive less radiation,
the operation will be less expensive, and most importantly, the technology will be more
accessible. Further, when it comes to classification, other methods are regarded as less
accurate than sequential minimal optimization.

According to Golden et al. [64], the IEEE Institute sponsors the competition. Even
though several teams submitted algorithms that were not deep learning-based, CNN fared
significantly better. The top five algorithms outperformed pathologists, if not marginally.
Adachi et al. [65] Facebook AI Research’s RetinaNet, a one-stage object detector, was
utilized to train the AI system in this research to detect and assess cancer risk. RetinaNet’s
creators claim that one-stage detectors trail two-stage detectors due to a class imbalance.
Or, in other words, radiologists using AI had an AUC of 88.9, while non-AI radiologists
had an AUC of 84.7. In [66], the authors employed two publicly available datasets to
train and test a model using a faster area convolutional neural network. More training
images were created via data augmentation. It also performed post-processing on several
image attributes to decrease false positives. The proposed model outperformed all existing
ultramodern algorithms using histopathology images, according to the study.

Chen et al. [67] evaluated medical mammograms for cancer detection using computer
vision. Using previous image-based cancer research, the study built a more adaptive
CAD detection method using modern cloud computer architecture. Breast cancer image
segmentation in CAD uses low-level thresholds, region-based methods, and mathematical
morphology. Naz et al. [68] The researchers examined existing techniques for breast
cancer, explaining how the detection works in detail and focusing on classifications that
are based on CNN, which have proven to show hopeful outcomes in the identification and
classification of breast cancers in particular.

In [69], the study uses infrared images of the breast rather than mammograms, which
indicate that the area with the highest thermal activity is most likely to be malignant. This
was carried out using a pre-trained hemispheric model and deep learning. Cropping and
grayscale conversion were used to preprocess the images in the study. The proposed model
in this study achieved a greater degree of accuracy.

Hinton et al. [70] aimed to develop masking approaches for women with cancer after the
reduction of breast density. A virtual lesion was constructed by adding a Gaussian profile to
the mammograms, which mimics tumor sizes and lesion size ranges. It was calculated using
the intrinsic quality factor (IQF). Silalahi et al. [71] demonstrated a method for automatically
identifying and classifying lesions as malignant or benign. The breast database in FFDM
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format was used for the data set. The study employed two CNN-based machine learning
frameworks with different schemes. It achieved an accuracy greater than 90%.

Ragab et al. [72] suggested a system that could classify benign and malignant tumors
on mammography using deep learning and two segmentation methods to classify breast
tumors. The first method manually delineated the ROI using circular outlines, as tumors in
the DDSM were tagged with a red contour. In comparison, the second method uses the
region-based method. The results are obtained using the DDSM and CBIS-DDSM. The best
accuracy is 87.2% by using SVM. Eltrass & Salama [73] suggested a system for breast tumor
diagnosis contingent upon five stages. The dataset was real clinical mammograms from the
MIAS and DDSM, with clinical data for age and breast mass. The experimental findings
show an accuracy of 98.16%.

Yap et al. [74] suggested detecting mass in FFDM. This approach uses the Faster R-
CNN model to detect breast mammograms in OMI-DB, which has 80,000 FFDMs. It may
be used within the clinical environment because it accepts the suspected masses’ input and
output within the mammogram. Ansar et al. [75] developed a CNN classifier with training
images from benign and cancerous tissues using a MobileNet-based architecture. DDSM
is the world’s largest openly available mammography dataset, with over 2500 trials. For
DDSM and CBIS-DDSM, the outcomes are 86.8%.

Zheng et al. [76] developed the DLA-EABA for breast tumor diagnosis utilizing
sophisticated computational techniques and classic computer vision technologies. The
system employs CNN-based transfer learning to perform diagnostic and prognostic tasks
on breast tumors. Compared with other systems, the experimental system showed an
excellent accuracy of 97.2%. Kumar et al. [77] developed ML methods for classifying
cancerous and benign tumors, in which the system learns from prior information and can
anticipate the class of the newest input. The performance of ML methods was evaluated
using Wisconsin cancer datasets. The experimental findings show that SVM methods
produce greater accuracy.

Raman et al. [78] suggested a DL and NN classifier for feature extraction, and the
DDSM 1 dataset was used. The proposed ensemble model uses deep learning-based,
pre-trained image processing. The NN was utilized to maximize the robust features
retrieved from the ensemble models. The work was conditioned to distinguish benign from
malignant tumors. It results in an accuracy of 0.88. Sundaram et al. [79] emphasized a
detection system based on CNNs that utilizes DL to categorize mammogram pictures into
benign, cancerous, or normal. The suggested approach uses CNNs to classify breast masses
using medical image processing. The findings are compared to the k-NN classifier. The
experiments employed three datasets. The proposed CNN model has higher accuracy with
the three datasets.

Sayed et al. [80] evaluated the YOLO-V3 detector for breast cancer detection and clas-
sification. First, it converts the DICOM-formatted mammograms from the breast dataset to
images without sacrificing any information, then it finds cancer in FFDM and automatically
distinguishes between malignant and benign lesions. The feature extractors are ResNet and
Inception. The outcomes are that the YOLO-V3 system is the most effective, and to achieve
high accuracy, YOLO’s classification network is replaced by ResNet and Inception-V3.

Korial et al. [81] provided a system-supported mammography image for the purpose
of early cancer detection. The suggested system was assessed using a knowledge set of
500 mammography pictures and a CNN model for training and testing. Deep learning
technology was utilized to detect changes in tissue in the mammography images evaluated.
On the other hand, the suggested technique estimates risk factors for unaffected individuals
and uses this risk factor as a monitoring indicator for at-risk patients. The gathered data
illustrates the suggested system’s efficiency in terms of high accuracy and a decrease in the
effort required by medical professionals to help patients.

Adel et al. [82] used a classification system that consisted of three primary stages.
The dataset is first extracted using image processing algorithms, and then it is subjected
to data pretreatment procedures. Furthermore, they employ categorization algorithms
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based on machine learning. The dataset consisted of 34 individual patients, some of whom
had numerous lesions while others had only one. The model has the highest level of
precision, which is 0.94. Deep learning using a YOLO detector should be implemented
and investigated for breast lesion identification from mammograms, according to Antari
et al. [83] There are 2620 patients in the dataset, which is divided into 43 volumes. Each
instance had four mammograms, each with two distinct breast slides (i.e., MLO and
CC). The maximum accuracy was 0.99, while the average was 0.97. The only important
disadvantage is that CAD systems were used to detect breast cancer.

Meenalochini et al. [84] investigated how machine learning techniques affect mam-
mography image classification automation. Breast cancer is classified and identified using
machine learning. They classified the dataset into three stages: pre-processing, feature
extraction, and classification. They needed specified features collected and picked from
mammography pictures (intensity, size, shape, and texture). The method’s outcome has an
accuracy of 0.94. Muduli et al. [84] tested a model using two widely used datasets, DDSM
and MIAS. The DDSM dataset has 1500 mammography pictures, 479 of which are benign,
519 normal, and 502 of which are cancers. MIAS includes 326 images. There are 207 normal
images, 119 abnormal images, and 68 normal and 51 cancer types among the abnormal
photographs. Furthermore, the MIAS dataset has a precision of 0.99 (normal vs. aberrant)
and 0.98 (cancers vs. noncancers) for the DDSM dataset. Finally, there were constraints
such as reduced learning speed, local minimum trapping, and more learning epochs.

Rajeswari et al. [85] advocated employing characteristics taken from the Hough trans-
form to classify mammograms. A two-dimensional transform is the Hough transform.
It is used in images to isolate the attributes of a specific shape. SVM was used to get
95 mammography pictures for the dataset. Getting images, preprocessing them, and
extracting features using the Hough transform and SVM classification are among the
approaches employed. The precision is 0.94.

2.2. Multi Classification of Breast Cancer: Analysis and Discussion

Numerous examinations have shown the effectiveness of the CNN model for multi-
class breast cancer classification. For example, Sharma et al. [86] used the balanced public
dataset to assess two machine learning breast cancer detection approaches. It uses the
Humoment and Harlicka textures for the first approach. In addition, pre-existing networks
are employed as feature extractors and model-based models for the second approach. The
pre-trained network with SVM is the best for breast classification.

Dabass et al. [87] combine Gabor, wavelet, and structure-based information set features
to improve mammography cancer diagnosis. To construct a ubiquitous information set,
the intuitionistic fuzzy set is introduced. These characteristics are assessed on annotated
private and public datasets using the hesitancy-based Hanman transform classifier. This
classifier embodies and models the uncertainty in errors between training and test features.
The proposed techniques achieve 100% accuracy for multi-class classification on public and
private datasets, which is superior to existing methods. It will help radiologists discover
breast cancer earlier.

In addition, breast problems such as calcifications, lumps, asymmetry, and carcinomas
may be better managed with deep CNN. First, Khan et al. [88] used ResNet50, i.e., P-DCNN.
Then, an improved deep learning model was created, in which the learning rate is one of
the essential qualities while training the neural network. The suggested approach adapts
the learning rate depending on changes in error curves throughout the learning process.
The model classified masses, calcifications, carcinomas, and asymmetry mammograms
with an accuracy of 88%.

Josh et al. [89] use deep learning and ultrasound pictures to screen for breast cancer.
Based on the experimental results, deep learning may aid radiologists in clinical applica-
tions by accurately predicting clinical outcomes from 2D B-mode ultrasound images. The
suggested technique achieves 96.31% accuracy, 92.63% sensitivity, and 96.71% specificity. It
can process ultrasound picture frames per second, making it a very efficient machine. This
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technique outperforms earlier methods in real-time computer-aided diagnosis of breast
tumors and benign-malignant categorization.

Weiming et al. [90] used a two-stage deep learning and machine learning architecture
to classify breast digital pathology pictures into normal tissue, benign lesions, ductal
carcinoma in situ, and invasive cancer. The suggested technique reached an overall accuracy
of 85.19% for multi-classification and 96.30% for binary classification (abnormal versus
normal). The suggested two-stage method might be used to classify breast pathology
pictures and help pathologists diagnose breast cancer.

Alzubaidi et al. [91] developed a network to increase its breadth. Histopathological
breast image categorization using a unique two-branch deep CNN as invasive cancer, in
situ carcinoma, benign lesion, and normal tissue imaging is classified by the network using
a public dataset. An advantage of the proposed network is that gradient propagation is
possible. The proposed network outperforms earlier approaches by 83.6% by dividing the
training set into patches and images. The public’s unseen test images were also classified
with 89.4% accuracy.

Nguyen et al. [92] are scaling original images to build the CNN model and classify
breast cancer. The model categorizes and finds breast cancer images from the public dataset.
There are four benign and four malignant subclasses in this set. The proposed approach
will automatically classify these breast cancer images into eight classifications, potentially
saving lives globally. A new method for SURF selection by Kaur et al. [93] included pre-
processing and intrinsic feature extraction using K-mean clustering. A decision tree model
outperforms the recommended automated DL approach using K-mean clustering with
MSVM. The method’s ACC rates for normal, benign, and malignant cancer are 95%, 94%,
and 98%, respectively. SVM outperforms MLP and J48+K-mean clustering WEKA manual
techniques in sensitivity, specificity, and ROC areas. The SVM, KNN, LDA, and Decision
Tree results were 96.9%, 93.8 percent, 89.7%, and 88.7%, respectively.

Finally, Nawaz et al. [94] suggested classifying breast malignancies into subclasses
such as lobular carcinoma. The model outperforms other models in multi-class breast
cancer classification with %95.4 accuracy using a public dataset.

A literature review shows the effectiveness and potential of deep learning techniques,
including CNNs, RNNs, integration with radiomics, and transfer learning, in enhanc-
ing breast cancer detection. These approaches offer promising avenues for improving
diagnostic accuracy, helping with early detection, and contributing to more effective treat-
ment strategies.

3. Proposed Framework—AMAN

The AMAN is a breast cancer detection system aiming to aid doctors and specialists
facing difficulties while detecting breast cancer tumors, as shown in Figure 1. The goal of
this system is to help cancer doctors and specialists make a critical decision in diagnosing
breast cancer, especially in ambiguous cases when the mammogram images of the breast
are not clear enough to make the decision.

Moreover, the clinical report that goes with these images will be used to enhance
decision support. To perform our system, the authors will use a combination of AI tools
on the cloud and the Saudi Arabian dataset from the King Fahad University Hospital to
develop a system that will detect breast cancer early and reduce mortality. The system’s
main target is to help the relevant breast cancer doctors and specialists in the field.

Figure 2 displays a block diagram of the proposed AMAN’S system. Mammogram
images will be inserted into the system model, which will apply a pre-processing procedure
in which the image will be enhanced and formatted using deep learning techniques, and it
will segment the image into multiple parts to detect and find the tumor. Furthermore, the BI-
RADS descriptors will be inserted into the system model that will apply data preprocessing
to classify the tumor. Moreover, the system will implement the most correct model, the
Xception model, to classify the mammogram images and the gradient boost to classify the
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clinical data based on our experiments to predict the tumor of the imported mammogram
image and display the detection result as either normal, benign, or malignant.
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user; it should have a straightforward and interactive interface. It must also be robust and
secure to prevent system failures and damage. Credibility is a vital attribute of the system
since it needs to use sensitive patient information and keep it safe from loss or damage.
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3.1. Dataset Descriptions

The authors collected all mammography examinations after receiving ethical approval
from the Standing Committee for Research Ethics on Living Creatures (SCRELC) at Imam
Abdulrahman bin Faisal University (IAU). These examinations are from King Fahad Hos-
pital of the University (KFUH), affiliated with IAU in Khobar, Kingdom of Saudi Arabia.
The dataset consists of 1802 craniocaudal and mediolateral oblique views of bilateral breast
images: 474 benign, 284 malignant, and 1044 normal.

In our contribution, the authors expanded our dataset by adding 114 files of reported
findings detected on mammography by the hospital’s radiologist; these reports follow the
BI-RADS lexicon according to the American College of Radiology (ACR) classification. The
reports include 44 benign, 65 malignant, and 5 normal examinations. Figures 5 and 6 show
the number of mammograms and reports per class, respectively. Furthermore, no earlier
research has used or published this data. Each patient has two different views of the right
and left breast (MLO): mediolateral oblique and cranial caudal (CC). This resulted in four
images for each patient. The authors gathered data from patients who had already had
digital mammograms recently, considering the variety in terms of classes such as normal,
benign, and malignant.
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In this paper, two approaches have been investigated to provide a solid decision to the
radiologists at the most suspicious and complicated stage: BIRADS-4. The first approach
applies deep learning models to mammogram images for further classification, while the
second approach applies machine learning models to clinical reports to extract the relevant
features, contributing to a more consistent interpretation of screening mammography findings.
The experiments with both approaches will be explained in the following sub-sections.

3.2. Mammogram Classification Using Deep Learning

In this dataset, the mammogram classification was incredibly challenging due to the
high variation in breast shapes, density, and tumor size. Inevitably, extracting mammogram
features is commonly done in two ways: using data annotation if the dataset is small, and
using pre-trained models for feature extraction targeting larger datasets, which has proven
to achieve good results in this field. As a result, due to the size of our dataset, manual data
annotation was not possible. Thus, several pre-trained deep learning models on ImageNet
have been compared to find the most suitable model for correctly classifying mammograms
into three classes: benign, malignant, and normal. The deep learning model was implemented
on the cloud using Google Collab Pro for GPU utilization. Multiple Python libraries have been
used to implement the model, such as TensorFlow and Keras V2.8, NumPy V1.21.6, and
Pandas ver. 1.3.5, Matplotlib V3.2.2, Sklearn V1.0.2, and OpenCV V4.1.2.

3.3. Preprocessing

The dataset was subjected to a number of pre-processing procedures. The goal of
pre-processing is to remove noise from the dataset so that the models can perform at
their best. As a start, the authors manually extracted and categorized the images into
three classes: benign, normal, and malignant. Then, all records were reviewed to see
whether there were any duplicates at this step. In addition, as Figure 7 shows, four breast
implants have been removed in all the mammograms the authors selected, resulting in a
total of 1798 mammograms. The breast implants were removed to prevent any confusion
in the model.

The mammography was then processed to remove as much noise as possible. Noise
removal includes manual cropping of the mammogram’s background and text. The manual
cropping was crucial due to the high variety of breast shapes, sizes, and mammogram
quality. Figure 8 will show a sample of this wide variety.
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Figure 8. Breasts variety sample.

In terms of the number of mammograms, the patients’ data covered most of the upper
part of the breast, as shown in Figure 9a. In contrast, some breast views were in between an
upper data part and a lower data part, as shown in Figure 9b. This was vital to remove
because it significantly increased the computational time and reduced the mammogram
quality in the upcoming phases, e.g., resizing.
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Figure 9. (a,b) Text over breast and breast view in between data, respectively. Removing noise from
mammogram images–for confidentiality reasons, authors omitted the patient’s name and ID number
from the image.
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After the manual cropping, only those images that fall within the categories of benign
and malignant were augmented so that the total number of images in each category was
equal to that of normal images. Figures 10 and 11 show the difference before and after
applying the augmentation to the minority classes. Moreover, Figure 12: Augmentation
sample clearly shows that the augmentation techniques such as rotation, flipping, zoom,
filling, and brightness were only applied to the benign (B) and malignant (M) classes, while
the normal (N) class remained intact.
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Figure 11. Classes after augmentation.

In addition, after the augmentation, to improve the classifiers’ accuracy, the authors
have performed some pre-processing techniques using OpenCV, such as Gaussian blur
to reduce the noise, intensity normalization, and histogram equalization to enhance the
edges and show the tumor clearly. Oddly, combining the three methods resulted in a
decrease in performance for all the classifiers. The last step is, naturally, the resizing of this
pre-processing, see Figure 13.
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3.4. Experimentations

In this section, some of the finest deep-learning models for breast cancer detection
and classification have been tested and compared against each other. The following is a
breakdown of the classifiers’ experiments.
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3.4.1. First Experiment

To assess the model’s performance when trained from scratch on mammography
features, the authors first used a simple convolutional neural network (CNN) architecture,
as detailed above. Five convolutional layers with filter values ranging from 16 to 128, five
max-pooling layers, four dropout layers with a rate of 0.2 to minimize overfitting, and
finally, one fully connected layer with 516 filters are used. ReLU was used as the activation
function in the hidden layers, while the sigmoid was used in the output layer. We selected
the sigmoid function because, at this point, we had just 460 mammography images from
KFUH for binary classification cases, as shown in Figure 14. Due to the dataset’s small
size, we used the Holdout cross-validation (CV) technique to divide it into eighty training
samples and 20 testing samples. According to Figure 15, after fitting the model, we noticed
an underfitting problem, not to mention a difficulty with the testing accuracy. This is why
we contacted the radiology department to obtain more mammography images of benign
and malignant tumors, as well as data on the “normal” class.
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As can be seen from the graph, the validation accuracy was heading in the negative di-
rection, which showed a bad model performance that could not be improved by increasing
the number of epochs.
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3.4.2. Second Experiment

After collecting more samples from KFUH, we have acquired 637 mammography
images from all three classes. The dataset at this point consisted of 636, as shown in
Figure 16. We followed a different approach where we experimented with our dataset
using pre-trained models to see how the model performed on this enlarged data. The
InceptionResNetV2 model was used and fine-tuned on our dataset. Although the model
was subjected to several optimization and preprocessing techniques, which are shown in
Table 1, it still suffered from huge overfitting, as shown in Figure 17. Model overfitting
(blue: training, orange: validation). The training accuracy was almost 98%, while the
testing accuracy reached only 65% at best.
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Table 1. Techniques used to address the overfitting.

Preprocessing Dropout Regularization Optimization

Input Rescaling and Normalization 0.2 Rate L2 Regularization Adam α = 0.001
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3.4.3. Third Experiment

We attempted to address the issues raised in the prior experiment in this experiment.
To begin, we called the radiologist to request further training data, particularly in the
normal class, which had the fewest samples. After gathering and extracting the data, we
arrived at a total of 1640 images. The distribution of classes in this experiment is depicted
in Figure 18: Class distribution of the third experiment—Imbalanced.
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Additionally, we employed a technique known as stratified cross-validation. This
method ensures that each class has the same proportion of its distribution in each fold; the
technique is well-known for its ability to manage highly skewed datasets. The dataset was
divided between 60% training samples, 20% validation samples, and 20% testing samples.

The model in this experiment was inspired by Sakib et al. [95] to address multi-classification
difficulties in chest radiographs used to detect COVID-19. The model structure is as follows:
a stack of convolutional layers, with each layer reducing the filter size by a factor of half.
Then a stack of fully connected layers is created, with each consecutive layer reducing
the filter size by a factor of half. Furthermore, as documented on the official TensorFlow
website, the leaky rectified linear unit (LeakyReLU) activation function was found to be
helpful in reducing overfitting. Thus, we employed the LeakyReLU and Adam optimizer
functions along with data augmentation for all classes to further mitigate overfitting.

On the testing set, the data augmentation and stratified k-fold validation performed
very well. Using five-folds, our strategy enabled us to achieve an AUC of 96.32 percent
and an accuracy of 84 percent on the imbalanced dataset. However, we applied the
exact approach to a balanced dataset via under-sampling, as shown in Figure 19: Class
distribution of the third experiment—balanced, to determine whether the model can be
improved further. As shown in Figure 20: Third experiment results in comparison and
shown in Table 2, the results decreased drastically, leading us to conclude that the issue is
extremely dependent on obtaining sufficient data.

Table 2. Class Distribution.

Experiment Benign Malignant Normal

Experiment 1 192 268 0
Experiment 2 40 236 360
Experiment 3 360 236 1044
Experiment 3

Balance Dataset 236 236 236
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As illustrated in the balanced dataset’s Confusion Matrix Figure 21, which was dis-
played to analyze the problem in depth, the model properly classified the normal classes
but was unable to distinguish between the benign and malignant classes. Thus, that is how
we got to the next problem and the findings that came with it.
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3.4.4. Fourth Experiment

As this is the final experiment, we tried to resolve the issues the authors encountered
and then analyzed the difficulties to come up with a solution. The approach was to collect
more data, both benign and malignant, until we reached a total of 1802. Additionally, to
crop the photos to reduce computing time and noise in the dataset and to augment the
data for the minority class only until it reaches the majority class. The authors increased
the validation distribution by 5% in this experiment to see the effect. Sixty percent of the
dataset was divided into training samples, twenty-five percent into validation samples,
and fifteen percent into testing samples, as shown in Figures 22–24.
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Figure 23. InceptionResNetV2 results.
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Figure 24. Inception-V3 results.

Furthermore, the authors conducted this experiment using pre-trained models to
figure out their effect on feature extraction and to shorten the computational time associated
with the stratified 5-fold cross-validation procedure. The three models considered for this
study, Xception, Inception Residual Network, and Inception, were all well-known for their
exceptional performance in the classification and diagnosis of breast cancer, as well as in
medical imaging in general [96].

As shown in Figures 25 and 26, compared to other tests, these models produced
satisfactory results. Even though overfitting was still evident, we attempted to alter the
dropout rate and record the results. Only Xception performed better than the others, and a
dropout of 0.5 was the ideal value for all models.
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3.4.5. Imbalanced Data Sampling Technique

The authors employed two strategies to address the imbalance in our dataset during
our exterminations. To begin, we began using data augmentation for all classes in the
third experiment, which demonstrated an increase in accuracy. Additionally, in the third
experiment, under-sampling was utilized, as shown in Figure 11, to determine whether the
model would perform better on a balanced dataset.

As a result, the model did not outperform the imbalanced dataset experiment; nonethe-
less, the findings clearly demonstrated the need for additional training data, as all models
and experiments demonstrate. However, no SMOTE or oversampling of images was used
in our model; rather than duplication, we aim to increase the variation in our dataset in
order to increase the model’s generalization. Additionally, the authors employed data aug-
mentation to create a balanced training set for the final experiment, as shown in Figure 13:
Augmentation sample; this strategy significantly boosted our accuracy and yielded the
best results.

3.5. Breast Cancer Classification Using BI-RADS Descriptors

The breast imaging reporting and data system, or BI-RADS, is a reporting system set
up by the ACR that supplies a universal language and reporting schema. It can be used
for mammography, ultrasound, and magnetic resonance imaging (MRI). When it comes
to mammogram images, BI-RADS supplies a reporting system for breast cancer findings.
The KFUH dataset consists of examination reports that follow the BI-RADS classification
system. As seen in Table 3, the system is divided into seven categories: BI-RADS 0 to 6 [11].

Recently, the development of computer-assisted diagnosis methods for breast cancer
based on the BI-RADS terminology has received significant attention. The utilization of
classification algorithms has resulted in an astonishing level of diagnostic accuracy [97].
None of these diagnostic tools, however, utilized both image-based and BI-RADS descriptor-
based methods. Using machine learning, we feel, will be a step toward a more standard
interpretation of mammography findings. This tool can be shared across radiologists as a
decision-making aid, leading to more trustworthy patient treatment. The machine learning
model was implemented on the cloud using Jupyter Notebook.
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Table 3. BI-RADS Categories.

BI-RADS Category Description

BI-RADS 0 Incomplete
BI-RADS 1 Negative, no mass

BI-RADS 2
Benign

- 0% probability of malignancy

BI-RADS 3
Probably benign

- <2% probability of malignancy

BI-RADS 4

Suspicion of malignancy

- 2–94% probability of malignancy

For mammography, it can be divided into:

- BI-RADS 4A: low suspicion for malignancy (2–9%)
- BI-RADS 4B: moderate suspicion of malignancy (10–49%)
- BI-RADS 4C: high suspicion of malignancy (50–94%)

BI-RADS 5
Highly suggestive of malignancy

- >95% probability of malignancy

BI-RADS 6 Biopsy-proven malignancy

3.5.1. Preprocessing

The BI-RADS system (Figure 27) employs specific descriptors to characterize tumors.
These are the density, shape, and margin descriptors. Each of these has its own category,
as illustrated in Table 3. Our strategy is to classify mammography findings using these
descriptors as features. In addition, patient age was added as a predictive variable because
it has been established as a significant risk factor for breast cancer. Several preprocessing
approaches were applied to our KFUH dataset to obtain the best results possible.
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To begin, the hospital reports were collected in “.docx” format; to help the operations,
these reports were converted to “.txt” files using the doc2txt library. Following that, we
designed a data extraction tool that converts unstructured reports to structured tabular data
in an Excel sheet using BI-RADS descriptors as columns and their categories as rows, as
seen in Figure 28. The tool was created by combining text processing techniques and Python
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libraries such as NumPy and Pandas. Although this tool was robust enough to collect all
available data, we found a few difficulties since various radiologists describe their findings
differently. As a result, there was a great deal of noise and missing data that required
substantial cleaning and organization. For instance, one of the primary characteristics that
supported our approach was the patient’s age. However, the reports only revealed the
patient’s date of birth, which required us to calculate the patient’s age. Additionally, to
improve classification, we switched the age from a numerical to a categorical variable. This
was accomplished by classifying individuals’ ages into three categories: those under the
age of 50, those between the ages of 50 and 64, and those over the age of 64. This method
has been used successfully in previous studies [97].
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After completing the necessary preprocessing, only 114 reports remained, consisting
of the class distribution as seen in Figure 29.

3.5.2. Feature Extraction

This stage transforms the tabular data into useful information for classification. To
keep things simple, we eliminated tests with a BI-RADS category of 0, which indicates
that the examination is incomplete and requires more imaging evaluation. Additionally,
we did not divide BI-RADS category 4 into categories 4A, 4B, and 4C. We chose number
4 as a representation of the other sections. The categorical BI-RADS descriptors serve as
features in our approach. The label “Mass” was used to categorize the findings into two
groups: mass and no mass. This was done to differentiate between normal and abnormal
examinations, as the presence of a mass shows the presence of a benign or malignant tumor.
Moreover, we provided the feature “Result” as a label for our classification target, which
includes the values “N” for normal, “B” for benign, and “M” for malignant. To prepare our
features for use as inputs to our model, we used Scikit-Learn’s hot encoding technique to
encode categorical features as a numeric array.
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3.5.3. Classification

After preprocessing, the number of examinations that remained was quite modest.
As a result, deciding which classifier to employ was challenging, as we were unable to
obtain more examinations from the hospital. We expected to experience issues such as
bias or variance error due to the size of our dataset. As a response, after completing an
extensive study to find models that would be suitable for our case, we chose to work
with Scikit-Learn’s gradient boost classifier. This classifier is a tree-based algorithm that
generates a prediction model from a collection of weak prediction models. It applies to both
regression and classification problems. However, in our study, we will use it to categorize
examinations into three classes: normal, benign, and malignant. In other words, we will
employ a multiple-class classification model. Gradient boosting, thankfully, provides this
form of classification. Furthermore, one of the reasons we chose this classifier is that it helps
us minimize the model’s bias, accuracy, and overfitting. Figure 30: A machine learning
model road map illustrates the road map of our work.
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Figure 30. Machine learning model road map.

3.5.4. Model Fine-Tuning

Considering the size of the target dataset, there is still a possibility of overfitting. As
a result, we chose to use the cross-validation technique to split our dataset. This method
of splitting enables the generation of a test set from a subset of the existing data. As a
result, it is not required to specify the validation set while performing this procedure. The
basic strategy, named k-fold cross-validation, divides the training set into a smaller number
of sets. In our model, we used five splits as the number of k-folds. After conducting
several experiments, we made some modifications to fine-tune the parameters based on
our target. These changes were applied to the number of estimators; we reduced it from
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100 to 30. These changes improved our results, which will be addressed in further detail in
the results sections.

4. Results and Discussion

In the proposed approach, the authors divided the evaluation measures into two
categories based on two forms of classification: hard and soft classification. Soft classifiers
explicitly calculate the conditional probability for each class before performing classifica-
tion based on the estimated probabilities. Hard classifiers, on the other hand, are solely
concerned with the classification decision boundaries and do not generate the likelihood of
categorization. Both validation and testing data were subjected to these approaches.

4.1. Hard Classification

The authors utilized balanced accuracy for the hard classification because we are
dealing with a multi-class classification. Our cross-validated model achieved 96% accuracy
on our training data, 95% on our validation data, and 92% on our testing data.

4.2. Soft Classification

We utilized the ROC-AUC with the averaging type ‘ovr’ for the soft classification.
“ovr” stands for one-vs.-rest. It calculates the AUC of each class in comparison to the others.
This applies the same logic to the multiclass situation. Our cross-validated model achieved
99% accuracy on our training data, 97% on our validation data, and 97% on our testing data.

Both types of classification yielded comparable results. However, the soft probabilistic
classification provided a higher testing score. This may be due to the class imbalance
situation we have in our dataset. Additionally, it is well known that when it comes to
imbalanced classification, accuracy is insufficient. The accuracy of a model can lose its
validity if the class distributions have a large amount of skew. That is why we will be
considering the classifier’s performance with ROC-AUC analysis.

4.3. Discussion

As described previously, multiple experiments were conducted on mammogram
classification using several partitioning criteria, hyperparameter optimizations, incremental
pre-processing, and balanced data sampling strategies to acquire the best performance for
all classifiers examined. The initial experiment did not produce satisfactory results due
to the lack of training data. When we received more data in the second experiment, the
accuracy increased slightly, but we were still suffering from model overfitting. The study’s
limitation is data availability—the availability of large and diverse datasets for training
deep learning models.

Acquiring a comprehensive dataset that includes various breast cancer cases, demo-
graphics, and imaging modalities can be challenging. As a result, we attempted to use the
cross-validation technique in conjunction with a stratified strategy in order to adequately
address the imbalanced class. Thus, we conducted the third experiment and observed a
significant improvement in accuracy. To address the class imbalance, we attempted under-
sampling to reach the minority class; nevertheless, this experiment was not successful.
Additionally, cross-validation was computationally intensive, which is why we chose to
employ pre-trained models. Since it takes a long time to train from scratch, extract the
features, and perform the validation splits.

In the fourth experiment, we addressed the overfitting problem by using pre-trained
models. We experimented with dropout values to boost the findings further; for each
classifier, a particular dropout value was ideal. We have achieved outstanding achievements
by utilizing the resources available to us. However, if we had additional data, the models
would likely perform much better. On the other hand, the BI-RADS descriptor classification
model yielded a high testing score compared to the previous studies. However, the study
has a restriction in terms of the number of examinations included in the dataset. We
cannot assure that the sample selected was generalizable to the entire population because
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we removed a considerable proportion of those examinations that had missing results
during data cleaning. Additionally, the data extraction tool built to extract features from
examination reports was exclusively designed to function with the report structure used by
King Fahad University’s Hospital. As a result, our methodology may not be suited to all
practices. The suggested deep learning AMAN system is depicted in the AMAN system
and is based on the results of all experiments. The maximum accuracy was achieved while
consuming the fewest computational resources and using the fewest resources for image
and clinical data processing.

5. Conclusions

The eastern region of the Kingdom of Saudi Arabia has the highest number of breast
cancer cases among women. To combat this issue, this study proposed the AMAN system,
which is based on the deep learning approach. While it uses the Xception model to extract
features from the breast mammograms, it also uses the gradient boast methodology to
classify the cancer type. In contrast with traditional breast cancer detection schemes,
AMAN exhibited the highest accuracy while finding and classifying breast cancer. As it is
well-trained on the patient’s mammograms, it can safely detect and classify breast cancer
in relevant patients.

In the probable future, the authors aim to integrate these two models (i.e., Xception
and gradient boast) being developed in this study to get more reliable results in the future
and deploy the AMAN system in real-time applications.
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