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ABSTRACT This study proposed a new processing method to predict breast cancer on the basis of nine 
individual attributes, including age, body mass index, glucose, insulin, and a homeostasis model assessment. 
First, principal component analysis (PCA) was used to identify valuable parts of the data and further reduce 
the dimensions of the data. The cumulative proportion of the top five major components was 99.89%. The 
multilayer perceptron network (MLP) method was then used to extract characteristics included in the data, 
and the structure of the network was designed for the exploration of how data developed as the dimensions 
increased or decreased. As such, the model was established to first explore (high dimensional) and then 
develop (low dimensional) data. After training and learning, the models could segregate the representative 
attributes and numbers, and the characteristic data were then used as classifiers through transfer learning 
techniques using support vector machines. To verify the proposed method, the experiment performed k-fold 
cross-validation 50 times on average. Experimental results verified the proposed method with 10-fold cross-
validation using the dataset of Manuel Gomes from the University Hospital Centre of Coimbra, and an 
accuracy of 86.97% was achieved. The results indicate that the proposed series of processes and methods can 
effectively and powerfully examine the incidence of breast cancer. Furthermore, the data processed using 
only the PCA method as well as the characteristics extracted through the PCA method then combined with 
MLP after learning were analyzed. The differences displayed for the visual technique characteristics of the t-
distributed stochastic neighbor embedding were compared. 

INDEX TERMS multilayer perceptron network, principal component analysis, support vector machine, 
transfer learning. 

I. INTRODUCTION 
Globally, breast cancer is the most common malignant tumor 
among women [1] and is the second most common cause of 
death [2]. Breast cancer is cancer in the breast tissue, and its 
signs and symptoms include breast lumps, epidermal tissue 
dimples, shape changes, and red plaques appearing on the 
epidermis. If cancer spreads, it can cause osteocope, swollen 
lymph nodes, and dyspnea [3]. Early prediction and diagnosis 
of breast cancer can help medical personnel to provide 
appropriate treatments or relapse monitoring after surgery. 
Furthermore, they can control the treatment pain for patients, 
decrease mortality risks, and increase survival rates. Thus, the 
medical field seeks risk factors that may cause breast cancer 

as well as potentially influential relationships among risk 
factors, including direct or indirect relationships in numerous 
diagnosed clinical cases. The direct relationships of key risk 
factors with breast cancer incidence were sought to help with 
early prediction and prevention of breast cancer. Consequently, 
studies identifying risk factors of breast cancer include 
discussions of obesity, sex hormones, the endocrine system, 
and adipose tissue [1, 4, 5]. 

In studies from recent years, prediction systems based on 
machine learning have used data including risk factors such as 
X-ray images and heredity profiles, as well as various clinical 
data and learning algorithms for breast cancer prediction. 
Various types of studies have been conducted for the risk 
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prediction of breast cancer, such as mammographic studies [6-
8], the discussion of hormones [9], genetic research [10-12], 
and studies based on images that have used the most popular 
deep learning method, as addressed in [13-15]. In the review 
of studies using incidence prediction for related risk factors, 
Artificial Intelligence (AI), or algorithms related to machine 
learning were used. The method of cancer gene mapping 
analysis was described in [16], where multimodal autoencoder 
(MAE) classifiers constructed using various risk factor data in 
breast cancer diagnosis were used to predict the survival rates 
of breast cancer prognosis. Abdikenov et al. [17] proposed a 
Pareto optimality-based prognostic model to understanding 
changes in hyper-parameters in various performance metrics, 
and [18] presented a wrapper method that embeds Bayesian 
classifiers for hybrid feature selection of breast cancer datasets. 
Whitney et al. [19] used the most popular integrated methods 
of deep convolutional neural networks (CNNs) and transfer 
learning to compare breast magnetic resonance Magnetic 
Resonance Imaging (MRI) tumor classification with 
traditional methods. The hybrid CNN-SVM model that was 
proposed in [20] used the MNIST numerical database that 
contains 70,000 examples for the experiment. Each example 
has 28 × 28 = 784 high-dimensional attributes. To reduce the 
number of dimensions and extract features, the experiment 
used a multilayer neural network with deep supervised 
learning. This concept entails the use of a large quantity of 
extremely high-dimensional data, which is the basic element 
of a neural network. The database and methods used in this 
study differ from the aforementioned databases and methods; 
the quantity of data in the database selected in this study was 
lower than that in the aforementioned databases. The 
aforementioned CNN method is not applicable when the 
quantity of data is limited. For the CNN method to be 
effectively used, a considerable quantity of data is required for 
training. This is why the database and method used in this 
study differ from those in other studies; here, an enhanced data 
exploration method that uses the multilayer perceptron 
network (MLP) model is proposed. The internal MLP model 
first increases the size and then reduces dimension to the 
original size. 

In this article, a series of processes and methods are 
presented, and the novel and traditional algorithms were 
integrated. First, principle component analysis (PCA) was 
employed to find valuable data and reduce the data 
dimensions. The multilayer perceptron network (MLP) 
method was then used to extract the data characteristics 
through network learning included. After training and learn- 
ing, the models could segregate representative attributes and 
numbers. MLP can process nonlinear separable problems. 
This is mainly attributed to the perceptron and its ability to 
achieve nonlinear classification through multilayer 
combination and the activation function. Models with 
complete training data can express their features’ nonlinear 

characteristic and completely preserve their nonlinear 
expression through transfer learning techniques. Here, 
nonlinear expression refers to the distribution of an 
appropriate weight to each layer by using a weight tuning 
method that is specifically adjusted to training data, which 
are transferred to another model for use. Through the transfer 
learning method, the characteristic data determined through 
the MLP method can be transferred to become corresponding 
information for the SVM. The integrated techniques that 
combine the MLP with SVM can be applied effectively to 
examine breast cancer prediction approaches. In addition, the 
breast cancer dataset of the Faculty of Medicine of the 
University of Coimbra was used for k-fold cross-validation. 

This study extended relevant medical studies that have 
examined lung nodules. An evaluation model based on the 
combination of a fuzzy system and neural networks was used 
for screening and testing through image input and self-
defined fuzzy membership functions. Then, neural networks 
were employed to perform a final evaluation [21]. The 
regional reconstruction of computed tomography scan 
images was improved using a self-adaptive variation of the 
partial differential equation model [22]. Based on 
electrocardiogram signal diagnosis, neural network training 
provides effective solutions that can strengthen the 
generalizability of neural networks and maintain sensitivity 
and accuracy. This method can be applied in 
electrocardiogram examinations to identify certain abnormal 
heart activities that are difficult to detect [23].  

The major contributions of this study are as follows: (1) 
The PCA-based scheme integrated MLP and SVM to 
construct the proposed learning algorithm to predict breast 
cancer; (2) low-dimensional feature extraction was applied 
to realize the network structure being designed for 
exploration first (high dimension) and development second 
(low dimension) in the MLP; (3) a complete blueprint of the 
breast cancer diagnosis medical system was constructed for 
the machine learning algorithm for breast cancer prediction, 
and the modules thereof were elaborated to provide the key 
technologies for the latest implementations; (4) the concept 
of transfer learning was used to construct a link between 
models and applied to small databases; and (5) the k-fold 
cross-validation was designed for the experiments combined 
with multiple randomized mechanisms with even 
distribution to test four breast cancer databases and verify the 
feasibility of the algorithm. 

The remainder of this paper is organized as follows. 
Section II fully introduces the breast cancer diagnosis 
medical system. Section III proffers the proposed model. 
Section IV mainly explains the results of the k-fold cross-
validation experiments. Section V presents the comparison 
researches and also discusses transfer learning and nonlinear 
methods. Section VI provides the conclusion of the study.  
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II. SYSTEM ARCHITECTURE 
This system architecture provides a complete breast cancer 
diagnosis medical system. In Fig. 1, six major blocks are 
included, and the presented method is combined with the AI 
model block. Novel and traditional algorithms are integrated, 
and a human professional training experience method is 
adopted. The entire system encompasses the six major blocks: 
inquiry, diagnosis, data center, AI model, decision-making 
center, and confirmed diagnosis. In the inquiry block, 
inquiries from suspected patients are accepted, and basic 
information for the preliminary evaluation is the input of the 
entire system. In the diagnosis block, data are subjected to 
direct measurements, such as mammographic images and 
heart rhythms, and indirect measurements, such as blood and 
urine. The procedure obtains an appropriate amount of blood 
from the patient and uses an automatic blood cell analyzer.  
A smart microscope [24] can be used to analyze various data 
that are commonly seen in routine blood analysis, including 
a report on 31 features in the entire blood and seven 
reportable parameters of blood [25]. A ZigBee radio 
frequency based [26] on the e-health Device Healthcare 
support platform and the Internet of things (IoT) are used in 
combination to [27] transmit data to the data center to 
process sensitive information. Regarding the accuracy 
requirement for various data that were obtained from the 
whole blood analysis, performance assessment documents 
from the blood analysis equipment vendor [28] indicated a 
high correlation between the consistency of the automatic 
method and that of the manual method. The Pearson 
correlation coefficient was greater than 0.9 for the 178 types 
of bodily fluid when strict biological sampling specifications 
were used. The inspection procedures intended for use by the 
medical laboratory complied with the Section 5.5 
requirements of the international ISO 15189:2012 [29] 
standard. First, standards, guides, methods, or journal 
publication methods that have been verified or are 
recognized internationally must be used in the inspection 
procedure. The measurement data for the selected inspection 
procedure include true value, accuracy, precision (including 
gauge repeatability and intermediate measurement precision), 
measurement uncertainty, and analytical specificity 
(including disruptors, analysis sensitivity, detection limit, 
limit of quantitation, measurement interval, diagnostic 
specificity, and diagnostic sensitivity). “Measurement 
uncertainty” uses the coefficient of variation (CV) or 
standard deviation (SD) to indicate deviations in 
measurement. This is based on ISO [30] Guide to the 
Expression of Uncertainty in Measurement, which states that 
when completing a measurement uncertainty evaluation for 
a test item, the set acceptable standard (target uncertainty and 
the laboratory’s quality goal or quality specification) and the 
scope of the allowable total error (TEa) must be reviewed to 
determine if they reach “target measurement uncertainty.” 
According to [31], targetm easurement uncertainty can be 
interpreted as “the allowable error upper limit for test results  

 
FIGURE 1. The architecture of the system. 
 
used clinical diagnostics.” The review acceptance standard is 
divided into three performance specifications that are based 
on individual biological variation (CVi). The desirable level 
of specification uses ≤1/2 CVi as the acceptance standard, 
along with a minimum level of ≤3/4 CVi or the optimal level 
of ≤1/4 CVi [32]. If the CVi cannot be obtained for the test 
item, ≤1/3 TEa is used as the acceptance standard [33]. The 
data obtained require subsequent analysis and interpretation. 
Next, the data are passed to the data center block, AI model 
block, and decision-making center. The data center stores 
copious diagnosis data to form a big data database. In the AI 
model block, big data provides training to complete the 
prediction models for breast cancer detection. The diagnosed 
data are then inputted with single cases to determine the 
morbidity probabilities. In the decision-making center, the 
predictions obtained with AI models and their diagnosis data 
are received by doctors with clinical experience for the final 
decision. In this stage, the AI model organized and analyzed 
patient data to provide valuable information 
recommendations to assist patient treatment or accurately 
predict possible locations of lesions at a preliminary stage. 
The AI model plays an assistive role for physicians, who 
remain the actual decision makers. Based on judgments 
corresponding to personal medical literacy, the AI model 
provides a rapid and accurate approach to help physicians 
interpret information. The data-based learning features fast 
speeds and low costs and reduces misjudgments. In addition, 
physicians can apply inquiry approaches and their 
experience to treat patients efficiently. The confirmed 
diagnosis block contains treatments after morbidity and 
periodical prevention with no morbidity.  
The method in the AI, model block is the processing method 
that was developed in this study to examine the prediction of 
breast cancer incidence. The following subsections describe 
the selected machine learning algorithms one by one. 
A. PRINCIPAL COMPONENT ANALYSIS 

PCA was originally proposed by Person in 1902 [34] and was 
defined and named after Hotelling [35], who developed it 
independently. PCA has different names in different fields. It 
is termed eigenvalue decomposition in linear algebra, singular 
value decomposition in matrices, and proper orthogonal 
decomposition in mechanical engineering. 
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FIGURE 2. Synaptic Plasticity Effect of Neurons. 
 

 
FIGURE 3. Artificial Neuron of Single Layer Perceptron. 
 
The basic concept of PCA is the identification of a set of axes 
(vectors) that conveys the maximum quantity of information 
in the characteristic space of a multidimensional dataset. The 
multiple attributes (or multiple dimensions) of one piece of 
data are expressed as a linear combination of these basis 
vectors. Assuming that the vector space constituted by the 
selected axes (or vectors) has N basic components, for all 
data in that space, the multiple attributes of the data are 
expressed as linear combinations of these N components. 
The maximum amount of information signifies that the 
largest variances can be obtained after the dataset is 
projected to the examined axis. The actual meaning of the 
projection is the dot product calculation of the two vectors. 
One vector is the multiple attributes of one piece of data, and 
the other vector is the respective axis. Thus, the product is 
spanned by unit vectors that constitute basis vectors. The 
projected points are expressed in the linear subspace of the 
selected vectors. This means that the projection reduces the 
original dimension. All data are projected to that axis or are 
the most scattered in this direction; namely, the largest 
difference between the maximum and the minimum means 
that the axis in question represents the first major component. 

B. MULTILAYER PERCEPTRON NETWORK 

The well-known American neurologist Frank Rosenblatt [36, 
37] proposed the perceptron, which is inspired by brain nerve 
cell adaptation theory [38], which is the cell assembly theory 
of synaptic plasticity [39], in the learning process. Synaptic 
plasticity [40, 41] describes the connection or synapse 
between cells in neuroscience. Its characteristic of adjustable 
connection strength is depicted in Fig. 2 [42] and Fig. 3. 
In the original McCulloch & Pitts model (MCP) [38] of the 
artificial neurons model, a supervised learning method was 
introduced to allow the adjustment of artificial neurons to the 
correct weights from the training data. A binary perceptron 

also called a threshold function maps its input dR∈x  to an 
output ( )f x . Where [ ]

T
1 2= dx x xx   are the different 

components of the input vector, and 
[ ]

T
1 2= dw w ww    are the weights of each input 

component connected to the perceptron. The perceptron uses 
additional and constant inputs, and weight b is also called 
deviation. The magnitudes of individual weights wi 

influences perceptron output, and the equation is expressed 
in (1). 

T1,   0
( )

  0, ,
if b

f
else

 + ≥
= 


w xx   (1)

The effect of the neuron depends on the activation function, 
and the activation function is a sign function expressed in (2). 

1,    0,
s ( )

1,          .
if z

ign z
else

+ ≥
= 

−
 (2)

The decision-making boundary of the perceptron is (3). The 
linearity of  this  decision-making  function  depends on  the 
input x , so it is called the linear classifier. 

T 0b+ =w x  (3)

The multilayer perceptron network [43] is the 
combination of multiple layers and multiple perceptrons [44]. 
The hidden layer is the characteristic capture of data using 
perceptrons. Data dimensions can be increased or reduced 
according to the increments and decrements in the 
perceptrons, and they come from the learning of the provided 
data. Different types of studies and applications were then 
developed based on the algorithm of perceptrons [45–49].  

C. SUPPORT VECTOR MACHINE 

The basic SVM concept serves mainly to identify a decision-
making boundary for distinguishing two types and 
maximizing this decision boundary. The SVM is a 
supervised learning method used in classification and 
regression analysis. The statistical method is used to 
calculate the minimization to estimate the hyperplane of a 
classification problem. Consequently, SVM itself is a 
classifier starting from linear separability and finally 
expanding to nonlinear functions. Its advantages are as 
follows: The classification model can be established with a 
small number of samples, and it is applicable in high-
dimensional spaces. It has the kernel functions with 
separability, and can be used for various applications after 
the kernel functions are changed. 

The most basic linear separable function and the symbols 
that are described in [50-53] are re-organized as follows. The 
input vector in the input space is expressed as xi and 1 i n≤ ≤ . 
Each input vector xi in a high-dimensional space dR , i.e., 

d

i R∈x . In this study, the parameters of training data were 
80 , 1 104i R i∈ ≤ ≤x . In addition, its corresponding binary 

label { }1, 1iy ∈ − +  means the vectors of the input space are 
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divided into two categories corresponding to 1iy =  or 
1iy = − . The data can be expressed as

{ } { }, , 1,...., , 1, 1i i iy i n y= ∈ − +x . Suppose a hyperplane 
separates the input space of two classes and the ix  points 

that lay on the hyperplane satisfy T 0i b+ =w x , where 
d

R∈w  and b are normal vector to the hyperplane and 
hyperplane offset, respectively. The optimized hyperplane 
with the largest margin and the shortest distance to the 
closest positive (negative) input point that satisfies 

T( ) 1,i iy b i+ ≥ ∀w x is sought. Furthermore, it introduced 
some nonnegative term iξ , called slack variables, that if the 
optimized hyperplane is unable to linearly separable in 
classes of input data. The variable is regarded as the measure 
of misclassifications and is in cooperation with the positive 
constant term C  to determine the tradeoff between the 
maximization of margin and training error. The soft-margin 
SVM of the optimization problem is expressed in (4). 

2

, ,

T

1 ,
2

 ( ) 1 , 0,

n

i
b

i

i i i i

minimize C

subject to y b i

ζ
ξ

ξ ξ

 
+ 

 
+ ≥ − ≥ ∀

w
w

w x
 (4)

The aim is to seek the optimal hyperplane in (4), which is 
a quadratic programming problem that can be solved using 
the Lagrangian form of (5) and transformed by Karush-
Kuhn-Tucker conditions into the dual problem of (6).  

2

1 1

1( , , ) ( )
2

n n
T

i i i i

i i

L b y bα α α
= =

= − + + w w w x  (5)

,
1 , 1

1

1 ( , )
2

0, 0 ,

N

n n

i i j i j i j i j
R

i i j

n

i i i

i

maximmize y y k

subject to y C i

α
α α α

α α

∈ = =

=

−

= ≤ ≤ ∀

 



x x
 (6)

where iα  is the Lagrange multiplier of ix  instance and the 
kernel function is expressed as , ( , ) T

i j i j i jk =x x x x . Finally, 
most iα  values approach 0 during optimization process, and 

ix  that correspond to *
iα  that are larger than 0 are called 

support vectors. Excluding the nonsupport vectors, Nx 

represents the number of support vectors, and for all i, 
0iα > . The hyperplane expression segregated in this 

method is shown in (7). 
*

1

*
,

1 0

,

1 ( ( , ))

x

x x

N

i i i

i

N N

i i i i j i j

j ix

y

b y y k
N

α

α

=

= =

=

= −



 

w x

x x
 (7)

Instead, classification ( )f q  calculates the q  in the kernel 
function of every support vector through the new query 
vector q. In the function, b  represents the offset of the 
hyperplane along the normal vector and is obtained through 
SVM training. The function is expressed in (8).  

1
( ) ( , )

xN

i i i

i

f sign y k bα
=

 
= + 

 
 xq q  (8)

The detailed verification and derivation process are 
described in [50–56], and the core functions are developed 
into different forms [57, 58]. 

D. TRANSFER LEARNING 

Transfer learning is simply the transfer of the parameters 
obtained from trained models to a new model. The original 
goal of transfer learning is to solve the deficient number of 
markers in the data and uneven distribution. The marking of 
sample data necessitates copious labor time, and problems 
related to the marking of data result in the predicament of 
low learning performance models in the training of 
supervised learning. Because of this, the existing marker data 
are transferred to the unmarked data. Thus, transfer learning 
literally means the transfer of models that have already 
completed learning to new models for the enhancement or 
acceleration of the new models’ training. Alternatively, it can 
be viewed as the preprocessing of the establishment of new 
models. The required characteristic parameters can be 
extracted in advance through such preprocessing or 
transferring modes so that the training does not have to start 
from scratch. Relevant proofs appear in the study [59]. This 
method allows for shorter training and collection of mass 
data. The characteristic parameters of the marker data of the 
same source field do not require the same training process to 
be transferred to the marker data of a different target field 
[60]. Moreover, for favorable effects, the limitation is that 
the source field and the target field are required to be 
correlated. If they exhibit too little correlation, the learning 
performance cannot be enhanced, and the results are 
potentially worse. With the rapid development of artificial 
neural networks, transfer learning constitutes a critical 
technique in the AI learning field, and it combines mass data 
with deep neural networks [61–63]. 

E. BATCH NORMALIZATION 

Batch normalization for optimization techniques in deep 
neural network learning models was developed in [64]. The 
proposition is to overcome the problem of training 
difficulties in saturated nonlinear models. In addition, the 
extremely low learning rates slow down the training speed of 
the models, resulting in problems with saturated nonlinear 
models. The study proposed a solution for the 
aforementioned problem through normalized input layers: 
batch normalization. The advantages of batch normalization 
are the increase in learning efficiency, the lack of excessive 
dependence in the given initial values, and the effective 
decrease in excessive learning. 

The following complies with the explanation in [64]. A 
small-batch amount B with size m is adopted, and m 

activation values exist in the minibatch, expressed as 
{ } { }1 1 2

b b b b

m mB x x x x= =  . In our experiment, the 
parameter m  represents 512 , and ˆb

i mx  and i my  are the 
normalized values and their corresponding linear 
transformations, which correspond to (9) and (10). The 
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referenced transformation is used as Batch Normalized 
Transform and is expressed as , 1 1: b

m mBN x yγ β →  . The 
ε  is a constant value that is added to the minibatch variance 
to maintain the numerical value stability. The mean and 
variance of minibatch are expressed in (11) and (12), 
respectively.  

In learning, normalization is performed according to each 
minibatch, which is the unit for batches. The output of the 
former activation layer is normalized by subtracting the 
mean value of the batch and then dividing it with the standard 
deviation. Furthermore, two learning parameters are added 
to the input data. They are the representative standard 
deviation parameter γ  and the representative mean value 
parameter β , which measures the degree of dispersion. For 
the stochastic gradient descent, the denormalization is 
executed with these two weight parameters instead of the 
parameter activation. Thus, the weights of the original 
network training are maintained, and network stability was 
preserved. The values trained in every layer are allowed to 
be transmitted in an effective and stable range. This method 
receives extensive application and recognition in the deep 
neural network learning field thereafter [60, 63–68]. 

2
ˆ

b

b i

i

B

x B
x

µ

σ ε

−
=

+
 (9)

, ( )b b

i i iy x BN xγ βγ β← + ≡  (10)

1

1 m
b

i

i

B x
m

µ
=

=   (11)

2 2

1

1 ( )
m

b

B i

i

x B
m

σ µ
=

= −  (12)

III. THE PROPOSED MODEL 
The steps of the proposed process and method are explained 
here and displayed in Fig. 4. The data obtained from the 
dataset are first analyzed through PCA method, and the 
dimension is reduced. The characteristics in the data are then 
extracted in the MLP learning model, and, after learning, 
transferred through transfer learning to the SVM, which serves 
as the classifier. The concrete process is shown in the flow 
chart in Appendix Fig. A1. Finally, patients and healthy 
individuals can be distinguished effectively. 

A. DIMENSION REDUCTION USING PRINCIPAL 

COMPONENT ANALYSIS 

This section explains the initial step of the proposed process 
and method. PCA can effectively be used to extract features 
from the data sets of small instances and to preprocess the 
MLP to normalize the data. PCA, a crucial preprocessing 
method, can efficiently reduce the dimensions of data. The 
original dimension of the data is reduced through the PCA 
conversion, retaining as much useful information as possible. 
After the experiment, the cumulative proportion of the top 
five major components obtained is 99.89%.To enable the  
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FIGURE 4. Flowchart of multilayer perceptron (MLP) transfer to the 
support vector machine (SVM) for extracting the feature with a 
supervised learning method when the proposed method is applied to 
breast cancer discrimination. The process includes PCA preprocessing, 
MLP feature extraction, and SVM learning through transfer. 
 
generalizability of the model, we employed k-fold cross-
validation, dividing data randomly and evenly into k sets. 
Then, a set was used as the testing data and the remaining k-

1 sets were used as the training data. During the training 
stage, testing data were not introduced. This process was 
repeated until each set had been used as the testing data. 
Neither testing nor training data exhibited information-leak 
problems. Furthermore, the experiment performed k-fold 
cross-validation 50 times on average to enhance the 
generalizability of the model. As such, after the dimension is 
reduced to 5, 99.89% of the original data continues to be 
expressed, but the individual dimension does not retain its 
original meaning after the transformation. Accordingly, we 
conducted experiments without PCA and compared their 
processes with that of the experiment with PCA. The 
experiments without PCA were multilayer perceptron 
network (MLP), support vector machine (SVM), k-nearest 
neighbors (k-NN), decision trees (DTs), random forest (RF), 
MLP transferred to RF (MLP2RF), and the proposed MLP 
transfer to SVM (MLP2SVC). Without PCA, the 
demonstration in Appendix Table A1 indicates that the 
performance of various algorithms with 10-fold cross-
validation was dissatisfactory. At the last line, the 10-fold 
cross-validation testing value of MLP2SVC without PCA 
was 61.29%. 

B. MULTILAYER PERCEPTRON MODEL 

This section explains the function of the MLP. Although the 
data become more centralized after the dimension reduction in 
subsection A, fewer characteristics exist. To increase the 
separability of the characteristics, the MLP network learning 
is used to extract the more definite characteristics. A further 
explanation is that the data are used to train a model that can 
extract the data characteristics. The network structure is 
designed for exploration first (high Fig. 5 dimension) and 
development second (low dimension), and the structure is 
shown in Fig. 5. 

First, the high dimensions are explored to 32 nodes 
through two fully connected hidden layers, and some of the 
nodes (10%) are deactivated using the random dropout layer. 
In the fully connected layer, each node is connected to all 
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nodes of the previous layer to extract all local features. All 
local features are combined through the weight matrix. 
However, connecting all nodes in the fully connected layer 
results in two problems: (1) increasing computation time, 
which leads to low efficiency, and (2) overfitting. To address 
the problems, a dropout layer must be inserted. In the dropout 
layer, connections of nodes to the previous nodes are  
randomly neglected.  These randomly abandoned nodes 
temporarily lack their weight update in the forward 
propagation process. In backward propagation, the nodes 
also lack weight update. The nodes are reduced to 16, and 
the parameters from the previous layer are normalized 
through the batch normalization layer. As mentioned in 
Subsection E of Section II, the parameters mainly increase 
the training accuracy without causing overfitting. The 
normalized parameters are sent to the next layer, which is the 
hidden layer with five nodes. Finally, the output layer has 
two nodes. In addition, a more detailed illustration of the 
parameter numbers in every hidden layer and their dropout 
functions is tabulated in Table I. 

C. COMBINATION OF PCA AND MLP MODEL 
This section focuses on the experimental conditions 
displayed by the combination of the two methods of PCA 
and MLP. The experiment used the data expression that was 
obtained from the original data (Fig. 6(a)), the original data 
after MLP (Fig. 6(b)), the original data after PCA (Fig. 6(c)), 
and the original data after PCA and MLP (Fig. 6(d)). Other 
than the original data (Fig. 6(a)), the extracted features of all 
other data had five dimensions. The raw data and those 
separately obtained through the MLP and PCA methods are 
visible respectively in Fig. 6(a), Fig. 6(b), and Fig. 6(c). In 
either Fig. 6(b) or Fig. 6(c), the point distribution was more 
concentrated than that in Fig. 6(a). The overall range 
decreased considerably. The visualization technique of the t-
distributed stochastic neighbor embedding (t-SNE) [69] is 
shown in Fig. 6. It cannot provide class-specific cluster 
comparison between the MLP method (Fig. 6(b)) and the 
PCA method (Fig. 6(c)) because PCA is an unsupervised 
dimensionality reduction technique. However, through 
careful comparison of Fig. 6(b) and Fig. 6(c), we noted that 
the points of Fig. 6(c) were more concentrated, and the 
number of the getaway center was smaller than that of Fig. 
6(b). Comparing Fig. 6(b) and Fig. 6(d) and their red and 
blue dots indicates the two categories in the data. The groups 
of the two categories are clearly seen to be more distinctly 
separated through the combination of  PCA and  MLP (Fig. 
6(d)).  Although blue Dots continue to appear in the red dot 
group, in comparison, Fig. 6(b) is more group centralized. 
The differences in the coordinate axes in Fig. 6 (b) and (d) 
are notable. In Fig. 6(b), the x and y axes are (-150–100) and 
(-75–75).  However,  after processing through the 
combination of PCA and MLP, the x and y axes changed to 
(-100–50) and (-75–100). Although little difference is 
exhibited in the y-axis interval, 40% of the original interval 
was decreased in the x-axis. Through statistical SD and t test 
[70] analysis, the advantages and disadvantages of the blue 
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FIGURE 5 Structure of the multilayer perceptron for extraction of the 
feature with the supervised learning method when applied to 5 
attributes.Hidden layers have six layers, including four fully connected 
layers, one dropout layer, and one batch normalization layer. 
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FIGURE 6. Comparison using raw data (a), through the MLP feature 
extraction (b), the PCA feature extraction (c), and the combined method 
of PCA and MLP (d) are features set visualization through t-SNE. 
 
 
TABLE I. Settings of MLP. 

Type Settings Parameters 
Input layer 5 N/A 

Dense 1 Number of nodes:32 192 
 Act.: ReLU  

Dense 2 Number of nodes:32 1056 
 Act.: ReLU  

Dropout Set:0.1  
Dense 3 Number of nodes:16 528 

 Act.: ReLU  
Batch 

normalization 
Number of nodes:16 64 

Dense 4 Number of nodes:5 85 
 Act.: ReLU  

Dense 5 Number of nodes:2 12 
 Act.: Softmax  
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and red dots were revealed from SD determination. However, 
the comparison indicated that Fig. 6(d) had superior 
performance through the t test method. By using the 
aforementioned indicators to judge the two groups, a clearer 
separation was achieved. The combination of these two 
methods proves to be superior. 

D. TRANSFERRING MULTILAYER PERCEPTRON 

NETWORK MODEL  

The transfer technique is required to transfer the MLP model 
that has finished training to other methods as a classifier. 
Transfer learning is used to transfer the output layer of the 
MLP model that has finished learning to an SVM 
classification method. The differences in Table I and 
Appendix Table A2 were compared. The data pass through 
characteristic extraction one more time after the exclusion of 
the final output layer. This makes it possible to select a more 
flexible and powerful classifier. 
E. CLASSIFIER USING SUPPORT VECTOR MACHINE  

The SVM classifier is chosen for the final identification. 
After the comparison of direct classification training with 
MLP and transfer learning through MLP, the SVM was 
chosen as the classifier.  

IV. THE EXPERIMENTAL RESULTS 
This section explains and analyzes the experimental results. 
First, the data sources are introduced, and the data collation is 
then explained. Compared with other studies regarding breast 
cancer detection and prediction, this study focused on the 
exploration of an algorithm. To enable a fair comparison of the 
detection accuracy, identical databases were adopted. Ten-
fold cross validation was used as the validation method. 
Training and testing data were separated to avoid learning 
overfitting and data leakage. Feature extraction of the 
algorithm could be used to determine the potential links in 
correlations. Finally, the conclusion of the 10-fold cross-
validation is analyzed. 

A. DATA DESCRIPTION 

The data are from the Breast Cancer Coimbra Dataset (BCCD) 
of the Machine Learning Repository at the University of 
California, Irvine [71]. The data were obtained from Manuel 
Gomes of the University Hospital Centre of Coimbra [72]. 
From the Department of Obstetrics and Gynecology of the 
University Hospital Centre of Coimbra, data of patients with 
breast cancer between 2009 and 2013 were collected. Women 
newly diagnosed with breast cancer were recruited. The breast 
cancer diagnosis of each patient was based on a positive 
mammography result and histologically confirmed. All of 
these patients’ breast cancer was native. The data were 
collected before any surgery or treatment. Patients who had 
received treatment before the inquiry were excluded. 
Furthermore, healthy female volunteers were selected and 
included as the control group. None of the recruited patients 
had received prior cancer therapy. At the time of inclusion, the 

patients exhibited no infection, other acute diseases, or 
complications. The goal was to evaluate the hyperresistinemia 
and metabolic anomaly of breast cancer. Every piece of data 
includes 10 attributes: age (years), BMI (kg/m2), glucose 
(mg/dL), insulin (μU/mL), homeostasis model assessment, 
leptin (ng/mL), adiponectin (μg/mL), resistin (ng/mL), 
chemokine monocyte chemoattractant protein 1(MCP-1) 
(pg/dL), and the last label determines whether the person is a 
confirmed breast cancer patient. A total of 116 pieces of data 
was compiled with 64 diagnosed patients and 52 healthy 
individuals. Another three data sets were from the database of 
the Machine Learning Repository at the University of 
California, Irvine with the clinical breast cancer cases at 
University of Wisconsin Hospitals as the sources. Regarding 
the Breast Cancer Wisconsin (Original) data set collected from 
1989 to 1991, a total of 699 pieces of data were compiled with 
241 diagnosed patients and 458 healthy individuals. For 
samples collected through breast fine-needle aspiration, 11 
cytological features or attribute messages, each categorized 
from level 1 to 10, were assigned to determine whether the 
samples were benign or malignant. The 11 attribute messages 
were as follows: sample code number, clump thickness, 
uniformity of cell size, uniformity of cell shape, marginal 
adhesion, single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli, mitoses, and class (2 for benign, 
4 for malignant). They were applied in the multi-surface 
method of pattern separation for medical diagnosis of breast 
cytology [73]. 

The Breast Cancer Wisconsin (Diagnosis) data set 
collected samples from 1989 to 1995; however, the number 
of attributes assigned to each individual was 32. A total of 
569 pieces of data were compiled with 212 diagnosed 
patients and 357 healthy individuals. Interactive image 
processing techniques and linear program–based classifiers 
were used to digitalize breast cancer cells [74] and accurately 
and automatically analyze the cell nuclei size, shape, and 
textures. For each nuclei, the following 10 features were 
calculated: radius, perimeter, area, compactness, smoothness, 
concavity, concave point, symmetry, fractal dimension, and 
texture. In addition, the mean, maximum (or minimum), and 
standard errors of each feature were added along with the 
sample code number and diagnosis (M = malignant and B = 
benign).  

The Breast Cancer Wisconsin (Prognosis) data set has 
collected data of consecutive patients since 1989. A total of 
198 pieces of data were compiled with 47 recurring and 151 
nonrecurring individuals. Differing from previous data sets, 
this one also contains outcome (R = recurring, N = 
nonrecurring), time (recurrence time if field 2 = R, disease-
free time if field 2 = N), tumor size – diameter of the excised 
tumor in cm, and lymph node status – number of positive 
axillary lymph nodes observed at time of surgery. Each 
individual has 34 attributes. 
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B. DATA PREPROCESSING 

The data are sorted into x-input and y-output datasets. The x-
input includes the nine attributes for every piece of data, and 
the y-output includes the label corresponding to the x-input 
that determines whether the person is a confirmed breast 
cancer patient. After the data are sorted into two datasets, the 
individual data groups are divided into corresponding 
training data and test data. 

C. K-FOLD CROSS-VALIDATION 

K-fold is a common cross-validation method. All data are 
randomly and evenly distributed into k sets. One set is 
selected as the test data, and other sets are used as training 
data. This is repeated until every set has been used as test 
data, which means the test has been performed k times. In the 
experiments, k was set as 10, meaning that the 10-fold cross-
validation method was used to validate the power of the 
proposed method. The 116 pieces of data were tested 10 
times through 10-fold cross-validation. Each time, one-tenth 
of the total data was extracted as the test data randomly 
without repetition, and the rest constituted training data. The 
first six times, the sample numbers were 11, and the sample 
numbers were 12 at other times.  

For the results, Appendix Fig. A2 illustrates the 
comparison with other methods including MLP, SVC, and 
RF. The red bars in the histogram show that the proposed 
method of MLP transfer to SVM (MLP2SVC) is mostly 
superior to or as effective as other methods in multiple 
comparisons. In the first, second, third, eighth, and ninth 
tests, it outperforms other methods but is inferior to the MLP 
method in the tenth test. In addition, in Appendix Table A3, 
three methods are added in numerical representation: k-NN, 
DT, and MLP transferred to RF (MLP2RF). Notably, the 
MLP2RF method uses the RF method, instead of SVM, as 
the classifier under the proposed structure. Appendix Fig. A2 
and Appendix Table A3 demonstrate that, for the 10-fold 
cross-validation value was 86.99%. MLP performs well the 
fifth and tenth times but exhibits the worst performances the 
first and sixth times. By contrast, MLP transfer to SVM 
(MLP2SVC) was more stable with smaller oscillations. This 
shows that, for the performance accuracy, using the MLP 
model after learning and transferring it to SVM as the 
classifier provides superior performance. In addition, MLP 
transferred to RF (MLP2RF) was added for comparison— its 
accuracy was not superior to that of MLP2SVC. The method 
is seen to be superior to only the RF method but inferior to 
the SVC method. For the comparison of six methods, the 
average accuracy of the 10-fold cross-validation of the 
proposed method is 86.97%, meaning that it is clearly 
superior to other methods. 

In addition, Appendix Fig. A3 shows the nonnnormalized 
and normalized confusion matrixes of the proposed method 
in the 10-fold cross-validation. The confusion matrixes can 
be used to analyze the quantities of incorrect and correct 
classifications observed. The results are presented in the 
Appendix Fig. A3. In each test, two confusion matrixes were  

 
FIGURE 7 Analysis using the 10-times average of each epoch for 
overfitting of the multilayer perceptron model architecture. 
 
generated. Nonnormalized confusion matrixes are directly 
presented using the number of individuals. For example, in 
Appendix Fig. A3 (a), the total number of individuals tested 
was 12, six of whom were healthy and six had been 
diagnosed with the disease. The test results indicated that in 
the healthy group, five were healthy and one had been 
diagnosed, whereas in the group diagnosed with the disease, 
four had been diagnosed and two were healthy.  In addition, 
normalized confusion matrixes demonstrate the percentages 
of incorrect and correct classifications in each class. To 
verify the performance, we made the experiments numerous 
times and determined the mean, which is explained in a 
following section. The 10th test, shown in Appendix Fig. 
A3(s), exhibits the worst performance: The number of test 
samples is 11, and the number of misjudgments is 4, 
indicating that a maximum 30% rate for misjudgments was 
not achieved in the worst conditions. The test with the best 
performance is the fourth test shown in Appendix Fig. A3(g) 
and (h). The number of test samples is 12, and the number of 
misjudgments is 0 with an accuracy of 100%. 

The conditions during MLP training require clarification. 
To avoid overfitting during MLP network iteration training, 
we conducted an experiment to observe changes in accuracy 
and losses in training data and verification data. The 
experiment used all data to the MLP for 150-iteration 
training. The proportion of training data and validation data 
was random for 9/10 of the all data and the remaining 1/10 
data. This method produced 10 sets of nonrepeating training 
data and validation data. After testing these 10 sets of data, 
the mean was obtained from each iteration to draw the curve, 
as displayed in Fig. 7. This figure shows that in the accuracy 
index, the training data and the verification data increased as 
the number of iterations increased. In the loss index, the 
training data decreased as the number of iterations increased. 
However, the verification data maintained their level after 
the 20th iteration. We inferred that as the number of 
iterations increased, the loss was maintained at a fixed value 
and did not increase. This signified that the selected network 
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architecture gradually reached convergence and did not 
overfit. 

D. EXPERIMENTAL RESULTS 

Methods that used the data from the Breast Cancer Coimbra 
Dataset and data from Manuel Gomes from the University 
Hospital Centre of Coimbra are compared in Table II. The 
six most accurate methods were compared. The test set that 
was used in this article and the comparison methods were not 
consistent. By comparing the various methods presented in 
Table II, we found that the experiment’s breast cancer 
database had a different proportion distribution for its 
training and test data. There was 75% training data and 25% 
test data, and 80% training data and 20% training data. 

Furthermore, the methods for calculating accuracy were 
different. Some used the means of multiple tests for accuracy, 
and some used just one test for accuracy. In the experiment 
that was conducted for this study, we conducted 10 
unrepeated data groupings to precisely balance the model 
performance. The grouping proportion was 90% training 
data and 10% training data. The 10 groups of data were tested 
after training, and the means of the 10 tests were used for 
accuracy. Notably, the method proposed by Saritas et al. [75] 
exhibits a similar, albeit slightly lower, level of accuracy to 
that of the proposed method in this study. The differences in 
performance can be clearly seen in the data for the other 
methods. To make the experiment more accurate, databases 
that included other breast cancer tests and their 
corresponding information were analyzed and tabulated in 
Table III. To ensure accuracy during the experiment when 
using the databases in Table III, the method proposed by this 
study was used 50 times, and the means were used for 
accuracy. The 10-fold cross-validation method was used for 
each process. All training and testing data were random. Four 
types of data test results corresponding to Fig. 8 and average 
and SD statistical analysis were added to the heading. 
Notably, among the four databases, two (green and magenta 
lines) had an average accuracy of 0.97 and two (red and blue 
lines) had average accuracies of 0.81 and 0.82, respectively. 
In Table III, the distribution of No. of instances corresponds 
to the projected accuracy. The results suggested that the 
proposed method had an accuracy exceeding 80% in the 
relatively few instances (116 and 198). The proposed method 
had favorable performance regardless of whether the No. of 
attributes was 10 or 34. The key was the PCA preprocessing  

 
TABLE II. Comparisons of BCCD Data Accuracy for Several Methods. 

Method Accuracy 
Average K-mean + Local Outlier Rectifier V.2.0 [76] 56.90% 
Random forest model [77] 74.3% 
Artificial neural network and naive Bayes 
Classification algorithm [75] 

86.95% 

Extreme learning machine [78] 80.00% 
PySpark and its machine learning frameworks [79] 83.0% 
Classification via regression [80] 80.0% 
Proposed model 86.97% 

TABLE III. Comparison of results of using the proposed method with 50 
times 10-fold cross-validation for various breast cancer data sets 

Dataset No. of 
Attributes 

No. of 
Instances 

No. of 
Classes

Avg. Acc. 
over 50-times

Breast Cancer 
Coimbra Data Set 10 116 2 0.82 

Breast Cancer 
Wisconsin (Original) 

[81] 
11 699 2 0.97 

Breast Cancer 
Wisconsin (Diagnosis) 

[82] 
32 569 2 0.97 

Breast Cancer 
Wisconsin (Prognosis) 

[83] 
34 198 2 0.81 

 

 
FIGURE 8 Average accuracy comparsion of BCCD, BCWD(Original), 
BCWD(Diagnosis), and BCWD(Prognosis) with 10-fold cross-validation 
performed 50 times. 
 
step in the proposed method. When the No. of instances 
increased by three- to six-fold (699 and 569 instances), the 
method attained 97% accuracy, indicating that it exhibited 
excellent performance as the number of instances increased. 
The differences between numbers of attributes did not affect 
the method’s performance. Although the Breast Cancer 
Wisconsin (Original) and (Diagnosis) data sets share Univer-
sity of Wisconsin Hospitals as their source of clinical breast 
cancer cases, their No. of attributes differ. The main reason 
was that the Breast Cancer Wisconsin (Original) data set 
categorizes each of the 11 attributes into 1–10 levels during 
sample collection, whereas the Breast Cancer Wisconsin 
(Diagnosis) data set uses 32 attributes to present accurate cell 
digitization. Therefore, the same data have different feature 
expressions. Despite the difference in the number of features 
(attributes), the proposed method extracted effective features. 

The highest accuracy achieved during 10-fold cross-
validation (presented in Appendix Table A3) was 86.97%, as 
applied to the BCCD data set. Furthermore, a comparison of 
the results of six methods (Table II) using the same data set 
suggested that the proposed method is clearly superior. For 
further comparison of its performance (see Fig. 8), three 
additional breast cancer databases were added to test the 
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proposed method and 10-fold cross-validation was 
performed 50 times, and the results indicated that the 
proposed method performs well. 

V. DISCUSSIONS 
This study normalized the reduced dimensions from PCA 
and used MLP to obtain the features before transfer learning 
was used for conversion to a new model. Finally, SVM was 
used as the classifier. The aforementioned calculation 
method was integrated with a constructed medical care IoT 
system architecture. Four data sets of actual medical 
treatment were collected for use in predicting breast cancer 
occurrence. The means of 50-times 10-fold cross-validation 
were compared with those of other methods to determine the 
method’s accuracy in predicting breast cancer occurrence. 
The results revealed that the proposed method is effective 
and superior to other methods. 

For transfer learning model implementation, the network 
learned a set of rich and discriminative features for 
recognizing hundreds to thousands of object classes. Thus, 
these filters could be reused for tasks other than what the 
transfer learning model was originally trained for. This study 
used the transfer learning model to differentiate two 
categories. The result indicated that this process could be 
applied to classification problems with few categories, 
extending the applicability of transfer learning. 

Using transfer learning to improve the model’s 
effectiveness, particularly for situations with little target data, 
is a very convenient and effective method. First, a neural 
network is trained from a large amount of source data. The 
features that are learned through the NN are universal and 
can be generalized. Generally, only two methods of using the 
pretraining model to realize transfer learning are available: 
feature extraction (converting features of the source data and 
the target data to the same space) and fine-tuning (parameter-
sharing mechanism for source data and the target data). The 
more suitable method is based on the quantity of target data 
and the data characteristics. The following compares the 
similarities and differences of these two strategies. In the 
feature extraction strategy, only the weight or method of the 
last (newest) layer changes during the training process when 
training a new model. The feature extraction and classifiers 
(fully connected layer) are viewed as different individuals. 
The posttransfer model with classifiers removed is the 
feature extractor. For fine-tuning, all weights change except 
for the weight of the last layer in the original model. The 
features of the low layers (the first few layers) in a frozen 
model have less generalizability and universality. These 
layers are trained together with higher layers (the last few 
layers) to fine-tune the weight, which is helpful for 
identifying new categories. 

Regarding the nonlinear methods addressed in Table II, 
the design concept of artificial neural networks (ANNs) is 
based on a simulation of the biological nerve conduction 
mechanism that was mentioned at the beginning of this paper 
and has the same concept as MLP. In the ANNs in [84] and 
[85], the neurons in each layer had an input and output. The 

activation function was used to balance the importance of 
neuron output. The key function of nonlinear activation was 
to convert the linear into nonlinear relationship. Sigmoid 
function, tangent, Leaky, Rectified Linear Unit, Exponential 
Linear Unit, and Maxout are commonly used for the 
activation function. Adding some nonlinear elements to a 
neural network can make the neural network better at solving 
complex problems.  

Regression analysis is generally in the scope of statistics 
and is often built on the basis of a large quantity of observed 
data. Regression analysis attempts to build a regression 
function relationship between the dependent variable (target) 
and the independent variable (prediction). Regression 
analysis is often seen in predictive model building, time 
sequence model building, and finding the correlation 
between variables. Regression analysis estimates the 
correlation between two or more variables and can present 
the significant relationship between the dependent variable 
and independent variable. Regression analysis can express 
the differing impact of multiple independent variables on the 
dependent variable. Depending on whether the function 
expression between the independent and dependent variables 
is linear or nonlinear, regression analysis can be divided into 
linear regression or nonlinear regression.  

Next, we discuss DTs. A DT is a type of simple nonlinear 
model that is suitable for predicting classification and 
regression data types. The model mainly uses the tree branch 
concept in a tree-shaped decision model. Data sets are 
continuously broken into smaller subsets to grow the DT. 
Two types of tree-shape nodes can appear: the internal node 
(which indicates one feature) and the leaf node (which 
indicates a category). To make a determination, the sample’s 
features are judged by the internal nodes until it reaches the 
leaf node where the sample is classified.  

The most recent transfer learning work, [86], proposed a 
spectrum-sensing framework based on deep learning. 
Transfer learning was incorporated into the framework and 
applied to different scenarios with different wireless signals 
and transmissions to improve sensing performance and 
robustness. Literature [87] proposed a method to improve 
fuzzy transfer learning based on the fuzzy system 
(particularly based on fuzzy rule models). An innovative 
fuzzy rule method was proposed that combines the infinite 
Gaussian mixture model with active learning, which 
improves the performance and versatility of the constructed 
model. In [88], transfer learning was applied to aggregate 
data from multiple users in the hand gesture recognition field 
(based on the electromyogram). Deep learning calculation 
was used to learn to determine features from large data sets, 
thereby reducing the record load while improving gesture 
recognition ability. Reference [89] proposed a transfer 
learning method that differs from past methods. This method 
reduces the deviation that is produced by the learning 
delivery function caused by data shortages in certain 
categories. Past transfer learning methods based on domain 
adaptation calculation in subspace reconstruction ignored 
categories. This proposed category reconstruction adaptation 
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method is called class-specific reconstruction transfer 
learning. This method uses intraclass dependency and 
mutual relationships to optimize the model’s excellent 
transfer loss function. Literature [90] indicated that deep 
learning is effective in predicting machine equipment 
malfunction and explored the transfer deep network. The 
deep network was trained through the machine equipment’s 
historic malfunction data, and the transfer of the deep 
network was used to predict new subjects. This reference 
proposed a deep transfer learning (DTL) network based on 
the sparse autoencoder (SAE). The DTL method uses three 
types of transfer strategies: weight transfer, hidden feature 
transfer learning, and weight update. SAEs that are trained 
with historic malfunction data are transferred to new subjects.  

To verify the proposed method, we performed cross-
validation method 50 times in the experiment. In the cross-
validation, the experimental results were stable, and thus, 
overfitting was avoided. The k-fold cross-validation method 
involved the random and even division of data into k sets. 
Then, a set was used as the testing data, whereas the 
remaining k-1 sets were used as the training data. During the 
training stage, testing data were not introduced. This process 
was repeated until each set had been used as the testing data. 

We reviewed the data distribution of each designed stage, 
and Fig. 6 facilitates the explanation. The blue and red dots 
represent the two categories of data. The original data have 
eight attributes for each individual, representing eight 
dimensions. However, to visualize the presentation, we used 
visualization techniques of the t-SNE method to degrade the 
multidimensional space into a two-dimensional plane. In 
addition to observing the blue and red dot positions to 
identify the individual distribution, we used statistical SD 
and t-test methods to analyze the values of the two groups. 
The t-test verified whether the two groups of independent 
data exhibited significant differences. A t-test result 
approaching zero indicated no difference between the two 
groups. The results are placed in the upper-left corner of each 
panel of Fig. 6. Fig. 6(a) depicts the original data analysis 
with a t value of 0.118. The SD values of the two categories 
were 238.5 and 207.0, respectively, which were used as the 
control group. Data preprocessed through PCA are presented 
in Fig. 6(c). The t value became 0.146 and the SD values 
were 22.9 and 27.6 for the two categories, respectively. 
Although little difference was observed between the t values, 
the two categories’ SD values exhibited substantial 
improvements. The curves exhibit observable changes in the 
horizontal and vertical axes. The data after MLP processing 
are presented in Fig. 6(d) with a t value of 2.152 and SD 
values of 22.1 and 23.4 for the two categories, respectively. 
The t value improved substantially, and the SD of the blue 
group improved slightly. The individual distribution groups 
largely separated. Then, the MLP learning was transferred to 
the SVM, which created the final decision boundary and 
divided the data into two categories. 

 
FIGURE 9 Performance comparison of MLP2SVM, MLP2RF, and MLP2DT 
with 10-fold cross-validation performed 50 times for each fold average. 
Statistics present the average overall accuracy as well as the average 
time spent on each fold cross-validation (unit: sec). 
 
On the basis of transfer learning, after MLP training 
(approximately 13 seconds), the data were transferred to 
classifiers. We selected the most commonly used classifiers, 
namely SVM, RF, and DT, and compared them using the 
following methods. We ran 50 iterations using the 10-fold 
cross-validation method and recorded the accuracy and time 
spent in each fold cross-validation. After 50 runs, the results 
of each fold were averaged. The accuracy is plotted in Fig. 9, 
in which “Avg.” represents the mean of 10-fold accuracy and 
“spend time” represents the time spent for each fold cross- 
validation calculation on average (unit: sec). As shown in Fig. 
9, the average accuracy for each fold cross-validation 
reached 92% or higher for each of the classifiers. According 
to the time spent by the classifiers, MLP2RF had the most 
salient “spend time” compared with the other two classifiers; 
however, the accuracy performance of MLP2RF was slightly 
lower than that of MLP2SVM. Although MLP2DT required 
the shortest time, its accuracy performance was the worst. In 
comparison, the proposed MLP2SVM exhibited outstanding 
performance in both time spent and accuracy. Although the 
accuracy performance had a difference of merely 0.38%, the 
temporal difference reached 43 folds. The results verified 
that the selected SVM classifier was the most suitable option 
under the framework. 

The decision maker in the system remains the doctor. A 
limitation of this system is that it requires comprehensive 
evaluation by a physician for diagnosis. The AI model 
provides objective information analysis of data. Specific data 
originate from a large number of clinical patients, and the 
professional judgments that doctors make regarding the 
diagnosis category is the basis that is provided to the AI 
model. Recommendations and prompts are provided to 
doctors by the AI model as measurement indicators. Thus, 
the AI model can assist doctors in reducing errors and 
increasing diagnosis efficiency. For example, judgment 
errors can be caused easily by inaccurate measurement 
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values, improper medical record management, or poor 
communication. The AI model offers a safe and efficient 
method for assisting doctors in breast cancer diagnosis. 

VI. CONCLUSION 
A novel processing method has been proposed in this study 
to effectively predict breast cancer incidence. Experiments 
verified the proposed method, and the accuracy reached 
86.94% after comparison with the other five methods in 10-
fold cross-validation, which outperforms other methods. In 
addition, every confusion matrix in the 10-fold cross-
validation was examined to verify the accuracy of this 
method. The learning effects of the characteristic extraction 
of MLP have been then verified after comparison with the 
use of SVM for classification before and after MLP learning. 
The results of the verification indicated that the proposed 
method can effectively and feasibly predict breast cancer 
incidence. The proposed method exhibited limitations in that 
a trained model fails to modify itself when new data are 
imported and that, under the MLP network training 
framework, training time increases as the data size increases. 
Future studies should employ solutions aimed at continuous 
learning and accelerating network training so as to eliminate 
existing limitations in the proposed method.  

APPENDIX 

 
FIGURE A1. System flowchart of the training process. 
 

TABLE A1. Comparison for various models on-10-fold cross-validation 
without PCA. 

Test MLP SVC kNN DT RF MLP2RF Without 
PCA 

1 41.67 50.00 58.33 66.67 58.33 66.67 50.00 
2 58.33 50.00 58.33 66.67 66.67 58.33 50.00 
3 66.67 58.33 58.33 50.00 66.67 66.67 58.33 
4 58.33 58.33 58.33 91.67 91.67 58.33 58.33 
5 75.00 58.33 50.00 83.33 75.00 66.67 83.33 
6 58.33 58.33 58.33 58.33 75.00 41.67 90.91 
7 54.55 54.55 63.64 81.82 81.82 72.73 54.55 
8 45.45 54.55 81.82 63.64 63.64 72.73 54.55 
9 54.55 54.55 54.55 54.55 72.73 45.45 54.55 
10 54.55 54.55 54.55 63.64 72.73 45.45 54.55 
Avg 56.74 55.15 59.62 68.03 72.42 59.47 61.29 

 
TABLE A2. Settings transfer of MLP. 

Type Settings Parameters 
Input layer 5 N/A 

Dense 1 Number of nodes: 32 192 
 Act.: ReLU  

Dense 2 Number of nodes: 32 1056 
 Act.: ReLU  

Dropout Set: 0.1  
Dense 3 Number of nodes: 16 528 

 Act.: ReLU  
Batch normalization Number of nodes: 16 64 

Dense 4 Number of nodes: 5 85 
 Act.: ReLU  

 

 
FIGURE A2. Comparison 10-fold cross-validation accuracy of four type 
modes. 
 

 
(a) (b) 
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

 
(i) (j) 

 
(k) (l) 

 
(m) (n) 

 
(o) (p) 

 
(q) (r) 

 
(s) (t) 

FIGURE A3. Nonnnormalized and normalized confusion matrixes of the 
proposed method in the 10-fold cross-validation. 
 
TABLE A3. Comparison for various models on-10-fold cross-
validation. 

Test MLP SVC kNN DT RF MLP2RF Proposed 
1 50.00 41.67 41.67 50.00 58.33 75.00 75.00 
2 66.67 75.00 58.33 58.33 66.67 83.33 91.67 
3 75.00 75.00 66.67 58.33 58.33 58.33 83.33 
4 66.67 100 91.67 66.67 100 100 100 
5 91.67 75.00 75.00 66.67 75.00 91.67 91.67 
6 50.00 91.67 83.33 66.67 75.00 83.33 91.67 
7 45.45 81.82 54.55 72.73 90.91 81.82 90.91 
8 45.45 72.73 72.73 72.73 72.73 72.73 81.82 
9 63.64 81.82 54.55 63.64 72.73 45.45 90.91 
10 90.91 63.64 72.73 63.64 63.64 63.64 72.73 
Avg 64.55 75.83 67.12 63.94 73.33 75.53 86.97 
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