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1 Introduction

This ongoing multi-disciplinary research directly ad-
dresses problems arising in the diagnosis and treatment
of breast cancer. Early detection of breast cancer is en-
hanced and unnecessary surgery avoided by diagnosing
breast masses from Fine Needle Aspirates (FNA’s). 
using and extending results from the fields of optimiza-
tion, machine learning, statistics and image processing, a
software system was created that allows highly accurate
diagnosis of breast FNA’s even by untrained users. The
system is in current use at the University of Wisconsin
Hospitals. For malignant cases, treatment decisions are
enhanced by accurately predicting the long term behavior
of the disease. This paper summarizes our recent work in
both areas of diagnosis and prognosis, with emphasis on
the more difficult latter problem.

2 Image Processing

In previous work [12, 21] cytological features thought to
be relevant to diagnosis were subjectively evaluated. In
order to obtain more objective and precise measurements,
a graphical interface was developed which computes nu-
clear features interactively. A small region of each breast
FNA was digitized, resulting in a 640 × 400, 8-bit-per-pixel
gray scale image. The image analysis program, known
as Xcyt [20, 22, 23] uses a curve-fitting program to de-
termine the boundaries of nuclei from initial dots placed
near these boundaries by a mouse. A portion of one such
processed image is shown in Figure 1.

Ten features are computed for each nucleus: area, ra-
dius, perimeter, symmetry, number and size of concavi-
ties, fractal dimension (of the boundary), compactness,

Figure 1: This is a magnified image of a malignant breast
FNA. The visible cell nuclei have been outlined with the
help of a curve fitting program. The Xcyt system also
computes various features for each nucleus and accurately
diagnoses the sample. The interactive diagnosis process
takes about 5 minutes per sample.

smoothness (local variation of radial segments), and tex-
ture (variance of gray levels inside the boundary). The
mean value, extreme value and standard error of each of
these cellular features is computed, resulting in a total of
30 real-valued features for each image.

3 Diagnosis

A set of 569 images was processed in the manner de-
scribed above, yielding a database of 569 30-dimensional
points. The classification procedure used to separate be-
nign from malignant samples is a variant on the Mul-
tisurface Method (MSM) [10, 11] known as MSM-Tree
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(MSM-T) [1, 2]. This method uses a linear program-
ming [6] model to iteratively place a series of separating
planes in the feature space of the examples. If the two
sets of points are linearly separable, the first plane will
be placed between them. If the sets are not linearly sep-
arable, MSM-T will construct a plane which minimizes
the average distance of misclassified points to the plane,
thus nearly minimizing the number of misclassified points.
The procedure is recursively repeated on the two newly
created regions. The resulting planes can then be used
in the manner of a decision tree to classify new points.
MSM-T has been shown [1] to learn concepts as well or
better than more traditional learning methods such as
C4.5 [14, 15] and CART [4].

Even a simple single-plane classifier can be considered
as ’overtraining’ in a high-dimensional space. In our case,
better generalization was achieved by reducing the num-
ber of input features considered. The best results were ob-
tained with one plane and three features: Extreme area,
extreme smoothness and mean texture. Applied to all the
data, the training separation was 97.3%; the predicted
accuracy, estimated with cross-validation[19], was 97.0%.
This classifier was built into the Xcyt system and has
achieved 100% chronological correctness on the 72 new
cases diagnosed. Xcyt also uses density estimation tech-
niques [13] to estimate the probability of malignancy for
new patients.

4 Prognosis: Recurrence Surface
Approximation

A more difficult question concerns the long-term progno-
sis of patients with cancer. Several researchers, beginning
with Black et al [3], have shown evidence that cellular
features observed at the time of diagnosis can be used
to predict whether or not the disease will recur following
surgery. This problem does not fit into the usual classifi-
cation paradigm; while a patient can be classified ’recur’
if the disease is observed, there is no real cutoff point at
which she can be considered a ’non-recur’. The data are
therefore censored [9], in that we know a Time to Re-
cur (TTR) for only a subset of patients; for the others,
we know only the time of their last check-up, or Disease
Free Survival time (DFS). Traditional approaches such
as Cox regression [5] group large numbers of patients to-
gether in order to predict overall survival trends. We
approach the prediction of TTR as a function estimation
problem, a mapping of an n-dimensional real input to a
one-dimensional real output. Here, the input consists of
the thirty nuclear features computed by Xcyt together
with with two traditional prognostic predictors: tumor
size and number of involved lymph nodes.

Our solution to this estimation problem is known as
the Recurrence Surface Approximation (RSA) technique.
RSA uses linear programming to determine a linear com-
bination of the input features which accurately predicts

TTR. The motivation for the RSA approach is that:

* Recurrences actually took place at some point in time
previous to their detection. However, the difference
between the time a recurrence is detectable (actual
TTR) and the time it is actually detected (observed
TTR) is probably small.

¯ Observed DFS time is a lower bound on the recur-
rence time of that patient.

The linear program to be solved for a given training set
is as follows:
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The purpose of this linear program is to learn the
weight vector w and the constant term 7. These parame-
ters determine a recurrence surface s = wx+7, where x is
the vector of measured features and s is the surface which
fits the observed recurrence times. Here M is an m × n
matrix of the m recurrent points, with recurrence times t.
Similarly, the k non-recurrent points are collected in the
matrix k x n matrix N, and their last known disease free
survival times in r. The vectors y and z represent the er-
rors for recurrent and non-recurrent points, respectively;
overestimating the TTR of recurrences is considered an
error, while predicting a TTR which is shorter than an
observed DFS is also an error. The objective averages the
errors over their respective classes. The v term, weighed
by an appropriately small 5, forces underestimated recur-
rent points closer to the surface. (Note: e is a vector of
l’s of appropriate dimension.)

As in classification, it is important to choose the right
subset of features to get the best generalization. We
choose an appropriate feature set in the following auto-
matic fashion. A tuning set - one tenth of the training
cases - is first set aside. The RSA linear program is then
solved using all of the input features, and the resulting
surface is tested on the tuning set. Features are then
removed, one by one, by setting the smallest (in magni-
tude) element of the coefficient vector w to zero. z Each
new problem is solved and the result tested on the tuning
set, until only one feature remains. 2 Using the features

1All feature values were previously scaled to be zero mean and
unit standard deviation, so that the magnitude of the weight vector
component correlates roughly with the relative importance of the
corresponding feature.

2These subsequent linear programs are easily formulated by plac-
ing explicit upper and lower bounds of zero on the appropriate el-
ements of w. A ’hot start’ can then be used to solve the new LP
starting from the solution to the previous one. These solutions are
found very quickly, often in one or two orders of magnitude fewer
simplex iterations than the original problem.
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which showed the best performance on the tuning set, we
then re-optimize using all the training data (e.g., restore
the tuning set). In this manner, we can use the tuning
set to select the complexity of the model without paying [~
the penalty of losing some of the training set. ~ ~

The RSA procedure was fit into a cross-validation
framework to evaluate its accuracy in predicting future
outcomes. As is typical in the machine learning commu-
nity, the cross-validation procedure is used only for esti-
mation of performance, not for parameter choosing. Of
the 569 patients from the diagnosis study, the 175 malig-
nant cases with follow-up data (35 of which have recurred)
were used.

Figure 2 shows the mean generalization errors of the ~
original RSA compared against the following prediction
methods:

¯ Pooled RSA" This method is identical to RSA ex-
cept that all the points are weighted equally in the
objective function, rather than the recurrent and
non-recurrent cases being averaged separately. The
resulting objective function is

1
(2) mq_l~eTy--bm--~eTz--km--~eTv

¯ Least 1-norm Error on Recurs: An obvious
method for predicting recurrence is to minimize the
average error on just the recurrent cases.

¯ Modified Back-propagation: We also evaluated
an Artificial Neural Network (ANN) using a modified
version of back-propagation [17]. The output unit for
our ANN used the identity function as its response
rather than the familiar sigmoid, allowing any real-
valued output. The error function was also changed
to the one-sided errors as used in the RSA; learn-
ing took place only on underestimated non-recurrent
cases and overestimated recurrent cases. A tuning
set was used to avoid possible overtraining.

5 Conclusions and Future Work

Powerful machine learning paradigms such as backpropa-
gation are widely available in commercial systems. How-
ever, for various reasons, integration of such systems into
clinical practice has been slow and uncertain. By building
upon the traditional optimization technique of linear pro-
gramming, we are creating techniques which train faster
and yield more interpretable results, while demonstrat-
ing comparable accuracy. We hope that these systems
will gain wider acceptance in the field of breast cancer
diagnosis and treatment.

To accomplish this, the resulting systems must give the
physician information that directly affects patient care.
This has been accomplished with our diagnostic system,
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Figure 2: Comparative results on all points, recurrent
cases only and non-recurrent cases only are shown for
various prediction methods. Overall results are very en-
couraging, with the simple linear model produced by RSA
comparing favorably with the highly non-linear Artificial
Neural Network predictions. Note that the RSA results
are strongly affected by varying relative importance of
recurrent and non-recurrent points.

which is easy to use and at least as accurate as diag-
nosis done at specialized cancer centers (see for exam-
ple the collection of studies by Frable [8]). The ongoing
prognostic prediction research is less easily evaluated but
will hopefully reach the same goal. Using only informa-
tion available at the time of diagnosis and surgery, we are
able to generate reasonably accurate predictions specific
to individual patient. Related work on prognosis using
machine learning has appeared in [16, 18].

One limitation of the described approaches is the in-
herent linearity of the predictive models. In order to add
more predictive power to the RSA method, we are im-
plementing extensions similar to Wolpert’s Stacked Gen-
eralization [24] and Fahlman’s Cascade Correlation [7].
These models will introduce non-linearity to the predic-
tion process by training different subsets of the input data
separately, and combining the resulting predictions.
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