
International Journal of Computer Applications (0975 - 8887)
Volume 62 - No. 1, January 2013

Breast Cancer Diagnosis by using k-Nearest Neighbor
with Different Distances and Classification Rules

Seyyid Ahmed Medjahed
Department of Computer Science

University of Science and Technology Oran
USTOMB, Algeria

Tamazouzt Ait Saadi
Department of Computer Science

University of LeHavre
LeHavre, France

Abdelkader Benyettou
Department of Computer Science

University of Science and Technology Oran
USTOMB, Algeria

ABSTRACT
Cancer diagnosis is one of the most studied problems in the med-
ical domain. Several researchers have focused in order to improve
performance and achieve to obtain satisfactory results. Breast can-
cer is one of cancer killer in the world. The diagnosis of this cancer
is a big problem in cancer diagnosis researches. In artificial intelli-
gent, machine learning is a discipline which allows to the machine
to evolve through a process. Machine learning is widely used in bio
informatics and particularly in breast cancer diagnosis. One of the
most popular methods is K-nearest neighbors (K-NN) which is a
supervised learning method. Using the K-NN in medical diagno-
sis is very interesting. The quality of the results depends largely on
the distance and the value of the parameter “k” which represent the
number of the nearest neighbors. In this paper, we study and eval-
uate the performance of different distances that can be used in the
K-NN algorithm. Also, we analyze this distance by using different
values of the parameter “k” and by using several rules of classifi-
cation (the rule used to decide how to classify a sample). Our work
will be performed on the WBCD database (Wisconsin Breast Can-
cer Database) obtained by the university of Wisconsin Hospital.
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1. INTRODUCTION
Early detection of cancer is essential for a rapid response and
better chances of cure. Unfortunately, early detection of cancer
is often difficult because the symptoms of the disease at the be-
ginning are absent. Thus, cancer remains one of the topics of
health research, where many researchers have invested with the
aim of creating evidence that can improve treatment, preventions
and diagnostics.
Research in this area is a quest of knowledge through surveys,
studies and experiments conducted with applications in order to
discover and interpret new knowledge to prevent and minimize
the risk adverse consequences. To understand this problem more
precisely, tools are still needed to help oncologists to choose the
treatment required for healing or prevention of recurrence by re-
ducing the harmful effects of certain treatments and their costs.
To develop tools for cancer management, machine learning
methods and clinical factors, such as : patient age and histopatho-

logical variables form the basis for daily decision making are
used. Several studies have been developed in this topic by using
the gene expressions [17, 7, 9] or using image processing [2, 16].
In machine learning there are two types: the supervised and unsu-
pervised learning. The first admits that the classes used to clas-
sify the data are known in advance and the second, the classes
are not known. Among the methods, there are: Support Vector
Machines, Decision Tree, Neural Network, Bayesian networks,
k-nearest neighbors, etc.
The algorithm k-nearest neighbors is widely used in data classi-
fication [12, 18, 8]. The k-nn permits the classification of a new
element by calculating its distance from all the other elements.
The proper functioning of the method depends on the choice of
the parameter k which represents the number of neighbors cho-
sen to assign the class to the new element and the choice of the
distance.
In this paper, we study and analyze several distances and differ-
ent values of the nearest neighbors parameter k, by using dif-
ferent classification rules in the k-nearest neighbors algorithm.
The performance will be evaluated in term of the classification
accuracy rate and classification time and to validate the results
obtained by these approaches, we use several tests with different
training and tasting sets. This experimentation will be conducted
on the Wisconsin Breast Cancer Database (WBCD) which is the
publicly available breast cancer database [13, 11, 4, 14, 1] and is
a widely studied.
The paper is organized as follows: First, an overview of the K-
Nearest Neighbors method is given. In Section.3, different dis-
tances defined in the literature are illustrated. In Section.5, we
present the results obtained by these approaches. Finally, we con-
clude and describe future work in the Section.6.

2. K-NEAREST NEIGHBORS METHOD
The k-nearest neighbors algorithm is one of the most used algo-
rithms in machine learning [19, 15, 6]. It is a learning method
bases on instances that does not required a learning phase.
The training sample, associated with a distance function and the
choice function of the class based on the classes of nearest neigh-
bors is the model developed. Before classifying a new element,
we must compare it to other elements using a similarity mea-
sure. Its k-nearest neighbors are then considered, the class that
appears most among the neighbors is assigned to the element to
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be classified. The neighbors are weighted by the distance that
separate it to the new elements to classify.

Fig. 1. The K-nearest neighbors method.

The proper functioning of the method depends on the choice of
some number of parameter such as the parameter k which repre-
sents the number of neighbors chosen to assign the class to the
new element, and the distance used.

2.1 The K-Nearest Neighbors Algorithm
Choose a value for the parameter k.
Input : Give a sample of N examples and their classes.

The classe of an sample x is c(x).
Give a new sample y.

Determine the k-nearest neighbors of y by calculating the dis-
tances.
Combine classes of these y examples in one class c
Output : The class of y is c(Y ) = c

3. THE DISTANCES
In mathematics, a distance is an application that formalizes the
idea of the distance which is the length between two points. The
distance will allow us to group the individuals which are similar
and separate those that do not resemble.
A distance d(xi, xj) in a space E is an application E × E in R
satisfying the following axioms:

—Non-negativity : d(xi, xj) ≥ 0

—Symmetry : d(xi, xj) = d(xj , xi)

—Reflexivity : d(xi, xj)⇔ xi = xj

—Triangle inequality : d(xi, xj) ≤ d(xi, xk) + d(xk, xj)

In the case of a vector space, the distances are often differents
norms.
We can defined in many ways the distances between two points,
although it is generally given by the Euclidean distance (or 2-
distance). Given two points xir and xij from E,we define the
different distances as follows:

3.1 Cityblock distance (1-distance)
Called also Manhattan distance, the cityblock distance is asso-
ciated to the 1 − norm, for two vectors xir , xjr the Manhattan
distance is defined by:

d(xi, xj) =

n∑
r=1

|xir − xjr|

It represents the sum of absolute differences.

3.2 Euclidean distance (2-distance)
Euclidean distance is the most universal, between two vectors
xir and xjr , the euclidean distance is defined as :

d(xi, xj) =

√√√√ n∑
r=1

(xir − xjr)2

Noting that the Euclidean distance is a special case of the
Minkowski metric when p = 2

3.3 Minkowski distance (p-distance)

The most frequently distances are the Minkowski distance which
is defined as follows :

d(xi, xj) =
p

√√√√ n∑
r=1

|xir − xjr|p

where p = 1, 2, ...,∞

3.4 Tchebychev distance (∞-distance)
Tchebychev distance is also called Maximum value distance. It
is the maximum of the absolute rank:

d(xi, xj) = lim
p→∞

p

√√√√ n∑
r=1

|xir − xjr|p = sup
1≤r≤n

|xir − xrj |

3.5 Cosine distance
Giving the angular distance between the cosines, the cosine dis-
tance is written as follows:

d(xi, xj) =

∑n
r=1 xir × xij√∑n

r=1(xir)2 ×
√∑n

r=1(xjr)2

3.6 Correlation distance
The distance correlation of two random variables is obtained by
dividing their distance covariance by the product of their distance
standard deviations. The distance correlation is :

d(xi, xj) = 1− cxi,xj

where c is the coefficient of Pearson correlation.
The euclidean, cityblock, cosinus and correlation types distances
are the most used in the k-nn algorithms. Therefore, we used this
algorithm for classification based on these different distances to
find the class of a new element.

4. THE CHOICE OF THE PARAMETER K (THE
NUMBER OF NEAREST NEIGHBORS)

The choice of the parameter k (k ∈ N ) is determined by the user,
this choice depends on the data. The effect of noise on the clas-
sification is reduced when the values chosen for k is greater, but
this makes the boundaries between classes less distinct. A good
choice of the value of k can be selected by different heuristic
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techniques such as cross-validation. In this study we choose the
value of k that minimizes the classification error.
In the case of a binary classification, it is more inviting to choose
an odd value for k, it avoids the equal votes. In case of equality,
we can increase the value of k from 1 to decide [5].

5. EXPERIMENTATION
We have used the k-nearest neighbors that is experimented with
several variants of distances, different values of k and different
classification rules for the choice of nearest neighbors. The k-
nearest neighbors does not require learning phase.
To analyze the relevance of these different distances, we have
defined a protocol of comparison which includes the classifica-
tion accuracy rate and time classification by using different val-
ues of the parameter k and classification rules. This experiments
are conducted on the database WBCD (Wisconsin breast cancer
database) [10, 3] obtained by the university of Wisconsin. This
database contains information about the breast cancer which are
taken by the Fine Needle Aspirate (FNA) of human breast tissue.
These data correspond to 699 clinical cases where 458 (65, 50%)
are a benign cases and 241 (34, 50%) are malignant cases.
The WBCD database contains missing data for 16 observations,
which limited this experimentation to 683 clinical cases.
The evaluation of performance of the learning methods need the
separation of the database in two parts: The training set that rep-
resents the initial basis for which the classes of different clini-
cal cases are known and the testing set. In this study we have
used the holdout method which is a kind of cross validation
to separate randomly the database, and we have obtained: 455
(65, 10%) clinical cases for the training phase and 244 (34, 90%)
for the testing phase.
The performance evaluations of each types distances and classi-
fication rules are chosen in function of : classification accuracy
rate and time classification for each value of the nearest neigh-
bors parameter. Several tests have been conducted to validate our
results.
For the classification rules we have used:
The nearest rule recommends that the new element will be as-
signed to the majority class among the nearest neighbors. If k is
an even number, the class of the new element will be the class of
the nearest neighbor.
The random rule recommends that the new element will be as-
signed to the majority class among the nearest neighbors. If k is
an even number, the class of the new element will be the class of
on the nearest neighbors and it will be done randomly.
For the consensus rule, the new element will only be affected if
all the nearest neighbors are of the same class.
Figure 2 illustrates the classification accuracy rate in function of
the value of k (the number of nearest neighbors) based on the use
of the nearest rule to classify a new element.
The high classification accuracy rate, 98, 70% is recorded by the
algorithm that uses the Euclidean distance with a value of k = 1.
The same algorithm used with Manhattan distance and with k =
1 gives rather promising result (98, 48%).
Figure 2 shows that when k increases over the classification ac-
curacy rate decreases and stabilizes at a value close to 50, with a
classification accuracy rate close to 94, 40% (Table 5). However,
the best result is obtained with the Euclidean distance (94, 45%),
this corroborates with what was presented in the literature.
The minimum classification time is recorded for both cosine and
correlation distances. In contrast, Euclidean and Manhattan dis-
tances are time-consuming classification, these results are illus-
trated in Figure 3.
Figure 4 illustrates the classification accuracry rate in function
of the value of k (the number of nearest neighbors) based on the
use of the random rule for classifying a new element.

Fig. 2. Representation of classification accuracy rate for each
value of parameter k based on nearest rule.

Fig. 3. Representation of classification time for each value of
parameter k based on random rule.

Fig. 4. Representation of classification accuracy rate for each
value of parameter k based on random rule.

The results obtained for the classification of a new element with
the k−nn algorithm using the random rule are identical with
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those provided by the nearest rule and this for all types of dis-
tances used. The difference is in the case where k is even, the
probability to assign the new element to a class is equiproba-
ble. It remains to emphasize that the best classification accu-
racry rate, 98, 70% is achieved by the algorithm that uses the
Euclidean distance with a value of k = 1 and the classification
accuracy rate decreases when k increases, it begins to stabilize
around the value 50 (Figure 4). We record a classification accu-
racy rate close to 94, 25% (Table 5).

Fig. 5. Representation of classification time for each value of
parameter k based on random rule.

Similarly, the minimum classification time is recorded for both
cosine and correlation distances. In contrast Euclidean and Man-
hattan distances are time-consuming classification. . Neverthe-
less, there is a slight increase in the time of classification for co-
sine distance, correlation and Manhattan when k takes the values
4, 41 and 42. Therefore, time classification time of the Euclidean
distance shows no disturbance, these results are illustrated in Fig-
ure 5.
The figure 6 shows the classification accuracry rate based on the
value of k (the number of nearest neighbors) by using the con-
sensus rule for classifying a new element.

Fig. 6. Representation of classification accuracy rate for each
value of parameter k based on consensus rule.

The high classification accuracy rate, 98, 70% is reached by the
algorithm that uses the Euclidean distance with a value of k = 1.

The same algorithm used with distance from Manhattan and with
k = 1 gives a rather promising result (98, 48%). Also, a dif-
ference was observed when using the cosine distance (95, 67%)
and correlation (94, 69%). Figure 6 shows that by increasing the
value of k, the classification accuracy rate decreases consider-
ably and it is around 64, 30% when k = 50 (Table 5).

Fig. 7. Representation of the rate of non-classified elements for
each value of parameter k based on consensus rule.

Using this rule, some data may not be classified, The k-nn algo-
rithm that uses the rule consensus can not assign a class to a new
element if all of these neighbors do not belong to the same class.
figure 7 shows the rates of elements that were not classified by
the algorithm in function of the parameter k.

Fig. 8. Representation of classification time for each value of
parameter k based on consensus rule.

The minimum time of classification is recorded for both cosine
and correlationdistances. By cons, it remains expensive for Man-
hattan and Euclidean distances. We also observe a slight increase
in the time of classification for the cosine and Manhattan dis-
tances when k = 31. However the time of classification with
Euclidean distance and correlation remains stable for all values
assigned to the parameter k, these results are illustrated in Figure
8.
Table 5 lists all results presented for the different rules used for
calculating distances.
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Nearest Rule

Value of k Euclidean Cityblock Cosine Correlation

k = 1 98, 70 98, 48 95, 67 94, 69

k = 10 95, 41 95, 48 95, 41 95, 35

k = 25 95, 13 95, 16 95, 11 95, 07
k = 50 94, 15 94, 46 94, 43 94, 40

Consensus Rule

Value of k Euclidean Cityblock Cosine Correlation

k = 1 98, 70 98, 48 95, 67 94, 69

k = 10 83, 35 83, 37 95, 12 95, 03

k = 25 73, 64 73, 67 94, 86 94, 83
k = 50 64, 36 64, 39 94, 27 94, 24

Random Rule

Value of k Euclidean Cityblock Cosine Correlation

k = 1 98, 70 98, 48 95, 67 94, 69

k = 10 95, 12 95, 19 95, 12 95, 03
k = 25 94, 90 94, 91 94, 86 94, 83

k = 50 94, 29 94, 30 94, 27 94, 24

Table 1.
The
clas-
si-
fi-
ca-
tion
re-
sults.

6. CONCLUSION
In this paper, we have highlighted the algorithm K-nearest
neighbors for classification. We used this algorithm with sev-
eral different types of distances and classification rules (major-
ity, consensus and random) in function of the parameter k that we
varied in the interval [1, 50]. This algorithm was used in the med-
ical diagnosis that is in the diagnosis and classification of cancer.
This experiments were conducted on the database WBCD (Wis-
consin Breast Cancer Database) obtained by the University Hos-
pital of Wisconsin.
The results advocate the use of the k-nn algorithm with both
types of Euclidean distance and Manhattan. These distances are
effective in terms of classification and performance but are con-
suming much time. Nevertheless, they remain two types of dis-
tance that give the best results (98, 70% for Euclidean distance
and 98, 48% for Manhattan whith k = 1), these values are not
significantly affected even when k = 1 is increased to 50.
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