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Breast cancer is the second most reported cancer in women with high mortality causing
millions of cancer-related deaths annually. Early detection of breast cancer intensifies the
struggle towards discovering, developing, and optimizing diagnostic biomarkers that can
improve its prognosis and therapeutic outcomes. Breast cancer-associated biomarkers
comprise macromolecules, such as nucleic acid (DNA/RNA), proteins, and intact cells.
Advancements in molecular technologies have identified all types of biomarkers that are
exclusively studied for diagnostic, prognostic, drug resistance, and therapeutic
implications. Identifying biomarkers may solve the problem of drug resistance which is
a challenging obstacle in breast cancer treatment. Dysregulation of non-coding RNAs
including circular RNAs (circRNAs) and microRNAs (miRNAs) initiates and progresses
breast cancer. The circulating multiple miRNA profiles promise better diagnostic and
prognostic performance and sensitivity than individual miRNAs. The high stability and
existence of circRNAs in body fluids make them a promising new diagnostic biomarker.
Many therapeutic-based novels targeting agents have been identified, including ESR1
mutation (DNA mutations), Oligonucleotide analogs and antagonists (miRNA), poly (ADP-
ribose) polymerase (PARP) in BRCA mutations, CDK4/6 (cell cycle regulating factor
initiates tumor progression), Androgen receptor (a steroid hormone receptor), that have
entered clinical validation procedure. In this review, we summarize the role of novel breast
cancer diagnostic biomarkers, drug resistance, and therapeutic implications for breast
cancer.
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1 INTRODUCTION

Breast cancer is a kind of cancer that affects mostly females and is a primary factor of mortality
worldwide (Wu and Chu, 2021). It is a heterogeneous disease with six distinct molecular subtypes:
luminal A (progesterone receptors (PR)+, estrogen receptor (ER)+, Human epidermal growth factor
receptor 2 (HER2)-, and Ki67), luminal B (ER+, HER+/−, and Ki67+), human epidermal growth
receptor 2(HER2)+, basal-like subtype (ER-, PR- and HER2−) normal breast like and claudin low
type (where low expression of cellular adhesion genes can be detected) (Perou et al., 2000). Breast
cancer initial detection and monitoring are two significant treatments that enhance therapy results
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and provide patients with a positive prognosis (Pace and Keating,
2014). Mammography is a common approach for identifying
breast cancer, although it has several drawbacks, such as a low
sensitivity of 25%–59% for cancer detection in younger females
with dense breasts. It has also recorded erroneous negative and
positive findings, as well as a 1%–10% over detection rates (Bleyer
and Welch, 2012; Oeffinger et al., 2015).

Biomarkers that aid in the diagnosis, prognosis, and prediction
of breast cancer are essential for timely identification and
appropriate control of the disease throughout treatment
(Hayes et al., 2001; Weigel and Dowsett, 2010). Moreover, an
increasing percentage of patients are demanding personalized or
unique treatments, demanding the development of novel
biomarkers for diagnostic and prognostic procedures as well as
intact cells, are utilized as biomarkers in the diagnosis of cancer.
Artificial intelligence technologies like machine learning have the
potential to greatly enhance the existing anti-cancer medication
development process. Constituents produced by cancer-affected
cells or various tissues in reaction to tumors, and also
physiological indicators that may be recognized by diagnostics
or molecular technology, are all examples of cancer biomarkers
(Loke and Lee, 2018; Voith von Voithenberg et al., 2019).
Biomarkers may be used to assess the biological condition
of a disorder, which can then be used to identify the type of the
tumor, its progression, or therapy responses, assisting in the
control of breast cancer (Wu and Chu, 2021). Because tumor
cells are so heterogeneous, a singular biomarker is
insufficiently sensitive or precise to effectively diagnose
cancer growth and metastasis, hence a combination of
biomarkers is preferred. Significant advances in genetic
fingerprints and molecular signaling processes have found a
variety of biomarkers in tissues and blood (liquid biopsies) that
may be used to predict the likelihood of cancer spread,
resurgence, therapy recommendations, prediction, and
medication tolerance. Some of these biomarkers have been
utilized in clinical trials, however, their sensitivity and
selectivity are zero (Nalejska et al., 2014; Wu and Chu,
2021). As a result, novel and more effective biomarkers are
required. Moreover, several therapeutic approaches for breast
cancer are still in their early phases of development, therefore,
it is vital to find precise biomarkers that may be used to help
with immunotherapies (Wu and Chu, 2021).

2 TYPES OF BIOMARKERS

Larger molecules such as nucleic acids, genetic alterations,
and protein molecules, as well as intact cells, are utilized as
biomarkers in the diagnosis of cancer. They can be observed in
blood in the form of circulating tumor cells, DNA, and RNA
enabling liquid biopsies a useful clinical technique (Eccles
et al., 2013; Berghuis et al., 2017; Voith von Voithenberg et al.,
2019). Prognostic and predictive biomarkers are two
categories of biomarkers linked to likely clinical results and
therapy success in breast cancer subtypes (Fine and Pencina,
2015; Janes et al., 2015; Simon, 2015).

3 ROLE OF MACROMOLECULES IN
BREAST CANCER DIAGNOSIS

3.1 DNA
Alteration in DNA methylation is one of the major significant
molecular changes in carcinogenesis. Adenomatous polyposis
coli (APC) and retinoic acid receptors-2 (RARb2) methylated
promoters were discovered in 93.4% and 95.6% of blood samples
from females having breast cancer, respectively, but not in healthy
people (Swellam et al., 2015). All methylation variations
surpassed the conventional markers CEA and CA 15–3 in
detecting early breast cancer, low-grade tumors, and Triple
Negative Breast Cancer (NBC). Utilizing a human methylation
DNA study BeadChip. Yang et al. revealed that hypomethylation
of S100 calcium-binding protein P (S100P) and hyalurono
glucosaminidase 2 (HYAL2) in the peripheral blood is linked
with breast cancer (Yang et al., 2015; Yang et al., 2017). Both
genes with lower methylation have been proven to be possible
biomarkers circulating in blood, for the diagnosis of breast
cancer, specifically in adolescent girls in the initial stages
(Bleyer and Welch, 2012; Fleming and Powers, 2012).

The latest study has found that aberrant DNA methylation is
significantly linked to breast cancer, and suggesting that DNA
methylation testing can aid in predicting the prognosis of breast
cancer patients. MAST1, PRDM14, and ZNF177 irregular DNA
methylation variants were found and verified as prospective
breast cancer molecular indicators by X Mao et al. X Mao
et al. also showed that the DNA methylation range of ADCY4,
CPXM1, DNM3, PRDM14, PRKCB, and ZNF177. In essence,
these findings point to the development of novel epigenetic
prognosis systems that might assist in the detection and
prediction of breast cancer therapy (Uehiro et al., 2016). An
exceptionally sensitive mobile cell-free DNA (cfDNA) system
with epigenetic biomarkers and droplet digital methylation-
specific PCR (ddMSP) has been created for the early diagnosis
of breast cancer. Ras-specific guanine nucleotide-releasing factor
1 (RASGRF1), carboxypeptidase X (CPXM1), Hox-A10
(HOXA10), and Dachshund homolog 1 (DACH1) were the
four methylation markers employed in the efficient screening
method (Uehiro et al., 2016). This epigenetic-marker-based
technique was able to reliably discriminate women with breast
cancer from healthy controls, hinting that it might be utilized for
breast cancer screening and therapy (Uehiro et al., 2016).

3.2 Proteins
Circulating protein has been considered as the second choice as a
biological marker for the recognition and analysis of Breast
cancer (BC). Blood proteomics and mass spectrometry have
analyzed the systemic and comprehensive visualization of the
blood proteomics pathologically and physiologically, resulting in
the finding of numerous protein biomarkers in blood that can be
used as effective diagnostic biomarkers in breast cancer detection.
A panel of trefoil factor (TFF) 1, TFF2, and TFF3 have been stated
as promising biomarkers for BC screening as they can express
specific proteins differentially in the serum of BC patients that
cannot be produced by healthy cells (Ishibashi et al., 2017). The
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two well-known groups such as Cks of intermediate filaments and
glycoprotein (MUC) family can produce several classical breast
cancer biomarkers. The CA 15–3 assay, for example, is currently
used for tracking purposes in treatment (Duffy, 2006), while CKs
have been proposed as early-stage BC markers, but their efficacy
is masked due to poor sensitivity (Levenson, 2007). The serum
epithelial membrane antigen/CK1 concentration ratio is
recommended as possible diagnostic marker, especially for
initial stage breast cancer diagnosis. The diagnostic capability
of this new combination was assessed better than CA 15–3
(Attallah et al., 2014).

Besides, some other proteinaceous biological markers with
promising diagnostic capability have been revealed by ELISA.
Among these proteins, a single diagnostic marker model of
pleiotrophin (PTN) (Ma et al., 2017a), and double diagnostic
marker models such as integration of microRNA (miRNA) miR-
127-3p with human epididymis secretory protein 4 (HE4) (Lu
et al., 2017), human anterior gradient (AGR) 2 with AGR3
(Garczyk et al., 2015) and vascular endothelial growth factor
(VEGF) with CA 15–3 (Ławicki et al., 2016). Serum
apolipoprotein C-I (apoC-I) has demonstrated promise results
in prognosis and diagnosis of triple-negative Breast cancer
(TNBC), as it could distinguish TNBC from non-TNBC cases
by greater ApoC-I mRNA and protein expression in the former
when compared to both non-TNBC affected individuals and
controls (Song et al., 2016).

3.3 Autoantibodies
Autoantibodies are reported as another approach used as
diagnostic biomarkers with the potential of multiple targets,
short time-frames, and minimalist hardware (Soler et al.,
2016). The associated antigens of these antibodies are
synthesized by the body’s cells; in healthy cells, it is expressed
at a modest level, while it is overexpressed in malignant cells. The
immune system determines this expression, using toll-like
receptors (TLRs) for the innate response, thus reverting tumor
growth. MUC1, an integral membrane protein, is overexpressed
in 90% of adenocarcinomas and has been linked to tumor
aggressiveness (Zaenker et al., 2016). Antibodies that target
oncogenic and tumor suppressor proteins are considered as
the significant diagnostic biomarkers for the efficient detection
of breast cancer. The presence of autoantibodies before the
medical diagnosis of the disorder in paraneoplastic syndrome
and systemic autoimmune diseases has raised the prospect that
the medical diagnosis of BC could also be carried out through
detection of auto-immunoglobulins (Fernández Madrid, 2005).
As a result, extensive research has revealed the detection of
tumor-associated antigens by autoantibodies that were
detected in the patient blood sample. The integration of
modern proteomics, advanced genomics, high-throughput
technology, and traditional immunological approaches has
significantly aided advancement in this area (Fernández
Madrid, 2005).

3.4 miRNA
miRNAs are single-stranded, non-coding, small (20–25
nucleotide) RNAs that suppress the post-transcriptional

expression of specifically selected genes via mRNA breakdown
or mRNA expression. The detection and persistence of miRNAs
in the bloodstream and their role in diagnostic and therapeutic
approaches have been studied thoroughly (Schwarzenbach et al.,
2011). Since miRNAs are soluble and observable in cancer cells
(Shen et al., 2013), blood, plasma, and patients’ saliva, they can be
used as biological markers for non-invasive early diagnosis,
detection, and treatment of breast cancer (Mitchell et al., 2008;
Schwarzenbach et al., 2014). miRNAs are released into the
bloodstream by apoptotic cells (Schwarzenbach et al., 2011).
miRNAs can travel through the bloodstream in two forms:
cell-free (Ago2-related) or embedded in membrane vesicles,
microvesicles, or exosomes (Simpson et al., 2009). miRNAs
profiling studies can classify dysregulated miRNAs and
categorize patients of breast cancer for therapies, highlighting
their potential to be used as a predictive and therapeutic
biomarker (McGuire et al., 2015). Furthermore, like oncogenes
(oncomiRNAs) and tumor suppressors, unregulated miRNA is
responsible for tumor growth, development, cell death, invasion,
and cell proliferation. Recently, numerous suspected candidates,
for example, miR-221, miR-21, and miR-145, have appeared in
the blood serum or plasma of BC-affected individuals. Blood-
based identities containing miR-221 and/or miR-21 have been
shown to have higher diagnostic susceptibility than CEA and
CA 15–3 for all stages of cancer, distinguishing BC subjects
from patients with benign tumors and healthy people and
doing better in distinguishing the TNBC subtype from healthy
subjects (Gao et al., 2013; Motawi et al., 2016; Thakur et al.,
2016). Exosomal miR-21 expression has also been shown to be
elevated in Breast cancer patients’ plasma-derived exosomes.
The exosomal miR-21 and miR-1246 form modest diagnostic
(Hannafon et al., 2016).

In terms of diagnosis, Iorio et al. (2005) discovered a 13-
miRNA hallmark that could differentiate affected Breast cancer
from healthy breast tissues with 100% precision. Blenkiron et al.
(2007) discovered 133 miRNAs with abnormal expression
patterns in breast tumor tissues irrespective of normal
breast tissues. Despite the discovery of miRNAs with
abnormal expression in BC tissues, there are still
inconsistencies between the variously identified miRNA
signatures. Roth et al. introduced single circulating miRNAs
as diagnostic and prognostic instruments after discovering
miR-155 in the serum of Breast cancer affected individuals
but not in stable controls, and Heneghan et al. identified
elevated miR-195 activity in the bloodstream of only
affected subjects with BC (Heneghan et al., 2010; Roth
et al., 2010). Some miRNAs, such as miR-21and miR-29a or
4-miRNA signature, have been found in the plasma of BC
patients (miR-222, miR-16, miR-25, and miR-324-3p) (Wu
et al., 2011; Hu et al., 2012).

A vast number of other miRNAs have been reported that
overexpress in Breast cancer a few examples are miR-29a, miR-
146a, miR-373, miR589, miR-221/222 cluster, miR-9, miR10b,
miR-96, miR-181, miR-375, and miR-520c. These miRNAs are
linked with treatment, diagnosis, and prognosis of Breast cancer
(Polytarchou et al., 2012; Khoshnaw et al., 2013; Sandhu et al.,
2014).
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3.5 CircRNAs as Diagnostic/Prognostic
Markers
Circular RNAs (circRNAs) are recently identified non-coding
RNAs that are classified as tiny endogenous RNAs with a broad
distribution, various forms, and several regulatory applications
(Ashwal-Fluss et al., 2014). Sanger et al. (1976) were the first to
find cricRNA in the viroids. Up till now, a large number of
circRNAs have been found in various cell lines and organisms
(Bleyer andWelch, 2012; Pace and Keating, 2014; Oeffinger et al.,
2015), namely protozoa, fungi, worms, plants, fish, mice, insects,
and humans (Wang et al., 2014; Westholm et al., 2014).
CircRNAs are present in large numbers, about 1/8th of the
human genome’s transcriptome can generate observable
circRNAs, and their expression levels are much more than
tenfold higher than that of the comparable linear mRNAs
(Salzman et al., 2012; Jeck et al., 2013). Furthermore, as a
result of their covalent closed-loop configuration and absence
of free terminal ends, circRNAs are much more stable unlike
linear RNAs, conferring susceptibility to deterioration by
endonuclease R (RNase R) (Chen and Yang, 2015). CircRNAs
can also be used to distinguish and recognize various tumor types
due to their ability to express particular cell types, tissues, and
developmental stages, as well as the fact that different subtypes of
circRNAs can be generated (Salzman et al., 2013; Smid et al.,
2019). Given the above, we conclude that circRNAs have growing
research potential. Various biochemical roles of circRNAs have
been discovered as science has progressed. CircRNAs may serve
as “sponges” for microRNAs (miRNAs), influencing the role of
miRNA target genes (Hansen et al., 2013). Furthermore,
circRNAs can be attached to various RNA binding proteins
(RBPs), influencing the role of the parental genes (Zeng et al.,
2017; Kristensen et al., 2019). Surprisingly, provided evidence
suggests that circRNAs may express proteins/peptides playing a
role in tumor development and progression (Legnini et al., 2017;
Zheng et al., 2019). CircRNAs’ special properties and biological
roles show the role of circRNAs in tumor growth, replication,
metastasis, invasion, and drug tolerance, implying that circRNAs
can be used as biological markers and tumor therapeutic goals
(Liu et al., 2018a; Kun-Peng et al., 2018). Circular RNAs can avoid
exonuclease-induced degradation and are more soluble in blood
or plasma than linear RNAs because of their closed continuous
loop structure (Alhasan et al., 2016). It has been shown that
ncRNAs, such as miRNAs and non-coding RNAs, can serve as
reliable biological markers for hepatocellular carcinoma (Li et al.,
2015). CircRNAs are regaining attention among researchers as
high-throughput sequencing and bioinformatics technology
improves. Due to their stability and tissue specificity,
circRNAs have been established as suitable biological markers
for the diagnosis of gastric cancer (Simon, 2015), hepatocellular
carcinoma, and other cancers (Qin et al., 2016). Evidence have
revealed that circRNAs can cause tumorigenesis, providing a new
approach for identifying diagnostic biomarkers (Kulcheski et al.,
2016; Zhu et al., 2017).

Using the circRNA microarray method, Lu et al. determined
the circRNA expression pattern in breast cancer and normal
tissues and discovered that hsa circ 103110, hsa circ 104689, and

hsa circ 104821 levels were upregulated in breast cancer cells with
area under the curve (AUC) value of 0.63 (0.52–0.74), 0.61
(0.50–0.73), and 0.60 (0.49–0.71) respectively, while hsa circ
006054, hsa circ 100219, and hsa circ 406697 were
downregulated with the area under the curve (AUC) value of
0.71 (0.61–0.81), 0.78 (0.69–0.88) and 0.64 (0.52–0.75)
respectively. As a result, mixing hsa circ 006054, hsa circ
100219, and hsa circ 406697 yielded successful diagnostic
results as mentioned in table 1 (Lü et al., 2017). Similarly, Yin
et al. found that in the plasma of breast cancer patients, 19
circRNAs were upregulated and 22 were downregulated as
opposed to stable controls (Maselli et al., 2019). Further
investigation found that the plasma hsa circ 0001785 had a
higher diagnostic accuracy than CEA and CA15-3.
Furthermore, hsa circ 0001785 plasma levels were correlated
with histological grade (p = 0.013), TNM stage (p = 0.008),
and remote metastasis (p = 0.016), indicating a possible
biomarker for breast cancer diagnosis. The expression levels of
hsa circ 0001785 were shown to be lower in post-operative BC
patients’ plasma samples relative to pre-operative patients (Sarkar
and Diermeier, 2021).

3.5.1 Limitations of Circulating miRNA as a Diagnostic
Biomarker
The development of a precise and effective biomarker for breast
cancer diagnostic approaches is challenging at every step ranging
from sample collection to data processing (Witwer, 2015). For
example, the low abundance of circulating miRNAs as diagnostic
biomarker hinders their detection using microarray-based
miRNA profiling techniques. Modified strategies can be
adopted to reduce the limitations; such as miRNA isolation
before expression profiling (Hamam et al., 2016). Another
issue is sample collection which can be resolved by serum
selection to avoid limitations of excluding a large number of
samples. Because recent studies reported a high level of
circulating miRNA in serum than in plasma (Wang, 2012). A
recent study identified the fluctuations in circulating miRNA
levels in response to chemotherapy. This drawback can be
eliminated by collecting blood samples before chemotherapy
(Diener et al., 2015).

3.6 Exosome
Exosomes are extracellular membrane-bound vesicles that are
nano-sized (30–100 nm) and actively released by cancer cells and
neighboring cells present in the tumor microenvironment (TME)
(Taylor and Gercel-Taylor, 2013; Gajos-Michniewicz et al., 2014).
They are surrounded by a lipid bilayer composed up of
phosphoglycerides, ceramides, sphingolipids, and cholesterols
(Vlassov et al., 2012) and comprise a diverse array of
molecules such as DNA, sugars, proteins, peptides, lipids,
mRNAs, miRNAs, as well as other types of ncRNAs (Moreno-
Gonzalo et al., 2014). Exosomes like miRNAs, are present in a
variety of human bodily fluids, including blood, sweat, urine, and
breastfeeding (Vlassov et al., 2012; Raposo and Stoorvogel, 2013).

Exosomes can facilitate tumor development, angiogenesis,
immunosuppression, and metastasis by promoting intermodulation
between tumor cells and healthy or cancer-affected stromal cells
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(Alderton, 2012; Moon et al., 2016a). The surface proteins
present on circulating extracellular vesicle (EVs),
developmental endothelial locus-1 protein (Del-1) (Moon
et al., 2016a), and fibronectin (Moon et al., 2016b), are
promising materials for cancer detection. Fibronectin, a
matrix protein present extracellularly, binds to several
integrins and activates a variety of signaling proteins,
including FAK, Src, and Akt (Moon et al., 2016b).
Fibronectin levels rose dramatically (p < 0.0001) throughout
all phases of breast cancer and went back to normal after the
tumors were removed. The clinical diagnostic efficacy for
fibronectin recognition outside the cellular vesicles was better
than that in plasma (Moon et al., 2016b). This underscores the
significance of extracellular matrix proteins in breast cancer.
The high amount of Del-1 in patients’ circulating exosomes (p
0.0001) resulted in excellent diagnostic success in
distinguishing patients with early-stage breast cancer from
the control system (Moon et al., 2016a).

4 ROLE OF BIOMARKERS IN DRUG
RESISTANCE

Chemotherapy treatment has a significant role in the prevention
of breast cancer recurrence and spreading (Liu et al., 2018b). But
the main problem of this method is Chemo-therapeutic
resistance, hsa-circ 0006528 is upregulated in breast cancer
cells resistant to Adriamycin resistant breast cancer (ADM),
presumably by the circ. pathway. Axis of RNA/miR-7-5p/Raf1
(Guo et al., 2020). Low concentrations of miR-7 expression have
long been associated with resistance to breast cancer
chemotherapy. Another research of ADM-resistant breast
cancer discovered that circKDM4C downregulation inhibited
tumor proliferation and alleviated ADM resistance by
controlling the miR-548p/PBLD axis (Ma et al., 2019; Yang
et al., 2020).

Furthermore, the level of expression of circMTO1 (hsa circ
007874) in monastrol-resistant breast cancer cell lines is
substantially lower than in monastrol-sensitive breast cancer
cell lines, and uncontrolled expression of circMTO1 will
reverse monastrol resistance through the circRNA/TNF
receptor-associated factor 4 (TRAF4)/Eg5 pathway.
Furthermore, Ma et al. discovered that circMOTL1, which
could play an important role in breast cancer cell PTX
resistance by controlling the AKT pathway, encouraging anti-
apoptotic protein expression, and impeding pro-apoptotic

protein synthesis, is found to be elevated in breast cancer
(Greene et al., 2019). Yang et al. reported that in Breast cancer
cells, the expression of circ-ABCB10 is increased. Through the let-7a-
5p/DUSP7 axis, Circ-ABCB10 regulates PTX resistance, apoptosis,
invasion, and autophagy in breast cancer cells (Wu et al., 2019).

The impact of Erα36 on the oncogenesis of breast and drug
resistance was assessed by Pangano et al. (Yin et al., 2018).
Tamoxifen, reported as anti-estrogen, has been shown to act as an
agonist of ER36 to proliferate, invade, and metastasize breast
cancer cells (Yin et al., 2018), which explains why many breast
cancer patients develop drug resistance to anti-estrogens that block
the signaling pathways mediated by ER36. A serum autoantibody
was recently discovered that functions against ERα in a wide
proportion of patients affected by breast cancer and was shown
to cause ER36, leading to tamoxifen tolerance (Maselli et al., 2016;
Maselli et al., 2019).

4.1 Role of miRNA
There are several miRNAs whose expressions were downregulated
in drug resistance BC. In BC-affected tissues and cells resistant to
taxol, the increased expression of nuclear receptor co-activator 3
(NCOA3) results in decreased expression of miR-17 and miR-20b.
This shows that these three NCOA3, miR-17, and miR-20b may
function as active biological markers and therapeutic targets in
breast cancer resistance to taxol (Ao et al., 2016).

Another study reported the overexpression of miR-18a in
TNBC cells patients who had received neoadjuvant paclitaxel,
thus inhibiting dicer expression and increasing paclitaxel
resistance in TNBC cells (Sha et al., 2016). There are four
miRNAs; miR-90b, 130a, 200b, and 452 that can regulate
drug-related cellular pathways, thus leading to chemoresistance
as shown in Figure 1 (Jayaraj et al., 2019).

4.2 Role of circRNAs
In adriamycin-resistant cell lines and tissues sensitive to
Adriamycin, a high-level expression of hsa_circ_00006528 was
discovered by Gao et al. (Ma et al., 2017b) by using circRNA
microarray expression profiles. The hsa_circ_00006528-miR-
7–5p-Raf1 axis has a regulatory effect on breast cancer
resistance to adriamycin. This highlights the possibility of the
use of hsa_circ_00006528 in controlling the factor of drug
resistance. This concludes that for breast cancer treatment,
circRNAs come up with novel and reliable therapeutic
strategies (Ma et al., 2017b).

has-circ_00006428, a circular RNA, can be used as a promising
therapeutic candidate due to its role in reducing drug resistance. This

TABLE 1 | Regulation pattern of different circRNAs in cancer lesions.

Regulation pattern Types of CircRNAs Value of area under the curve (AUC)

Upregulation in cancer lesions hsa circ 103110 0.63 (0.52–0.74)
hsa circ 104689 0.61 (0.50–0.73)
hsa circ 104821 0.60 (0.49–0.71)

Downregulation in cancer lesions hsa circ 006054 0.71 (0.61–0.81)
hsa circ 100219 0.78 (0.69–0.88)
hsa circ 406697 0.64 (0.52–0.75)
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statement can be supported by its overexpression in Adriamycin-
resistant cells while expression in Adriamycin-sensitive cells. Besides,
the regulatory role of hsa_circ_00006528-miR-7-5p-Rafl axis in
Adriamycin resistant breast cancer was revealed (Ma et al., 2017b).

5 THERAPEUTIC IMPLICATIONS

5.1 CircRNAs as Therapeutic Targets in
Breast Cancer
New progress in RNA-based therapies plus aberrant expression of
circRNAs in breast cancer makes them more potential
therapeutic sites (Lei et al., 2019). One solution may be to
create synthetic circRNAs with several binding sites for certain
oncogenic proteins or miRNAs that could be inserted
exogenously to restore the natural regulatory network in the
cell and reduce cancer development (Tay et al., 2015; Liu et al.,
2018c). On the other hand, endogenous circRNAs can be useful
for the treatment of cancer (Dragomir and Calin, 2018). Any of
the tumor-suppressor circRNAs discussed above are prime
candidates for further development as therapeutic instruments.
CircFOXO3, circCCNB1, circKDM4C, circFBXW, and
circTADA2A were all shown to be downregulated in patient
samples, related to a bad diagnosis and treatment, and
biologically linked to cancer etiology (Meganck et al., 2018).
CircRNA overexpression constructs transferred by adeno-
associated virus (AAV) vectors, which do not incorporate into
the genome and are presently used in clinical studies, are recently
used as a therapeutic solution. On another side, tumorigenic

circRNAs, such as the TNBC-specific circAGFG1 and
circANKS1B, may be used as new therapeutic targets for
TNBC, which currently have few treatment choices and a weak
prognosis (Bianchini et al., 2016). To target overexpressed circRNA
expression therapeutically, effective approaches have been
designed, including degradation mediated by siRNA, shRNA, or
altered antisense oligonucleotides (ASOs) complementary to the
back-splice junction (Cortés-López and Miura, 2016; Santer et al.,
2019). More steady knockout methods, such as CRISPR/Cas
genome editing, have also been evaluated. The CRISPR/Cas13
system is a new addition that achieves circRNA silencing by
attacking Cas13 to the circRNA’s back-splice junction via a
specific guide RNA that can differentiatedifferentiate between
linear transcripts and circRNAs (Li et al., 2021). Cas13d, a
small version of Cas13 (Konermann et al., 2018), in particular,
may be packaged into an AAV vector for transmission into
primary cells and rodents (Konermann et al., 2018; Zhang,
2021). However, since the side effects of Cas13 expression are
currently uncertain, the drawbacks of this system in a clinical sense
are not known (Li et al., 2021).

6 HOMOLOGOUS RECOMBINATION
DEFICIENCY IN BREAST CANCER GENES

Genomic mutations and instability are the attributions of human
cancers that occur due to defective DNA repair mechanisms. One
such DNA repair process is homologous recombination (HR),
which facilitates the repair of double-strand breaks and

FIGURE 1 | Role of different miRNA in drug resistance.
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interstrand cross-links (Li andHeyer, 2008). Mutations in BRCA1
and BRCA2 genes are centrally involved in homologous
recombination (HR), DNA damage repair, and cell cycle
checkpoint regulation (Joosse, 2012). About 5%–10% of breast
cancers are associated with inherited mutations in BRCA1 and
BRCA2 genes (Institute, 2013). A recent study reported the
significance of germline mutations of BRCA1 and BRCA2 by
determining their sensitivity to platinum-based chemotherapy and
PARP inhibitors (VonMinckwitz, 2014). HRD-mutational signatures
are clinically associated with platinum-based chemotherapy in the
advanced–stage of breast cancer (Davies et al., 2017).

7 CONCLUSION

Breast cancer is the second mostly reported cancer in women
showing a high mortality rate worldwide annually. Early

diagnosis and prognosis can control its fatality rate up to
some extent. No single biomarker is involved in its diagnosis
but a group of multiple diagnostic biomarkers plays a key role in
its detection, prognosis, and treatments. Several macromolecules
are reported as the significant diagnostic biomarkers including
circular RNA, miRNA, DNA, protein, exosomes, and antibodies.
Identification of these macromolecules can help in the detection
of cancer. DNA methylation and miRNA profiling are the
prominent approaches through which breast cancer can be
identified.
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