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Abstract

Background: Breast cancer causes hundreds of thousands of deaths each year worldwide. The early stage diagnosis

and treatment can significantly reduce the mortality rate. However, the traditional manual diagnosis needs intense

workload, and diagnostic errors are prone to happen with the prolonged work of pathologists. Automatic

histopathology image recognition plays a key role in speeding up diagnosis and improving the quality of diagnosis.

Methods: In this work, we propose a breast cancer histopathology image classification by assembling multiple

compact Convolutional Neural Networks (CNNs). First, a hybrid CNN architecture is designed, which contains a global

model branch and a local model branch. By local voting and two-branch information merging, our hybrid model

obtains stronger representation ability. Second, by embedding the proposed Squeeze-Excitation-Pruning (SEP) block

into our hybrid model, the channel importance can be learned and the redundant channels are thus removed. The

proposed channel pruning scheme can decrease the risk of overfitting and produce higher accuracy with the same

model size. At last, with different data partition and composition, we build multiple models and assemble them

together to further enhance the model generalization ability.

Results: Experimental results show that in public BreaKHis dataset, our proposed hybrid model achieves comparable

performance with the state-of-the-art. By adopting the multi-model assembling scheme, our method outperforms

the state-of-the-art in both patient level and image level accuracy for BACH dataset.

Conclusions: We propose a novel compact breast cancer histopathology image classification scheme by assembling

multiple compact hybrid CNNs. The proposed scheme achieves promising results for the breast cancer image

classification task. Our method can be used in breast cancer auxiliary diagnostic scenario, and it can reduce the

workload of pathologists as well as improve the quality of diagnosis.

Keywords: Breast cancer, Channel pruning, Histopathology, Hybrid CNN

*Correspondence: czhu@bupt.edu.cn
†Chuang Zhu and Ying Wang contributed equally to this work.
1The Center for Data Science, the Beijing Key Laboratory of Network System

Architecture and Convergence, the School of Information and

Communication Engineering, Beijing University of Posts and

Telecommunications, Xitucheng Road, Beijing, China

Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-019-0913-x&domain=pdf
http://orcid.org/0000-0001-5155-7069
mailto: czhu@bupt.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Zhu et al. BMCMedical Informatics and DecisionMaking          (2019) 19:198 Page 2 of 17

Background
Breast cancer has high morbidity and mortality among

women according to the World Cancer Report [1], and

this type of cancer causes hundreds of thousands of

deaths each year worldwide [2]. The early stage diagno-

sis and treatment can significantly reduce the mortality

rate [3]. The histopathological diagnosis based on light

microscopy is a gold standard for identifying breast can-

cer [4]. To conduct breast cancer diagnosis, the materials

obtained in the operating room are first processed by for-

malin and then embedded in paraffin [5]. After that, the

tissue is cut by a high precision instrument and mounted

on glass slides. To make the nuclei and cytoplasm visible,

the slides are dyed with hematoxylin and eosin (HE).

Finally, the pathologists finish diagnosis through visual

inspection of histological slides under the microscope.

However, the histopathological examination requires the

pathologists having a strong professional background

and rich experience, and the primary-level hospitals and

clinics suffer from the absence of skilled pathologists [6].

Besides, the traditional manual diagnosis needs intense

workload, and diagnostic errors are prone to happen with

the prolonged work of pathologists.

One possible solution to address the above problems

is designing intelligent diagnostic algorithm. It can learn

from the senior pathologists and then inherit the experi-

ence, which can be used to train the young pathologists.

Besides, with the help of powerful computing ability of

hardware, such as GPU, the automatic algorithm can

speed the manual diagnosing process and reducing the

error rate.

Extensive pieces of literature [7–12] design automatic

breast cancer histopathology image recognition schemes.

Typically, the algorithms of the literature can be classified

into two categories. In the first category, nuclei segmen-

tation is performed and then hand-crafted features, such

as morphological and texture features, are extracted from

the segmented nuclei. Finally, the generated features are

put into classifiers for automatic image type decision

[7–9]. In work [9], the authors introduce a large, pub-

licly available and annotated dataset, which is composed

of 7909 clinically representative, microscopic images of

breast tumor tissue images collected from 82 patients. Six

hand-crafted features, such as LBP [13] and LPQ [14],

and 4 traditional classifiers, such as 1-Nearest Neighbor

(1-NN) and Support Vector Machines (SVM), have been

comprehensively evaluated. Generally, great efforts and

effective expert domain knowledge are required to design

appropriate features for this type of method.

In the second category, different Convolutional Neural

Networks (CNNs) are adopted to recognize histopathol-

ogy image [10–12]. The recent research shows that

CNN-based algorithms achieve promising results, which

outperform the best traditional machine learning method.

The authors in [15] introduce deep learning to improve

the analysis of histopathologic slide and conclude that it

holds great promise in increasing diagnosis efficacy. In

work [16], the authors use deep max-pooling CNN to

detect mitosis, which is an important indicator of breast

cancer. The proposed method won the ICPR 2012 mito-

sis detection competition. In order to save the training

time, the DeCAF features are extracted by using a pre-

trained CNN and then a classifier is learned for the new

classification task [10]. Both single task CNN and multi-

task CNN architectures are proposed to classify breast

cancer histopathology images [17]. Most of the CNN-

based schemes in the second category just adopt one

single model to recognize cancer, the generalization abil-

ity is insufficient. The authors of work [11] train different

patch-level CNNs and merge these models to predict the

final image label based an improved existing CNN, and

achieves state-of-the-art results on the large public breast

cancer dataset [9].

Although the above CNN-based methods achieve bet-

ter results than the first category, the used networks

generally have more model parameters and higher com-

puting burden in inference stage, and thus they are

more complex than the traditional scheme. Especially, the

recently designed networks tend to have more layers and

parameters, such as the ILSVRC 2015 winner ResNet [18]

has more than 100 layers and 60 million parameters. This

will cause several problems: big store space requirement,

large run-time memory consumption during inference,

higher classification latency due to the millions of com-

puting operations.

To address these problems, many works have been pro-

posed to compress large CNNs for fast inference [19–26].

The authors in [23] propose a HashedNets architecture,

which can exploit inherent redundancy in neural net-

works to achieve reductions in model size. HashedNets

uses a low-cost hash function to randomly group con-

nection weights into hash buckets, and all connections

within the same hash bucket share the same parame-

ter value. Although the storage space can be reduced

by this kind of architecture, neither the run-time mem-

ory nor the inference time can be decreased. In [24],

a three-stage compression pipeline is proposed: prune

the important connections of the network, then achieve

weight sharing by quantizing the weights, and finally apply

Huffman coding to further remove the redundancy. This

method achieves remarkable results on model size com-

pression and time saving, but many different techniques

need to be applied together. A dynamic and more efficient

method is proposed to prune neural network weights in

[25]. However, it needs specially designed software or

hardware accelerators to reduce run-time memory and

inference time. Recently, the authors in [26] propose a net-

work slimming scheme to achieve channel-level sparsity
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in deep CNNs. They directly use the specific parame-

ter of BN layers as the channel scaling factor to identify

and remove the unimportant channels during training.

However, the adopted parameter does not explicitly model

interdependencies between channels and thus the channel

importance is not decently extracted.

Most of the above model compression methods can

only address one or two challenges mentioned above and

some of the techniques require specially designed soft-

ware/hardware accelerators [25]. Besides, few deep model

compression studies pay attention to the breast cancer

histopathology dataset.

Two important challenges are left open in the existing

breast cancer histopathology image classification:

• The adopted deep learning methods usually design a

patch-level CNN, and put the downsampled whole

cancer image into the model directly. However, due

to the information loss introduced by the

downsampling, the models are not sufficient to

capture the local detail information. The model with

stronger representation which can extract both global

structural information and local detail information

simultaneously is worth studying.
• The larger CNNs produce stronger representation

power, but consume larger on-chip/off-chip memory

and utilize more computing resource, which leads to

higher diagnosing latency in many real-world clinical

applications. How to design a compact yet accurate

CNN to alleviate the problems is still challenging.

In this work, we propose a breast cancer histopathology

image classification through assembling multiple compact

CNNs to address the above two challenges.

The contributions of this paper are summarized in the

following:

• A hybrid CNN architecture is designed, which

contains a global model branch and a local model

branch. By local voting and two-branch information

merging, our hybrid model obtains stronger

representation ability.
• To alleviate the effect of large model size and

generate compact CNN, we first propose the

Squeeze-Excitation-Pruning (SEP) block based on the

original Squeeze-Excitation (SE) module in [27], and

then embed it into the hybrid model. Thus the

channel importance can be learned and the

redundant channels are removed.
• To further improve the generalization ability of

classification, we further propose a special model

bagging scheme. Multiple models are built with

different data partition and composition, and then

they are assembled together to vote for the final result.

Methods
In this section, we propose our breast cancer histopathol-

ogy image classification scheme. Firstly, we introduce

the proposed hybrid CNN architecture and local/global

branches. Then, we present the preprocessing, dataset

augmentation and the compact CNN model design flow,

and finally, model assembling will be described.

Hybrid cNN architecture

To merge more key information when in classification, a

hybrid CNN unit is proposed. The proposed framework

of our hybrid CNN architecture is shown in Fig. 1. It

mainly includes a local model branch and a global model

branch. For a histopathology image, on the one hand, a

patch sampling strategy is performed first and a series of

image patches are generated. Then the produced patches

are passed to the local model branch, and N predic-

tions (P1,P2, ...,PN ) are yielded for the N image patches.

Fig. 1 Proposed hybrid CNN architecture. Two model branches are integrated together to extract more key information, and the channel pruning

module is embedded to compact the network
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Patching voting is further performed for theN predictions

and thus the final output PL for the local model branch

is generated. On the other hand, the downsampled input

image as a whole is put into the global model branch and

the prediction PG is obtained. Finally, the local prediction

PL and the global prediction PG are weighted together by

λ, as shown in (1).

P = λPL + (1 − λ)PG (1)

Global/Local model branch

The global and local model branch adopt the same CNN

structure, as shown in Fig. 2. Table 1 illustrates the details

of our proposed CNN.

In our work, the Inception module [28], residual net-

work [18], and Batch Normalization (BN) techniques [29]

are combined together to ensure recognition performance.

The adopted Inception architecture is composed of a

shortcut branch and a few deeper branches, as shown in

Fig. 3(a). The Inception network consists of 1 ×1, 3 ×3,

5 ×5 filters, and 3 ×3 max pooling. In the structure, 1 ×1

convolutions are used to compute reductions before the

expensive higher dimensional filters: 3 × 3 and 5 ×5

convolutions. In our model, totally seven Inception lay-

ers are integrated to address the problem of gradients

vanishing/exploding, which guarantees the performance

of deeper models. To further gain accuracy from con-

siderably increased depth and to make our model easier

to optimize, we adopt residual networks (Inception-4c

to Inception-4e, Inception-4d to SEP-4e) in the model.

Besides, the BN technique is adopted to allow the uti-

lization of much higher learning rates and be less careful

about initialization by normalizing layer inputs, which

ensures a high robustness of our model.

As shown in Fig. 2, we connect each Inception mod-

ule to a SEP block, which is used to compress our model.

The proposed SEP block is constructed based on the

original SE block in work [27] by adding the channel

pruning power. The SE block can adaptively recalibrate

channel-wise feature responses by explicitly modeling

interdependencies between channels. The basic structure

of the SE block is illustrated in Fig. 3(b). For feature

maps X ∈ RW×H×C of the CNN layer (e.g. the Inception

module), they are first passed through a squeezing oper-

ation, which aggregates the feature maps across spatial

dimensionsW×H to produce a 1×1×C channel descrip-

tor. The squeezing operation is implemented by a global

pooling, and the channel descriptor embeds the distri-

bution of channel-level feature responses. After global

pooling, a statistic vector z ∈ RC is generated [27]. z =

[z1, ..., zi, ..., zC], and the i-th element of z is calculated by:

zi =
1

H × W

H
∑

m=1

W
∑

n=1

xi(m, n) (2)
Fig. 2 The designed CNN architecture. Both the global branch and

the local branch adopt the same structure
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Table 1 The details of the proposed initial CNN model

Type Patch size/Stride Output Depth Params

Convolution 7×7/2 112×112×64 1 2.7K

Max pool 3×3/2 56×56×64 0

Convolution 1×1/1 56×56×64 1 0.8K

Convolution 3×3/1 56×56×192 1 112K

Max pool 3×3/2 28×28×192 0

Inception(3a) 28×28×256 2 159K

SEP block 1×1 28×28×256 2 32K

Inception(3b) 28×28×480 2 380K

SEP block 1×1 28×28×480 2 32K

Max pool 3×3/2 14×14×480 0

Inception(4a) 14×14×512 2 364K

SEP block 1×1 14×14×512 2 32K

Inception(4b) 14×14×512 2 437K

SEP block 1×1 14×14×512 2 32K

Inception(4c) 14×14×512 2 840K

SEP block 1×1 14×14×512 2 32K

Inception(4d) 14×14×528 2 580K

SEP block 1×1 14×14×528 2 32K

Inception(4e) 14×14×1856 2 840K

SEP block 1×1 14×14×1856 2 32K

Max pool 3×3/2 7×7×1856 0

Ave pool 7×7/1 1×1×1856 0

Linear 1×1×2 1 2K

Softmax 1×1×2 0

The output of the convolution layer and SEP block may change after the channel

pruning stage in every model compression loop

Then an excitation operation is performed on the gener-

ated channel descriptor to learn the sample-specific acti-

vation factor s = [s1, s2, ..., sC] for C channels by using two

fully-connected (FC) layers and two corresponding activa-

tion layers (ReLu and Sigmoid). The excitation operation

can explicitly model interdependencies between channels.

According to [27], s can be denoted as:

s = σ(W2)δ(W1z)) (3)

where δ and σ are activation functions ReLu and Sigmoid

for the two FC layers, respectively;W1 ∈ R
C
r ×C andW2 ∈

RC×
C
r (in this work r = 16) are weights of the two FC

layers. Then the feature maps X are reweighted to X̃ :

X̃ = s · X = [s1 · x1, s2 · x2, ..., sC · xC] (4)

where X̃ =
[

x̃1, x̃2, ..., x̃C
]

, and X = [x1, x2, ..., xC].

In our work, we use the activation factors si (i =

1, 2, ...,C) obtained by SE block as channel weights in

assisting the model compression. Through embedding the

statistical module and pruning block, our proposed SEP

block can realize channel pruning function, as shown in

Fig. 4. Specifically, the SEP block works differently in the

training stage and pruning stage. In the training stage, the

SEP performs like the original SE block: the C channels

are connected to the scale module and then reweighted.

The original SE part is trained within the entire network.

In the pruning stage, the SEP block first makes statis-

tics on the activation factors for all the training samples.

Then it derives the channel weights WL (taking Layer L

for example) for the entire training dataset. Finally, the

channel-level pruning will be performed according to the

pruning control parameter, and the original C channels

will be compressed to Cp channels. The detailed chan-

nel pruning process will be discussed in compact model

design part.

Besides the Inception layers and SEP blocks, the convo-

lution layers with size 1 ×1, 3 ×3 and 7 ×7 are used in our

model.

Preprocessing and dataset augmentation

Preprocessing

The breast histology microscopy we used in our work is

stained by HE, and this staining method can help medical

workers better observe the internal morphology of the tis-

sue cells. However, color variation happens due to differ-

ences in staining procedures, and these color differences

of the histology images may adversely affect the training

and inference process in CNNs. We adopt the image pro-

cessing methods in [30], which presents an approach for a

more general form of color correction. This method uses

a simple statistical analysis to impose the color character-

istics of one image on another, and thus can achieve color

correction by choosing an appropriate source image.

Dataset Augmentation

To avoid the risk of overfitting, data augmentation is often

performed for the training process after dataset splitting.

The strategies we used include random rotation, flip-

ping transformation and shearing transformation. Unlike

the augmentation methods (rotation with fixed angles) in

[12], we rotate the images randomly. Besides, the shearing

transformation method is also used, which zooms in or

zooms out images in different directions. For each training

sample, eight images are generated by using our adopted

data augmentation method.

Compact model design

The hybrid CNN architecture proposed above is pre-

trained first. In this section, we will conduct model com-

pression based on the pre-trained model and thus remove

the model redundancies by channel pruning. The pruning

flow is shown in Fig. 5. First, based on the pre-trained ini-

tial network, the channel weights are calculated by using

the embedded SEP block. Then the unimportant channels
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Fig. 3 (a) Adopted inception architecture. (b) The basic structure of the SE block

Fig. 4 The proposed SEP block. The SEP block contains the original Scale, the added Statistical Module and Pruning Block. In the training stage, the

original SE network is learned with Scale operation; in the pruning stage, the channel importance is obtained in Statistical Module and Pruned by

using Pruning Block
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Fig. 5 Channel pruning flow

with lower weights are discarded to make the network

compact. After that, the newly compressed network is

retrained to guarantee the high accuracy on the dataset.

The three steps are repeated for several loops before

finishing the model compression process. The channel

weights computing and channel pruning will be detailed

in the following.

Channel weights computing

After the retraining process in the previous loop, the

model weights of FC layers in the SEP subnetwork are

re-generated. We should notice that for the first prun-

ing loop, the related weights are produced by the initially

pre-trained network. By using these model weights and

the corresponding activation layers, the C activation fac-

tors s1, s2, ... , sC corresponding to C channels of one

layer can be calculated. Generally, the key channels to the

final classification results are prone to have higher acti-

vation factors and vice verse. Thus the activation factors

are chosen as channel weights for model compression. For

each training sample, the corresponding sample-specific

channel weights can be produced. Then the question is

how to evaluate the entire channel importance for our

model based on thousands of training samples. For each

channel of the model, the channel-weight average on the

training set is directly selected as its importance measure.

Suppose that the size of the training set isN . For a CNN

with M convolutional layers, a specific convolution layer

LD (D from 1 toM) has C channels. Corresponding to the

C channels, the channel importance is denoted asWLD =

[wD1,wD2, ...,wDC]. For training sample Tj (j from 1 to N),

the channel activation factors are [ sD1j, sD2j, ..., sDCj], thus

the channel importance for layer LD can be described as

WLD = [wD1,wD2, ...,wDC]

=

[
∑N

j=1 sD1j

N
,

∑N
j=1 sD2j

N
, ...,

∑N
j=1 sDCj

N

]

(5)

In this manner, we can get all the channel importance

for theM convolutional layers.

Two convolution layers (conv1 and conv2) are selected

and the importance of channels in each layer is visualized

as Fig. 11(a) and Fig. 11(e). According to the figure, we

can see that there aremany channels with low importance,

which means these channels are redundant and thus can

be pruned. In the following, we will detail the channel

pruning flow of our scheme.

Channel pruning

In work [31], after computing channel weights, the

authors then conduct channel pruning by setting a thresh-

old for each layer. More specifically, for a convolutional

layer, the following equation is used to determine the

pruning threshold,

TH = µ + σ + k (6)

where TH refers to the pruning threshold, µ and σ are the

mean and the standard deviation of the channel weights

in the same layer, respectively. k is an adjustable parame-

ter which ranges from 0.1 to 0.5. By setting a lower value

to k, a higher threshold will be produced and thus more

channels will be pruned. We propose another different

channel pruning method, which can accurately control

how many channels are pruned. Let O be the target prun-

ing ratio (say, 50%), and R be the number of training loops

we want to perform. If equal channel pruning proportion

X is targeted in each training loop, then we have

X + (1 − X)X + ...(1 − X)(R−1)X = O (7)

By solving the above function, we get

X = 1 − (1 − O)(1/R) (8)

Then in each channel pruning loop, we will discard the

unimportant channels which belong to the X proportion

according to the ranking of weights, as shown in Fig. 6.
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Fig. 6 A schematic pruning example. The channels belong to the X proportion with low-importance will be pruned

Model assembling scheme

To reduce generalization error and improve performance,

multiple hybrid models with the same architecture are

assembled together. Each hybrid model is obtained by

using a subset of the training data. Our assembling scheme

can be treated as a kind of bagging method. Bagging is

proposed by Leo Breiman in 1996 [32] to improve classifi-

cation by combining classifications of randomly generated

training sets.

As shown in Fig. 7, in this paper we propose a special

bagging scheme with 5models. In detail, the entire dataset

is first randomly divided into two parts: a training set

and a testing set. The training set is utilized to produce

multiple hybrid models, and the testing set is left for eval-

uating the generation ability of our classification method.

The training set is further split into 5 non-overlapping

equal subsets with random sampling manner. Four of

these subsets are selected as the training samples and

the left one subset is chosen as the validation set. Then

different classificationmodels can be constructed by using

different training and validating set splittings, as shown in

Fig. 7. In the inference process, each hybrid model makes

Fig. 7 The proposed bagging scheme with five models
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a decision and predicts the histology image label. Using

a multi-model voting scheme, the final prediction can be

produced.

Results

Implementation details

The implementation details for our algorithm are pre-

sented in this section. Codes and models are available at

https://github.com/WendyDong/BreastCancerCNN.

All the experiments are conducted under Centos 7.0

environment. The training process uses 2 NVIDIA GTX

1080Ti 12GB GPUs and adopts the Caffe deep learning

framework by the Berkeley Learning and Vision Center

(BLVC) [33].

The mini-batch Stochastic Gradient Descent (SGD)

method is carried out based on backpropagation and

the mini-batch size of 10 is used to update the network

parameters, including all the convolution layers and SEP

blocks. The initial starting learning rate is 0.0004 and

then it decreases exponentially every 10000 iterations. A

momentum term of 0.9 and a weight decay of 0.009 are

configured in the training process. Our CNN model is

trained for 40000 iterations.

Dataset description

Our method is verified in two breast cancer datasets:

BreaKHis and the BreAst Cancer Histology (BACH) [12]

dataset.

BreaKHis

The BreaKHis database is introduced by work [9]. It con-

tains microscopic biopsy images of benign and malignant

breast tumors. The database is composed of 7,909 image

samples generated from breast tissue biopsy slides, which

are stained with HE. The images are divided into benign

(adenosis, fibroadenoma, phyllodes tumor, and tubu-

lar adenoma) and malignant tumors (ductal carcinoma,

lobular carcinoma, mucinous carcinoma, and papillary

carcinoma) based on the aspect of the tumoral cells under

the microscope. Some exemplar samples are shown in

Fig. 8(a).

To ensure a fair comparison, the experimental protocol

proposed in [9] is strictly followed. We use the same man-

ner to divide the BreaKHis dataset into training (70%) and

testing (30%) set. BreaKHis is mainly used to analyze the

classification performance and evaluate the compression

strategy of our hybrid model.

BACH

The BACH contains 2 types dataset: microscopy dataset

and WSI dataset. The BACH microscopy dataset is com-

posed of 400 HE stained breast histology images [34]. All

images are of equal dimensions (2048 ×1536), and each

image is labeled with one of four classes: (1) normal tissue,

(2) benign lesion, (3) in situ carcinoma and (4) invasive

carcinoma. The WSI subset consists of 20 whole-slide

images of very large size, such as 40000 ×60000. Each

WSI can have multiple normal, benign, in situ carcinoma

and invasive carcinoma regions. The annotation of the

whole-slide images was performed by twomedical experts

and images where there was disagreement were discarded.

Each pixel of these regions (the remaining tissue is consid-

ered normal) has a corresponding label indicating benign,

in situ carcinoma and invasive carcinoma regions.

In our experiment, BACH WSI dataset is selected to

test the algorithm. For each WSI, a series of patches are

sampled from multiple key regions, and in Fig. 8(b) some

example images are shown. The normal tissue and benign

lesion are labeled as the benign class, and in situ car-

cinoma coupled with invasive carcinoma are treated as

Fig. 8 Exemplar images collected from (a) BreaKHis dataset and (b) BACH dataset

https://github.com/WendyDong/BreastCancerCNN


Zhu et al. BMCMedical Informatics and DecisionMaking          (2019) 19:198 Page 10 of 17

cancer lesion. The dataset is divided into a training sub-

set (including validation set) and a testing subset. The

training subset is used to train multiple models and the

testing subset is adopted to evaluate the performance of

our model assembling strategy.

Evaluation criteria

We report the recognition rate both at the patient level

(PL) and the image level (IL) [11]. The patient score (PS)

is defined as

PS = Nrec/NP (9)

whereNP is the number of cancer images for patient P and

Nrec is the number of images that are correctly classified.

Based on PS, the global patient recognition rate is defined

as

PL =

∑

PS

Npatient
(10)

where Npatient is the number of the patient.

The image level recognition rate is calculated by the

following function,

IL =
Nrec

Nall
(11)

where Nall is the number of cancer images of the test set

and Nrec is the correctly classified cancer images.

Besides, we also include positive predictive value (PPV)

and Cohen’s Kappa for further evaluation:

PPV =
TP

TP + FP
(12)

where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively.

Kappa =
Acc − Accr

1 − Accr
(13)

whereAcc=(TP+TN)/(TP+TN+FP+FN). In this work,

Kappa measures the agreement between the machine

learning scheme and the human ground truth labeled by

pathologists. In (13), Acc is the relative observed agree-

ment, and Accr is is the hypothetical probability of chance

agreement, which can be computed as the probability of

each classifier randomly selecting each category by using

the observed data [35].

Classification results

Classification results of three methods are listed to fully

evaluate the contributions of each part in our model: 1.

results based on only the global model branch; 2. results

based on only the local model branch; 3. results based

on the proposed hybrid CNN model. For method 1, each

input image is directly processed by the global model. For

method 2, 15 non-overlapping patches are extracted from

each input image and then they are put into the local

model generating 15 prediction results. Then voting is

performed to classify the input image based on the aver-

age of 15 predictions. For method 3, both local branch and

global branch predictions are merged together by (1) to

generate the final results (0.6 is selected for λ in our exper-

iment). Besides, we also show the results of using majority

voting (Max) scheme when merging patch predictions,

denoted as “2(Max)" and “3(Max)" in the table.

The results of the above methods are shown in Table 2

and Table 3 in terms of accuracy, Kappa and PPV on

both BACH and BreaKHis. Similar to work [11], both

patient and image level results are calculated for accuracy.

Besides, F1 score, sensitivity, and precision for image level

performance is further discussed on BreaKHis, as shown

in Table 4.

As can be seen from Table 2 and Table 3, method 1 has

already produced a decent accuracy by using the global

branch model. In most cases of Table 2 and Table 3, some

improvements can be observed for the local branchmodel

voting strategy (method 2) when compared to the global

branch model. Although method 2 can achieve compa-

rable performances with method 3 for some cases, such

as the IL results of BreakHis 40×, as shown in Table 3.

However, there are still many cases that the hybrid model

achieves obviously better results than the local voting

scheme. On the whole, the hybrid model (method 3)

achieves the best result among all the three methods. This

means that the local information and global information

can effectively work together to make the decision. In

fact, although the patch-level voting scheme in method 2

gives some cue for the global-level information, the global

branch model of method 1 can extract stronger effective

global representation when processing the input image as

a whole. Besides, for different magnification factors, the

recognition algorithm (such as method 3) produces dif-

ferent performances. On 40 × and 200 × datasets, higher

accuracy is prone to happen when compared to 100× and

400 × datasets.

From Table 4, one can notice that the similar phe-

nomenon happens to F1 score, sensitivity and pre-

cision for our methods: local branch voting strategy

achieves higher performance than global branch; hybrid

model produces the optimal results. The performance

of our hybrid model is further analyzed by drawing the

Table 2 Classification Results on BACH

Str. IL(Acc.) PL(Acc.) Kappa PPV

1 86.2 ±1.9 82.3±3.4 0.724±0.037 84.2±2.8

2(Max) 84.8 ±2.4 82.3±2.6 0.697±0.048 87.2±3.2

2 84.8 ±2.3 82.6±2.3 0.695±0.046 83.5±3.2

3(Max) 86.4 ±1.5 84.1±1.3 0.727±0.030 88.5±1.67

3 86.6 ±1.7 83.1±1.7 0.732±0.033 84.7±2.48
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Table 3 Classification Results on BreaKHis

Cri. Str.
Magnification Factors

40× 100× 200× 400×

PL(Acc.)

1 82.4 ±3.4 80.8 ±1.1 81.3 ±1.5 77.3 ±2.9

2(Max) 83.7±2.3 81.4±2.9 82.8±3.7 79.0±4.6

2 83.9 ±2.3 82.2 ±3.7 83.4 ±1.8 79.6 ±5.0

3(Max) 83.8±2.3 82.3±1.6 83.5±2.5 79.2±4.8

3 84.5 ±2.5 83.4 ±2.5 83.9 ±1.7 80.0 ±4.3

IL(Acc.)

1 82.0 ±2.5 81.1 ±0.9 81.4 ±1.8 76.8 ±3.9

2(Max) 84.3 ±0.9 81.5 ±3.1 84.0 ±4.6 79.7 ±4.4

2 85.0 ±1.3 83.6 ±3.1 84.6 ±1.8 80.4 ±5.1

3(Max) 84.8 ±0.9 82.7 ±1.7 84.7 ±3.5 79.8±4.6

3 85.6 ±1.4 83.9 ±2.8 85.4 ±1.4 81.2 ±4.5

Kappa

1 0.585 ±0.050 0.547 ±0.031 0.563 ±0.020 0.449 ±0.090

2(Max) 0.635 ±0.030 0.536 ±0.123 0.619 ±0.119 0.500 ±0.132

2 0.637 ±0.036 0.525 ±0.131 0.607 ±0.102 0.514 ±0.149

3(Max) 0.635 ±0.029 0.579 ±0.061 0.637 ±0.085 0.504 ±0.135

3 0.651 ±0.039 0.551 ±0.106 0.625 ±0.087 0.535 ±0.128

PPV

1 75.1 ±6.2 77.4 ±4.8 73.4 ±5.7 70.4 ±7.4

2(Max) 84.7 ±3.8 81.4 ±2.7 78.5 ±0.7 77.3 ±5.3

2 85.9 ±3.5 81.6 ±1.9 79.4 ±1.7 79.5 ±6.6

3(Max) 84.7 ±3.9 82.1 ±1.5 79.2 ±1.2 77.8 ±5.5

3 86.4 ±2.4 83.3 ±2.1 80.1 ±2.1 81.3 ±5.1

associated ROC curve, as shown in Fig. 9. The 200 ×

magnification factor shows the best results among per-

formances obtained with different magnification levels

under 0.4 False Positive Rate (FPR). However, when FPR

is higher than 0.4, the 40 × magnification factor produces

a superior performance to 200 ×. Overall, 200 × mag-

nification factor shows a higher potential than the other

magnification factors.

Table 4 F1, precision, and recall on BreaKHis

Cri. Str.
Magnification Factors

40× 100× 200× 400×

F1

1 86.7 ±2.2 86.6 ±0.6 86.4 ±2.1 83.5 ±2.9

2 89.4 ±0.8 88.6 ±1.7 89.0 ±1.7 86.3 ±3.2

3 89.8 ±1.0 88.8 ±1.5 89.4 ±1.3 86.8 ±2.8

Pr.

1 85.4 ±1.7 82.5 ±0.9 85.2 ±2.1 79.2 ±3.7

2 84.7 ±1.7 83.7 ±5.1 87.5 ±2.3 81.2 ±5.7

3 85.3 ±1.8 83.9 ±4.7 88.0 ±1.5 81.6 ±5.1

Rec.

1 88.3 ±4.0 91.3 ±2.1 87.7 ±4.8 88.5 ±3.3

2 94.8 ±1.2 94.5 ±3.0 90.6 ±2.0 92.5 ±3.2

3 94.9 ±0.8 94.6 ±2.9 90.8 ±1.9 93.1 ±3.0

Compact model performance

In this paper, we set the specific target pruning ratio

O = 50%, and let the training loops R = 1. According

to (8), 50% channels should be removed in one pruning

process. With 50% channel pruning, accuracy, F1 score,

sensitivity and precision are listed in Table 5 and Table 6.

The optimized compact hybrid model achieves compara-

ble results when compared with Table 3 and Table 4. Some

results in Table 5 and Table 6 even slightly outperforms

the original model, such as 40 × and 100 ×. The possi-

ble reason is that the compact model has a lower risk of

overfitting by removing some redundancy.

In Fig. 10, a channel pruning example with different R

(1 to 4) under the same target pruning ratio O = 80% is

shown to further analyze the relationship between accu-

racy and R. With the increasing of R, the model accuracy

is improved accordingly and the pruning proportion X

for each loop drops. This tells that by increasing training

loops R our model performance will be further improved

slightly, but more training loops (computing resources)

will be needed. In our experiment, we already can achieve

decent results by setting training loops R = 1.

In Fig. 11, the distributions of channel importance of

the two selected channels are also visualized after prun-

ing. We can see that the channel importances have more
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Fig. 9 RoC curves of our hybrid model in different magnification factors

compact distribution (with lower variance) and almost all

remaining channels have equal importance value (around

0.5). This means that all the selected channels have suffi-

cient information and no channel is obviously superior to

the others.

We also analyze the relationship between accuracy and

different pruning ratios of our compact model. By choos-

ing a model trained by 40 × dataset, the performance

with different pruning ratios is depicted in Fig. 12(a).

From the figure, one can see that under a certain pruning

ratio threshold (say, 90%), the pruned network produces

comparable accuracy (actually most points perform bet-

ter) with the original model. However, it will ruin the

accuracy when the pruning ratio increases further. For

example, the accuracy will drop sharply to 0.816 with 95%

pruning ratio. Under different pruning ratios, the float-

point-operations (FLOPs) and weights are also depicted

in Fig. 12(b). The number of FLOPs and weights almost

decreases linearly. It is worth noting that the declining

speed of FLOPs and weights will slow down when the

pruning ratio is close to 1. The reason is that the first

Table 5 Classification results after pruning 50% channels

Acc. Str.
Magnification Factors

40× 100× 200× 400×

PL

1 82.4 ±3.5 80.2 ±9.5 81.9 ±5.4 75.7 ±3.3

2 84.9 ±2.5 83.1 ±3.9 84.0 ±1.3 79.3 ±5.1

3 85.2 ±2.6 83.5 ±3.8 84.1 ±1.4 79.3 ±2.7

IL

1 81.3 ±2.9 79.9 ±0.8 81.7 ±1.3 75.3 ±3.5

2 85.2 ±1.7 83.8 ±2.9 84.8 ±1.8 80.2 ±5.0

3 85.7 ±1.9 84.2 ±3.2 84.9 ±2.2 80.1 ±4.4

three convolution layers are not pruned (without flowed

SEP blocks) in our hybrid model as denoted in Fig. 2. For

clarity, the results in Fig. 12(b) are also tabulated as Table 7

to show the model size and FLOPs improvement by using

our method. The weights and FLOPs of work [11] and [17]

are also included in Table 7. With the increase of pruning

ratio, our model will have the smallest amount of weights.

To make the model more compact, the other tradi-

tional compression scheme Dynamic Network Surgery

(DNS) [25] method, which can properly incorporate con-

nection splicing into the training process to avoid incor-

rect pruning, is merged with our method. The result

in Fig. 13 shows the recognition accuracies by using

our channel pruning and DNS together. From the figure

we can see that the joint approach far outperforms the

results only using DNS, especially in the small model size

range.

Table 6 F1, precision, and recall after pruning 50% channels

Cri. Str.
Magnification Factors

40× 100× 200× 400×

F1

1 86.9 ±1.7 86.0 ±0.7 87.1 ±1.2 82.5 ±2.3

2 89.9 ±1.1 88.5 ±1.4 89.1 ±1.7 86.1 ±3.1

3 90.0 ±1.2 88.8 ±1.7 89.2 ±1.9 86.1 ±2.7

Pr.

1 82.8 ±4.2 80.9 ±2.2 83.9 ±3.4 78.2 ±4.1

2 84.6 ±2.2 85.4 ±5.1 86.4 ±2.2 81.5 ±5.6

3 84.6 ±2.5 85.2 ±5.1 86.1 ±2.8 81.0 ±5.0

Rec.

1 91.7 ±2.5 91.8 ±2.5 90.8 ±3.3 87.4 ±1.2

2 95.9 ±0.7 92.2 ±3.4 92.0 ±2.2 91.6 ±3.9

3 96.3 ±0.9 93.2 ±2.9 92.7 ±2.3 92.2 ±3.2
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Fig. 10 A channel-pruning example with target pruning ratio 80%. The black line represents the compressed model accuracy

[0.851,0.878,0.877,0.883] with R from 1 to 4; the red dotted line denotes the corresponding pruning proportion X [0.8,0.55,0.42,0.33] for each loop

under 4 different situations

Fig. 11 Channel pruning visualization of two convolution layers. (a) (e): The original importance distributions before channel pruning. (b) (f):

Histograms of original importance distributions. (c) (d): The importance distributions after channel pruning. (g) (h): Histograms of importance

distributions for the pruned network
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Fig. 12 Classification accuracy, FLOPs and weights under different pruning ratios

Performance comparisons

For BreaKHis dataset, the results reported in related

works are the average of five trials, and the folds are

provided along with the dataset to allow for a full com-

parison of classification results [9]. For the fair compar-

ison, the same dataset partition and fold segmentation

are used in our test. However, it should be noted that

the multi-model assembling scheme requires dividing the

dataset into training subsets, validation subsets and test-

ing dataset, which needs different data partition manner

with the BreaKHis dataset. Thus, we just compare our

method without the multi-model assembling technique

to the other works for BreakHis dataset. To show the

performance comparisons of our complete scheme with

the other works, the testing is performed on the samples

from BACH WSI dataset. In detail, 10270 images of size

512 × 768 are sampled, 2645 of which are used as the

testing dataset and the left 7625 samples are adopted to

train multiple (5 models are generated in our experiment)

Table 7 Weights size and FLOPs improvement by using our

channel pruning scheme under different pruning ratios

Method Pruning Degree Weights (M) FLOP (M)

Our

Before Pruning 3.77 2920.3

Pruning Ratio 0.5 1.76 1861.8

Pruning Ratio 0.6 1.4 1663.1

Pruning Ratio 0.7 1.06 1477.8

Pruning Ratio 0.8 0.74 1305

Pruning Ratio 0.9 0.43 1133.6

Pruning Ratio 0.95 0.29 1063.8

Work[11] N/A 0.55 47.4/188.5

Work[17] N/A 13.5 8521

The weights and FLOPs of work [11] and [17] are also included in the table. The

work [11] has two types of networks with different input sizes: 32 ×32 and 64 ×64,

and the corresponding FLOPs are 47.4 (M) and 188.5 (M), respectively

models. For each specific model (each fold), 6100 sam-

ples are as training pictures and 1525 samples are utilized

for validation, according to our bagging scheme. For each

samples of the 6100 training data, 8 pictures are gener-

ated according to our data augmentation method. After

data augmentation, each image is resized to 1120 × 672.

Then 15 non-overlapping patches with size 224 × 224 are

extracted from each image. Therefore, totally 6100 × 8

images and 6100 × 8 × 15 patches are generated for each

fold. The 6100 × 8 images are used to train the global

branch and the 6100×8×15 patches are used to train the

local branch of the model.

In Table 8, we list the result of our hybrid model without

multi-model assembling together with the experimental

results presented in [9], [17] and [11]. All the reported

results in work [17] are patient level and the results of

image level are not available. All works listed for com-

parison are strictly following the data partition manner in

work [9]. As presented in Table 8, work [11] achieves the

best patient accuracy among all the magnification factors.

Our hybrid model achieves the second place for 40× and

100× magnification factors. For image level testing, our

hybrid model gets slightly better results for 40×, 100×

and 200× factors when compared to work [11]. In work

[11], the reported results are obtained by combining four

patch-level models trained with different patch generation

strategies, which produces the state-of-the-art for patient

level result. In the following, we will compare the pro-

posed hybrid model coupling with our model assembling

technique to work [11].

In work [11], the authors provide two strategies to gen-

erate the training samples: sliding window allowing 50%

of overlap between patches; random extraction strategy

with a fixed arbitrary number of patches (such as 1000)

from each input image. Besides, the authors use 2 patch

sizes for each strategy (32 × 32 and 64 × 64), and thus

totally 4 different models are generated based on different
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Fig. 13 Classification accuracy by combining different model compression schemes

training set. We reproduce the 4 models and use Max

rule (which shows higher accuracy than Sum and Prod-

uct rules in [11]) to merge them. For our work, 5 models

are trained and assembled together using Sum rule to

vote for the final image label. Table 9 summarizes the

comparisons between our work and different schemes in

work [11]. Sliding window scheme of 64 × 64 achieves

the best performance among all the 4 patch models of

work [11], which produces 82.1% PL and 77.1% IL, respec-

tively. By using theMaxmerging scheme, the recognition

accuracy can be improved to 85.1% and 79.3%, respec-

tively. By adopting the multi-model assembling strategy,

our method can achieve 87.5% patient level and 84.4%

image level accuracy, which outperforms the best results

of work [11].

Discussion
In this study, a breast cancer histopathology image clas-

sification by assembling multiple compact CNNs is pro-

posed. Compared to reported breast cancer recognition

Table 8 Performance comparisons between our hybrid model

and the other schemes on BreaKHis

Acc. Str.
Magnification Factors

40× 100× 200× 400×

PL

[9] 83.8 ±4.1 82.1 ±4.9 85.1 ±3.1 82.3 ±3.8

[17] 83.0 ±3.0 83.2 ±3.5 84.6 ±2.7 82.1 ±4.4

[11] 90.0 ±6.7 88.4 ±4.8 84.6 ±4.2 86.1 ±6.2

Our 85.2 ±2.6 83.5 ±3.8 84.1 ±1.4 79.3 ±2.7

IL

[9] 82.8 ±3.6 80.7 ±4.9 84.2 ±1.6 81.2 ±3.6

[11] 85.6 ±4.8 83.5 ±3.9 83.1 ±1.9 80.8 ±3.0

Our 85.7 ±1.9 84.2 ±3.2 84.9 ±2.2 80.1 ±4.4

algorithms that are evaluated on the publicly available

BreaKHis dataset, our proposed hybrid model achieves

comparable or better performance (see Table 8), indicat-

ing the potential of combing both local model and global

model branches. By embedding the SEP block into our

hybrid model, the channel importance can be learned and

the redundant channels are then removed. Under a cer-

tain amount of channel pruning, the optimized compact

network even produces better performance than the orig-

inal model, which confirms that the model compression

technique can lower the risk of overfitting (see Table 5).

However, over pruning channels (say pruning 95%) may

Table 9 Performance comparison between our scheme (with

assembling) and the state-of-the-art work [11] on BACH

Methods Strategy PL IL Kappa PPV

Work [11]

32 ×32
(random
sampling)

80.5 76.8 0.608 78.7

64 ×64
(random
sampling)

79.9 74.8 0.595 76.5

32 ×32 (sliding
window)

80.4 75.5 0.607 76.7

64 ×64 (sliding
window)

82.1 77.1 0.641 76.2

Max Fusion 85.1 79.3 0.700 78.4

This work
Hybrid model
with
assembling
(Sum)

87.5 84.4 0.749 85.7

Hybrid model
with
assembling
(Max)

87.4 84.2 0.748 84.6
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harm the model performance largely (see Fig. 12(a)). We

also show that our channel pruning scheme can be used in

conjunction with the other traditional compression meth-

ods, such as DNS in work [25], and this will generate

higher accuracy with the same model size (see Fig. 13).

The evaluation on the BACH dataset shows that the pro-

posed hybrid model with multi-model assembling scheme

outperforms the state-of-the-art work [11] in both patient

level and image level accuracy. Actually, we have veri-

fied the effectiveness of our model assembling strategy

in BACH challenge [34, 36], which is held as part of the

ICIAR 2018. It suggests that model assembling is crucial

to the task of breast cancer image (which has large vari-

ability in morphology) classification and can enhance the

model generalization ability, especially in small dataset

situation.

The application of machine learning technology, espe-

cially deep learning, to medical area research has become

more and more popular recently. The significance of the

machine learning algorithms is that it can reduce the

workload of pathologists, improve the quality of diagno-

sis, and reduce the risk of misdiagnosis. Our proposed

scheme in this work can be used in breast cancer auxiliary

diagnostic scenario, and realize workload reducing and

diagnosis quality promoting talked above. The first objec-

tive of this paper is still to ensure accuracy like the other

works, and we propose hybrid architecture and model

assembling to achieve this goal. Under the premise of

guaranteeing this, we have introduced a channel pruning

scheme to make our model more compact, which reduces

the computing burden. It should be noted that this study

has only proposed and analyzed a channel-level pruning

scheme for our hybrid model, and we do not target maxi-

mizing the model compression. If targeting higher model

compression, the other model compression algorithms

should be used together.

In the future, we will involve the experience of the

pathologists to guide our model design. Through visu-

alizing deep neural network decision [37], we will try

to highlight areas in a given input breast cancer image

that provide evidence for or against a certain tumor type.

Then, we could find out the differences of supporting

areas when making decision between pathologists and

algorithms. In addition, by applying the diagnostic experi-

ence as a priori, we target constructing an attention-based

model and thus improve the accuracy of our model in

future work.

Conclusion
We have proposed breast cancer histopathology image

classification based on assembling multiple compact

CNNs. The proposed scheme achieves promising results

for the breast cancer image classification task. Our

method can be used in breast cancer auxiliary diagnostic

scenario, and it can reduce the workload of pathologists as

well as improve the quality of diagnosis.
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