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ABSTRACT In the realm of image processing, enhancing the quality of the images is known as a super-

resolution problem (SR). Among SRmethods, a super-resolution generative adversarial network, or SRGAN,

has been introduced to generate SR images from low-resolution images. As it is of the utmost importance

to keep the size and the shape of the images, while enlarging the medical images, we propose a novel

super-resolution model with a generative adversarial network to generate SR images with finer details and

higher quality to encourage less blurring. By widening residual blocks and using a self-attention layer,

our model becomes robust and generalizable as it is able to extract the most important part of the images

before up-sampling. We named our proposed model as wide-attention SRGAN (WA-SRGAN). Moreover,

we have applied improvedWasserstein with a Gradient penalty to stabilize the model while training. To train

our model, we have applied images from Camylon 16 database and enlarged them by 2×, 4×, 8×, and

16× upscale factors with the ground truth of the size of 256 × 256 × 3. Furthermore, two normalization

methods, including batch normalization, and weight normalization have been applied and we observed that

weight normalization is an enabling factor to improve metric performance in terms of SSIM. Moreover,

several evaluation metrics, such as PSNR, MSE, SSIM, MS-SSIM, and QILV have been applied for having

a comprehensive objective comparison with other methods, including SRGAN, A-SRGAN, and bicubial.

Also, we performed the job of classification by using a deep learning model called ResNeXt-101 (32× 8d)

for super-resolution, high-resolution, and low-resolution images and compared the outcomes in terms of

accuracy score. Finally, the results on breast cancer histopathology images show the superiority of our model

by using weight normalization and a batch size of one in terms of restoration of the color and the texture

details.

INDEX TERMS SRGAN, Wasserstein gradient penalty, weight and batch normalization, perceptual loss,

breast cancer histopathology medical images, classification.

I. INTRODUCTION

Due to the cost of hardware and storage to acquire the high

resolution (HR) images from low resolution (LR) medical

images are advisable. To tackle the cost of hardware, image

super-resolution methods are drawing attention to the recon-

struction of poor-quality images with missing pixels on them.

Since it is vital to enlarge the pictures in a way that the texture

details and feature information are indistinct and clear by

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Callico .

using the quantitative performance of the applied SR meth-

ods, generative adversarial networks are gaining attention

from researchers as they are able to reconstruct the images

in a realistic manner [1].

Therefore, in this paper, we propose an SR solution

method based on generative adversarial networks (SRGAN)

with the aim of reconstructing histopathology breast cancer

images. We used a wide residual block instead of resid-

ual blocks. Moreover, in both generator and discriminator

models, we utilized a self-attention layer to catch the most

important features.
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Also, as training the GAN models is difficult and they are

prone to divergence, we have applied Wasserstein extension

with the gradient penalty that is added to the adversarial loss

criterion to improve the stability of the model during the

training phase.

Furthermore, perceptual loss in this study is calculated

from a combination of the image loss, adversarial loss, per-

ception loss, and total variation (TV) loss to generate SR

images that match human perceptions of structure, lumi-

nance, and contrast. As pre-trained models focus on natural

images, we have retrained a VGG-19 model on the medical

images prior to using this model to calculate the perception

loss. Similarly, the top and bottom gradients for both gen-

erator and discriminator have been recorded to monitor the

performance of the model. In this work, we have been moni-

toring several quantitative metrics, including Peak Signal-to-

Noise Ratio (PSNR), Mean Squared Error (MSE), Structural

Similarity Index (SSIM), Multiscale Structural Similarity

Index (MS-SSIM), and Quality Index based on Local Vari-

ance (QILV). During the evaluation, we focused on the SSIM

metric as the higher score we have gained from this metric,

the better result we have obtained in terms of preserving

context and color information.

Consequently, we have prioritized an epoch with the high-

est SSIM results since medical images will be used for

visual observation by doctors, and this metric is more in line

with human subjective visual perception. Finally, we have

done experiments on SRGAN [1] and A-SRGAN [2] mod-

els and trained them on the same database. These mod-

els have been examined with the same methods, including

improved Wasserstein gradient penalty and perceptual loss

as our proposed model to have an unbiased comparison.

Also, two normalization methods, including batch normal-

ization and weight normalization were applied and it has

been observed that weight normalization outperforms batch

normalization in terms of SSIM performance. After train-

ing our proposed model by using the weight normalization

technique, the weights of our model were stored and then

reused in the pre-processing phase of the classification to

enlarge the LR images and obtain their corresponding SR

ones. Afterward, the job of classification was performed for

SR, HR, and LR images to obtain an accuracy score for

each and then compare them. According to a comparison

study conducted by Shahidi et al. [3], a deep learning model

named ResNeXt-101 (32×8d) [4] gained a satisfactory result

for the classification by using BreaKHis database [5]. This

model is made up of in-built wide residual networks along

with identity connections. Also, the width of the ResNeXt

network is known as cardinality and it can improve accuracy

score and ability to withstand the complexity. So, in this

study, ResNeXt-101 (32 × 8d) was utilized to classify the

images.

The comparison of the results shows the positive impact

of our proposed method, WA-SRGAN, in the preprocessing

phase as accuracy for the classification through the SR images

is almost the same as the results obtained for HR images.

Overall, the contributions of this paper are mainly in eight

aspects.

1) We proposed a novel generator model equipped with

the combination of wide residual blocks and self-

attention layers before up-sampling. This model can

improve image quality by learning more prior informa-

tion of sample data and reducing the difference between

reconstructed image blocks.

2) We applied a combination of image loss, adversarial

loss, perception loss, and TV loss as the perceptual

loss to have a wide-ranging effect while generating SR

images.

3) We implemented a discriminator model whose archi-

tecture has one self-attention layer to extract more fea-

tures from image patches and end up fairly correcting

the generator.

4) We used the Wasserstein extension with a gradient

penalty in addition to independent pixel-wise losses in

the adversarial loss function.

5) We retrained a pre-trainedVGG-19model to extract the

most valuable texture details to compute the perception

loss.

6) We have applied two methods of in-built normaliza-

tions, including batch normalization and weight nor-

malization in our proposed architecture to compare

these two methods using objective performance in

terms of SSIM.

7) We applied a comprehensive combination of the

performance metrics, including PSNR, MSE, SSIM,

MSSSIM, QILV to monitor and assess the quality of

the images while training.

8) We implemented our proposed model, WA-SRGAN,

in the pre-processing phase before classification to

enlarge the LR images and gain their corresponding

SR images. The same process has been performed for

A_SRGAN, and SRGAN models as well. A ResNeXt-

101 (32× 8d) model was utilized to do the job of clas-

sification while using LR, SR, and HR images. Then,

a comparison study was made after gaining the results

for LR, SR, and HR separately in terms of accuracy

score and the loss value.

II. RELATED WORKS

A. SUPER-RESOLUTION (SR)

Super-resolution (SR) is a challenging task by which we are

supposed to estimate a high-resolution image from its low-

resolution image to fill the absent details in the images [1].

SR methods can be applied in various applications, such

as medical images. As high-resolution medical images like

histopathology images can be gained with the cost of expen-

sive microscopes and maintaining these images can be

achieved with the cost of storage, LR images can be acquired

much faster and more cheaply. After acquiring LR images,

they can be enlarged with the aid of SR methods. The

early classical SR prediction-based methods, like the study

conducted by Irani and Peleg [6] used the back-projection
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method applied in tomography to compute and fill the

unknown pixels by using image sequence. Also, Duchon [7]

applied the Lanczos filteringmethod, andKeys [8] introduced

Cubic convolution interpolation for increasing the size of

the images. Among all edge-based methods, Freedman and

Fattal [9] up-scaled images by local self-similarity method,

and Sun et al. [10] applied Gradient Profile prior to tackle the

SR issue.

Also, the current CNN-based SR algorithms by

Dong et al., [11], and Wang et al., [12] received attention due

to their excellent performance. Moreover, Dong et al. [13]

proposed a model in which the author applied bicubic inter-

polation to enlarge the small-sized picture, two convolutional

layers to extract the features, and non-linear mapping to map

the LR to the HR. In the end, the author calculated the loss

function between the small picture and its HR one.

Furthermore, Dong et al. [13] introduced another model

entitled fast super-resolution by CNN( FRCNN) with some

improvements, including replacing bicubic interpolation by

the decoder for up-sampling, increasing the number of con-

volutional layers, and utilizing smaller filter size. Moreover,

by employing ReLU activation, residual units, and a deeper

network, Wang et al., [14] could improve the performance

evenmore. Thus, for SR problems, deeper layers were helpful

to improve learning capability and performance.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)

Based on the taxonomy of the generative models presented

by Goodfellow [15], models that are learned based on the

Maximum Likelihood are divided into two groups, including

explicit density and implicit density. Moreover, explicit mod-

els generate a value pixel based on the probability of the pre-

vious pixels. These models can be based on traceable density

like PixelCNN [16] or approximate density, like variational

autoencoder [17]. On the contrary, the generative adversarial

network (GAN) falls into the implicit density category. This

model was introduced by Goodfellow et al., [18], which is a

novel way of generating data [19]. GAN models provide us

with generating acceptable-looking images [1]. This network

is comprised of two parts, including a generative network

that is in charge of generating images and the discrimina-

tive part that estimates the probability of a realistic created

image [18]. In this model, the generator creates a picture

whose distribution is in alignment with the real images (or the

generated image is converged to the sample data), so that the

discriminator part cannot distinguish that the generated image

is not real and the model is converged.

C. SUPER-RESOLUTION GENERATIVE ADVERSARIAL

NETWORK (SRGAN)

During the process of changing the small-sized images to

the large ones, the whole pixels are needed to be filled,

so these pixels can be generated by GAN models. Thus,

the super-resolution GAN (SRGAN) model has been pro-

posed by Ledig et al., [1] to generate the missing points.

As perceptually based algorithms can distinguish the realistic

generated images [20] and perceptual loss function shows

more appraisable results than per-pixel loss [21], a crucial

perceptual similarity has been defined by Ledig et al., [1] that

tailors SR problems. This model leverages the state-of-the-art

VGG-19 model [22] to acquire perceptual (or content) loss.

Moreover, the definition of the adversarial loss in this model

is based on the probabilities of the discriminator’s overall

training samples. Also, with the aid of residual blocks [23]

in the generator, this model can extract the most impor-

tant features before passing them to the up-sampling layers.

Furthermore, by using residual in residual dense blocks [24],

these blocks have been further enhanced by Wang et al., [25]

and gained better results.

D. SRGAN FOR MEDICAL HISTOPATHOLOGY

BREAST CANCER IMAGING

Due to the poor-quality of histopathology images received

from scanners and microscopes, super-resolution problems

received attention to deal with this issue. For instance,

Mukherjee et al., [26] embraced the convolutional neu-

ral network (CNN) to convert low-resolution slide scanner

images of cancer data into a high-resolution image. Then,

the SRGAN model was applied by Çelik and Talu [27]

to increase the resolution of breast cancer histopathol-

ogy images. Moreover, this model was enhanced by the

researchers. Thus, by using a feature similarity index for

image quality assessment (FISM) instead of original mean

square error (MSE), Huang et al., [28] improved the

SRGAN model in terms of perceptual loss and increased

the histopathology image resolution. Also, SRGAN-SQEwas

proposed by Upadhyay and Awate [29] by adding an autoen-

coder in the pre-processing phase to intensify the resolution

of the breast cancer histopathology images and employing

a heavy-tailed non-Gaussian distribution probability density

loss function on the residuals. Various research conducted on

the SRGAN model shows this model is robust in terms of

improving the quality of the images and can be applied for

histopathology images to improve the resolution.

E. SELF-ATTENTION SRGAN

By introducing an encoder and a decoder by using recurrent

neural networks, long short-termmemory (LSTM), and gated

recurrent neural networks, in particular, Vaswani et al., [30]

has introduced a state of the art method based on attention

function that is able to map a query and a set of key-value

pairs to an output, where the query, keys, values, and out-

put are all vectors. Then, Zhang et al., [31] introduced a

self-attention generative adversarial network with an in-built

attention function. This function is based on the non-local

mean [32]. Unlike convolutional layers that extract local

neighborhoods, the attention function is a filtering algorithm

that calculates the weighted mean of all pixels in an image.

By this algorithm, the model can learn relationships between

widely separated spatial regions and distant pixels based on

patch appearance similarity.
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F. METRIC PERFORMANCE

There are two categories of the image quality evaluation

method, including subjective and objective [33], [34] by

which researchers are able to assess the quality of the images

after enlarging the images. The subjective method is a mean

opinion score (MOS) that is performed by a human being [1].

Image enhancement or improving the visual quality of a

digital image based on the perceptual assessment of a human

viewer can be subjective. For this reason, it is necessary

to establish quantitative/empirical measures to compare the

effects of image enhancement algorithms on image qual-

ity [35]. So, the following quantitative measures are listed to

establish an objective assessment for the results.

1) MEAN SQUARE ERROR (MSE)

This is the modest and most commonly used quality metric

and is computed by the average of the squared intensity dif-

ferences of the original image and improved image [34], [35].

The equation of the MSE formula is defined as follows:

MSE (f , g) =
1

M × N

∑M

i=1

∑N

i=1
(fij − gij)

2 (1)

where, f (i, j) is the original image, g (i, j) is the enhanced

image and M×N is the size of the image concerning rows

and columns.

2) PEAK SIGNAL-TO-NOISE RATIO (PSNR)

Is the ratio between the maximum possible value and the

power of distorting noise value that affects the quality of

the image that is expressed in terms of a logarithmic decibel

scale [34].

PSNR (f , g) = 10× log10 (
MAX2

MSE (f , g)
) (2)

3) STRUCTURAL SIMILARITY INDEX MEASURE (SSIM)

This is developed byWang et al., [36] and is considered to be

allied with the quality perception of the human visual system

(HVS). This metric is designed by a combination of three

factors that are loss of correlation, luminance distortion, and

contrast distortion. The SSIM is calculated as:

SSIM (f , g) = [l (f , g)]α.[c (f , g)]β .[s (f , g)]γ (3)

where,

l (f , g) =
2µf µg + C1

µ2
f + µ2

g + C1

,

c (f , g) =
2σf σg + C2

σ 2
f + σ 2

g + C2

,

s (f , g) =
σfg + C3

σf σg + C3
(4)

The closeness of the mean is calculated in the first term

in (4), which shows the luminance comparison between the

two images. In case this factor is equal to one, it illustrates

that the means of the two images are equal. In the second

term, the contrast comparison will be measured by using the

standard deviation of two images. As the first term, the max-

imal number for contrast comparison function is one and that

shows the two images are close in terms of standard deviation.

Finally, by calculating the correlation coefficient or covari-

ance between two images in the third term, we are able to

compare the two images in terms of structure. The value of 0

in this term shows no correlation and the value of one means

two images are equal in terms of structure. Moreover, in this

equation, the positive values of C1, C2, and C3 are applied to

dodge the zero denominators.

4) MULTI-SCALE SSIM (MS-SSIM)

Is proposed by Wang et al. [37]. This metric is evolved

from the SSIM index that derives from the original image at

different scales as [1, M-1]. As shown in (5), the luminance

comparison function is calculated only for scale M and the

rest, including contrast comparison and structural compari-

son functions, are computed in different scales. The overall

MS-SSIM assessment is found by joining the measurement

at different scales using:

MS − SSIM (f , g)

= [lM (f , g)]αM .
∏M

j=1

[

cj (f , g)
]βj

.
[

sj (f , g)
]γ j

(5)

5) QUALITY INDEX BASED ON LOCAL VARIANCE (QILV)

This is another metric performance that has been introduced

by Aja-Fernandez et al., [38]. In order to match properly

with a subjective judgment based on the visual information,

we need QILV as SSIM has minimally taken some sources of

degradation, like blurriness. Moreover, SSIM weighs noise

over blur and blurred images affect further structural pro-

cessing and interpretation of the image for the human eye.

Thus, one should rely on different structural information to

reduce this bias and alternative quality measures should be

conceived.

QILV (f , g) =
2µvf µvg

µv2f + µv2g
·
2σvf σvg

σv2f + σv2g
·

σvf vg

σvf σvg
(6)

Unlike SSIM, QILV is more based on the distribution of

the local variance in the images than global quality. This

way, this metric can better compare the non-stationarity of

the images. There are three factors, including the mean of the

local variance distributions, the standard deviation of the local

variances, and spatial coherence in this equation by which the

comparison between two images is performed.

III. METHODS

In this part, we introduce our proposed networks Wide-

Attention SRGAN (WA-SRGAN) for enlarging the breast

cancer histopathology images. In this part, the architecture,

learning algorithms, and loss functions will be explained.

A. ARCHITECTURE

1) BATCH NORMALIZATION

Batch Normalization (BN) is a technique that is applied by

the researchers to curve the speed limitation barriers while
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FIGURE 1. The architecture of our wide residual block (WRB) consists of three convolutional layers. (a) WRB_BN shows the wide
residual block with batch normalization and PReLU. (b) WRB_WN identifies the wide residual block using weight normalization
and PReLU.

training deep neural models and it is observed that this tech-

nique is effective in various applications. This method is

based on two fundamental concepts, i.e. normalization and

distributions [39], [40]. BN takes the values of xi as the input

for the mini-batch B of size m and computes the following:

µσyi←
xi − B
√

2
B + ǫ

.γ + β ≡ BN γ,β (xi) (7)

where µB is the mean over the specific mini-batch, σ is the

mini-batch variance, and yi is the output corresponding to

each input in the batch. Gamma (γ ) and beta (β) are known

as scale and shift parameters respectively and they have to be

trained.

2) WEIGHT NORMALIZATION

Weight Normalization (WN) has recently been proposed by

Salimans and Kingma [41] which is one of the most cutting-

edge techniques. For a linear layer, this technique computes

the following:

y = W T x + b (8)

WN is a reparameterization method which decou-

ples or recomputes the weight tensor shown by W by its

norms that are magnitude vector known as g, and direction

vector identified as v before every forward call as follows:

wi =
gi

||vi||2
· vi (9)

where wi and vi are the i-th column ofW and V , respectively.

Although deep learning models show better results for

training results by means of weight normalizations, this

method decreases the test accuracy by almost 0.6 percent for

the test dataset with the aim of classifications [42]. However,

in the realm of generative adversarial networks, the batch

normalization affects the quality of the generated images

negatively [43]. Thus, for generating better images through

GAN models, weight normalization is proposed.

3) WIDE RESIDUAL BLOCK (WRB)

Fig. 1 illustrates the architecture of a wide residual block

(WRB) in our study. Using this block in our generative model

has been motivated by a study conducted by Yu et al., [44].

In this study, the author shows wider channels before acti-

vation in residual blocks will improve the performance of

image super-resolution networks. Moreover, instead of using

a convolutional layer with a size of three for the kernel before

the activation function, the author applied a one-by-one conv
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layer that was introduced by Lin et al. [45]. Using a one-by-

one conv layer helps the network to modify the number of

channels with no computational complexes.

Thus, in this work, the author could use the expansion ratio

of 2× to 4× and even wider 6× to 9× with ease. By gaining

this idea, we have improved the generator by using wide

residual blocks with three convolution layers. The first layer

with the kernel size of 1× 1 enables the layer to increase the

dimensions. The expansion ratio that we have applied was

4×. Unlike Yu et al., [44] who applied ReLU activation after

increasing the number of the channels, we have applied Para-

metric ReLU (PReLU) activation function [46] in our WRB

blocks as it is proved to work better than the ReLU activation

function for deeper and wider networks due to the fact that the

slopes factor for negative value is a learnable parameter. After

decreasing the number of the dimensions in the second layer

by the low-rank ratio of 0.8, this number decreased to 51, and

finally, at the third layer, the number of dimensions returned

to 64. This way, the result of the Generator has been improved

in terms of not only the performance metrics but also the

visual perception.

Moreover, weight normalization is suggested by

Yu et al., [44] to improve the results. We have applied both

batch and weight normalization in WRB blocks that are

shown in Fig 1. Fig 1. (a) is WRB_BN that is the wide

residual block with batch normalizations. In this block, three

conv layers have been applied and two batch normalizations

were used after the first and the third block. Also, Fig 1. (b)

is WRB_WN which is the wide residual block with weight

normalization. In this block, three weight normalizations

have been applied after each conv layer. This block is the

same as the one that has been proposed by Yu et al., [44] yet

with the activation function difference.

Since we applied both generator and discriminator with

both batch and weight normalizations, two WRB blocks

have been proposed. Thus, WRB_BN was applied by the

WA-SRGAN model with an in-built batch normalization

method and WRB_WN was used with the same model by

an in-built weight normalization method and they have been

compared and explained in terms of objective results.

4) SELF-ATTENTION LAYER

The self-attention layer has been applied in both genera-

tor and discriminator networks of the SRGAN model by

Pathak et al., [2] for large-scale images. In this study,

the author employed two pooling layers with kernel size and

stride of two before and after the self-attention layer to build

a flexible attention layer that is suitable for big scaled images,

and then by using a bicubic function the output of this layer

was returned to the size of the input image. However, in our

study, the pooling layers have not been applied as the sizes of

the images are not huge.

Thus, the plain attention function layer applied in our

proposed model is based on three weighted functions, quarry,

keys, and values called, f, g, and h respectively. Each of these

functions maps the input image batch X with the size of

B (number of batches), C (number of channels), W (width),

and H (height) to their corresponding feature spaces with the

aid of a one-by-one convolutional layer. The size of each

feature size is changed to B, C/k (where k= 8 (i.e., C̄ = C/8)

due to memory efficiency) and N (is gained by the multipli-

cation of the W and H of the input images). After acquiring

these functions, f(X) will be transposed and multiplied by

g(X) and then passed through a sigmoid function to calculate

the attention, where,

βj,i =
exp(sij)

∑N
i=1 exp(sij)

Where, sij = f (xi)
T g(xj) (10)

Hence, βj,i indicates the extent to which the model attends

to the ith location when synthesizing the jth region. Then,

the output of the attention function is calculated by a product

between the value function h(X), and the attention. The output

of the attention layer is calculated as follows:

oj = v

(

∑N

i=1
βj,ih(xi)

)

, h (xi) = Whxi, v (xi) = Wvxi

(11)

In the above formulation,W’s are the learned weight matri-

ces, which are implemented as 1 × 1 convolution. The final

output is given by:

yi = γ oi + xi (12)

Finally, the output of the attention layer that is oimultiplied

by γ that is a learnable scale parameter and then added by the

input feature. The learnable scale parameter γ is initialized as

0 to rely on the local neighborhood and then gradually learned

to assign more weight to the non-local evidence.

5) GENERATOR STRUCTURE

Fig. 2 shows the architecture of the generator of our pro-

posed WA-SRGAN. In this model, we have applied eight

wide residual blocks (WRB). WRB_BN blocks have been

applied by the generator with an in-built batch normalization

method and on the contrary, WRB_WN blocks have been

applied in the generator with an in-built weight normalization

technique.

Similarly, the numbers of kernels, channels, strides, and

padding are illustrated as K, N, S, and P respectively for each

layer. After passing the input batch images by the first layer

of the generator, the number of the channels increases to 64.

Then, the output of this layer is added elementwise to the

output of WRB and another convolutional layer. Afterward,

a self-attention layer is applied to gain attention function.

So, themost important features are gained through three func-

tions, including key, query, and value and the attention output

will be passed to the final convolution layer. Eventually, the

output of the generator network is scaled to [−1,1] by a Tanh

activation function, and by adding them to one and then divide

them by 2 the output range changes to [0,1]. Once the pixels

of the generated images are in the range of [0,1], it will make

it comfortable for the discriminator network to distinguish

between the generated and real images. Also, there is no need
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FIGURE 2. An overview of the generator of our proposed Wide-Attention SRGAN (WA-SRGAN) that consists of wide residual blocks and
self-attention layer before up-sampling. In this network, both batch normalization, and weight normalization have been applied
separately.

FIGURE 3. The discriminator of the WA-SRGAN model with an in-built self-attention layer.

to rescale the generated samples before feeding them to the

discriminator or loss function.

6) DISCRIMINATOR

Fig. 3 shows the architecture of the discriminator network

which is implemented in our proposed WA-SRGAN model.

The discriminator of our proposed model has a VGG-like

structure that gradually decreases the size of the feature maps

and expands the depth of channels since each layer contains

a similar amount of information. Unlike the vanilla discrim-

inator in the SRGAN model, we have implemented a plain

self-attention layer in the middle of the layer that can gain

the most important feature by the attention function.

The final output of the discriminator network is a single

value that indicates whether the input image is generated

or real.

B. IMPROVED WASSERSTEIN GRADIENT DESCENT

During training the GAN models, the values of the gradients

clarify how to update the parameters. Large gradients will

lead the parameters to undergo bigger changes. In case the

loss surface is deep around the searching location, large gra-

dient values will lead the model to surpass the region without

converging. Thus, the model has to search for a new region at

the next iteration for the optimal solutions. There are several

techniques to stabilize the training and solve the big value of

the gradient. The most recommendedmethod is gradient clip-

ping [47], and setting limitations that is one optimal solution

for this issue. Consequently, setting minimum and maximum

for the gradient values will help the model to make small

changes while updating the parameters without jeopardizing

the search results in the current region area while spending

ages for training.

Moreover, weight clipping was proposed by

Arjovsky et al. [48] to build the Wasserstein GAN model is

another way to stabilize the GAN training. However, accord-

ing to Hany and Walters [49], weight clipping is an indirect

way to perform the gradient clipping by which it is difficult to

train deep models since most of the gradients or weights stick

to the minimum and maximum values [-c, c] and only a few

of them gain the values between these two parameters. Also,

this method causes vanishing or explosion gradients. To solve

this issue, Gulrajani et al., [50] improved the Wasserstein

GAN by adding a gradient penalty to the discriminator loss

function. The gradient penalty is calculated based on the

random interpolation between a pair of real and generated

data that can be defined as follows:

Efake [D (x)]− Ereal [D (x)]+ λ.Ex̂[||
∂D(x)

∂ x̂
||2 − 1]2,

x̂ = α.xreal + (1− α) .xfake, α ∼ U (0, 1) (13)

In this method, the author applied a way to enforce the

Lipschitz by constraining the gradient norm of the critics’

output with respect to its input random samples x̂. The gradi-

ent penalty contains the norm two of the second derivatives

of the network with activation functions. The point x, used to
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FIGURE 4. The general framework of our experiment is divided into two parts. Both parts consist of three fragments, including databases,
pre-processing, and training. (a) This is the first part of our framework that shows the flow of the learning phase of our proposed
WA-SRGAN model. Likewise, part (b) illustrates the framework for performing the job of classification. In this part, a ResNeXt-101 model
was used to do the job of classification for LR, HR, and SR and compare the results respectively. for obtaining the SR images,
the WA-SRGAN with the weight normalization was used. Moreover, in the pre-processing stage, data augmentation and normalization
techniques were applied.

calculate the gradient norm, is any point sampled between

the real data distribution Pr and the generated (fake) data

distribution Pg.

The implementation of the improved Wasserstein function

in the discriminator architecture is performed based on the

following techniques:

1) The sigmoid function has been removed from the last

layer of the discriminator.

2) The logarithmic function does not apply in this for the

results while computing the loss function.

3) Using the gradient penalty and adding it to the loss

criterion.

4) Using Adam as an optimization parameter.

5) The value of the λ is set to 10.

C. PERCEPTUAL LOSS

In this work, we have applied a combination of several loss

functions to calculate the perceptual loss function for the

generator criterion as follows:

1) Adversarial loss, which is based on the output proba-

bility of the improved discriminator.

lSRadv = −Efake [D (x)] (14)

2) Image loss or pixel-wise content loss lSRpixel , which is the

MSE loss between the SR and the HR images.

3) Perception loss or VGG loss lSRvgg, that is the MSE loss

between the last feature maps of a retrained VGG net-

work by breast cancer histopathology image database

called BreaKHis from SR and HR images.

4) TV loss or regularization loss lSRtv , that is the sum of

average L2-norm or the pixel gradients in horizontal

and vertical directions. Since the TV loss makes the

images blurry, we added a strong restraint (2e− 8) to

the pixel gradients.

The final perceptual loss that is defined as follows is able to

take both pixel-wise and high-level similarities into account

once discriminating between SR and HR images.

lSRpixel + 1e− 3.lSRadv + 6e− 3.lSRvgg + 2e− 8.lSRtv (15)

Despite Upadhyay and Awate [29], who have applied

a negative sum of structural similarity (sSSIM) in their

work to calculate the perceptual loss for the generator,

Wang et al., [36] stated that using SSIM index in the design

of some algorithms is not an easy task as it is mathematically

more cumbersome thanMSE. Thus, in our proposed work we

used MSE for the pixel-wise and perception loss functions.

IV. EXPERIMENTS

A. GENERAL FRAMEWORK

The overall general framework of our experiment is shown

in Fig.4 that is divided into two parts, including the

super-resolution framework, and the classification frame-

work. Each part contains three parts, including databases, pre-

processing, and training. In the following, we will explain

each part based on our framework. In our experiments,

Pytorch, an open-source machine learning library based on

the Torch library [51], had been utilized.

32802 VOLUME 9, 2021



F. Shahidi: Breast Cancer Histopathology Image SR Using Wide-Attention GAN

B. SUPER-RESOLUTION EXPERIMENTS

1) DATABASE

In this experiment, we have applied two databases. The

first database was Breast Cancer Histopathological Image

Classification (BreakHis) which is a pathology dataset that

consists of 7,909 breast cancer histopathology images from

82 patients with different magnification factors, including

40×, 100×, 200×, and 400× [5]. The 7,909 images include

2,480 benign and 5,429 malignant sample images with all the

subtypes [52].

The second database was Cancer Metastases in Lymph

Nodes (Camelyon) whichwas established based on a research

challenge dataset competition in 2016. This database com-

prises 400 whole slide images with a size of 218,000 ×

95,000 pixels. Whole-slide images are stored in a multi-

resolution structure, including 1×, 10×, 40×magnifying fac-

tors. It also has both benign and malignant images [53]. The

training dataset in this database provides access to 270 whole

slide images, 160 of which are normal slides and 110 slides

contain metastases [54]. As this database has been published

in a whole-slide image format, the size of the patches can be

defined by the individual researchers using this database [55].

2) PRE-PROCESSING

The main database for training our proposed method in our

study is Camelyon 16, which is the whole slide images

(WSI) in ∗.tif format from the Camelyon16 challenge. This

database has been applied by other researchers like Upad-

hyay and Awate [29] to train their proposed SRGAN model.

Although the original 400 WSI files contain all the necessary

information, they are not directly applicable to train our

model.

Therefore, we had to sample much smaller image patches

that a typical deep learning model can handle. Efficiently,

informative and representative patches are two of the most

critical parts to achieve good tumor detection performance.

To ease this process, we have applied the coordinates of

pre-sampled patches used by Li and Ping [56]. Employing

the Openslide library in python, we could generate patches

of the size of 768 × 768 × 3 at level 0 using 1 process,

where the center of each patch corresponds to the coordi-

nates. Then, the patches from the Camylon-16 database were

cropped randomly to gain the HR input images with a size of

256 × 256 × 3. Next, the LR input images with the size of

64 × 64 × 3 were obtained by resizing their corresponding

HR images. Similarly, in this phase, the images from the

BreaKHis database were applied and resized to 256×256×3

to make them suitable for training the VGG-19 model.

3) TRAINING

The training in this experiment had two phases. The first

phase was retraining the VGG-19 model by BreaKHis

database with 90 percent of the database for training and

10 percent of them applied for evaluation.

VGG-19 has been retrained for 100 epochs and in epoch

69, we have received the lowest loss error as 0.026.Moreover,

the accuracy score that has been gained in this epoch is

98.84 percent for the test dataset and 99.57 for the training

dataset. Afterward, the weights of this model with the lowest

loss error have been saved as a checkpoint file to calculate

the perception loss in the generator network in the next phase.

Furthermore, the training VGG model was conducted on the

google Colabetory (Colab) service with the Pro version. With

Google Colab pro, we had access to the fast GPUs, such as

T4 or P100, and a high-memory virtual machine, which is

27.4 gigabytes of available RAM.

In the second phase, three different models, including

SRGAN, A-SRGAN, and our proposed model, WA-SRGAN,

have been trained through Camelyon 16. We have trained

all the networks by using random-vector sample pair of

(XLR, XHR) whose XLR is the random image batch of

low-resolution images and XHR is its corresponding high-

resolution batch images. Since we had enough data images

by using databases like Camylon 16, about 10,520 patches

with a volume of 10.8 GB out of all have been applied to train

the WA-SRGAN model. Also, 301 patches are employed to

evaluate the model in each epoch. We have trained the model

by random cropping the HR images with the ground truth

images with the size of 256 × 256 × 3. All the models have

been trained by using the same techniques as follows:

1) At the beginning of the training, the generator has been

updated for two epochs.

2) Adam optimizer with the learning rate of 1e-4 has been

applied while training.

3) The MSE loss function was utilized to calculate the

criterion for the perceptual loss and end up performing

the backpropagation.

4) An improved Wasserstein gradient penalty has been

applied to train all the models.

5) All the models have been trained for 60 epochs and

the performance metrics, and the gradient of the top

and the bottom of the network for both generator and

discriminator models were observed

6) The sigmoid function has been applied at the end to

score the real and generated images by the discrimina-

tor to input them in the range of [1,−1] while observing

the score of the HR and SR images

To compare our proposed model with the other two mod-

els, we have trained the three models, including SRGAN,

A-SRGAN, and WA-SRGAN with the ground truth with the

size of 256×256×3 and enlarged themwith an upscale factor

of 4×. Thus, the size of the LR images was 64 × 64 × 3.

All of the evaluation results have been saved in a csv

file through the Pandas library during training for each

epoch. The results of each epoch with the best SSIM met-

ric performance has been selected for each model for our

comparison. Some of the models have been trained on

google Colab service and some of them have been trained

on a server with the Hardware settings that are listed as

follows:
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1) RAM:125.8GiB

2) Processor: Intel, registered: Xeon(R), CPU E5-2683 v4

@ 2.10GHz × 52

3) Graphics: Quadro P6000/PCIe/SSE2 with 24GB

Graphics Card Memory

4) OS: ubuntu 16.04 LTS/ 64-bit

We have tried to train our proposed model, WA-SRGAN,

by the CPU as we have 125.8 GB memory RAM. Although

we could train the model with a batch size of 64 by CPU,

the speed of the training was ten times faster by GPU even

with eight batch sizes due to the GPU RAM size (24 GB).

Therefore, we have performed all the experiments using the

GPU with a batch size of 8. Training the WA-SRGAN by

the aforementioned hardware settings has taken about 5 days

for 335 epochs. Nevertheless, after epoch 60 we have not

observed any improvement; therefore, in this study, we will

discuss all the SR experiments for 60 epochs.

C. CLASSIFICATION EXPERIMENTS

1) DATABASE

In the classification phase of our experiment, the BreaKHis

was applied as the main database.

2) PRE-PROCESSING

In this phase, we resized the images to 256×256×3 as the HR

images and 64× 64× 3 as LR images. Then, two methods of

the data augmentation techniques, including random rotation

45 degrees and vertical and horizontal flipping were applied.

Also, we normalized the input images between 0 and 1.

Since we have applied a pre-trained ResNeXt model on the

ImageNet data set, in order to abide by the normalization

method applied for this data set, each color channel was

normalized separately; the means were [0.485, 0.456, 0.406]

and the standard deviations were [0.229, 0.224, 0.225]. For

the SR images, we used the LR images and normalized

each pixel between 0 and 1. After performing the data aug-

mentation techniques, we applied three models, including

WA-SRGAN_WN, A_SRGAN, and SRGAN to enlarge the

LR images by four times to reach the size of 256× 256× 3.

Then each channel of the SR images was normalized.

3) TRAINING

In this phase, we performed the classification utilizing a

cutting-edge ResNeXt-101(32 × 8d) model. We had fine-

tuned this model with three fully connected layers with a

size of 1024. The number of parameters of the last three

fully connected layers was 3.149 M that were set to be

trainable. By using a fine-tuning technique, 3.14 M of the

parameters were dedicated to these trainable layers. During

the training, we have applied the forward method return-

ing the log-SoftMax for the output and exponential for the

class probability [57]. Then, negative log loss as our crite-

rion has been employed to calculate the loss function [58].

We also chose to use Adam optimizer with a learning rate

of 0.0002. Furthermore, we used ReLU activations and a

dropout of 0.5 for the fine-tuning layers. we applied a

90/10 rate of division for all the examinations. We trained

this model on 7,118 images and evaluated the models on

790 images in each epoch.

V. RESULTS AND DISCUSSIONS

A. SUPER-RESOLUTION RESULTS

In this section, the results of our experiments for the super-

resolution part will be discussed and explained. All the mod-

els have been trained by 10,520 patches from Camelyon

16 database in each epoch. Consequently, using a batch size

of 8 leads to 1,315 input batch images to be fed to the models.

After training the models, they were evaluated by 301 patches

with a batch size of 1. The following results are based on the

evaluation of 301 input images.

During our evaluation, we have observed each model

through its objective performance metrics, including MSE,

PSNR, SSIM, MS-SSIM, and QILV. Since the lowest MSE

result led to the highest PSNR score as these two metrics are

correlated, we removed the MSE score and proceeded with

the PSNR. Since in each epoch one of the aforementioned

performance metrics acquired the highest score, we have

illustrated the evaluation results of each epoch along with the

scores gained by the WA-SRGAN model with batch normal-

ization technique in Fig. 5 to choose the best performance

metric. Fig. 5 part (e) shows the results in epoch 30, in which

the model gained the best score for the SSIM metric. As we

can observe, in this epoch we gained acceptable results for

other metrics as well in comparison with other epochs. Thus,

we compared the results of each model based on the epoch

with the highest SSIM results.

We performed other experiments on our model by using

batch normalization through different upscale factors. All the

experiments have been done by the batch size of eight except

the factor of two because of the size of input images, which is

128× 128× 3 and it is bigger than the input size while using

an upscale factor four times or more than that. Thus, we had

to use one batch size to cope with the RAM size limitation

for the GPU. The results of our experiments on our model

with different upscaling factor are shown in Table. 1. As we

can see, SSIM metric performance is correlated with other

metrics as the bigger the SSIM is, the bigger the other metrics

are (Except for the MSE which has to be smaller).

Furthermore, Fig. 6 shows the corresponding results of the

WA-SRGAN algorithm with that shown in Table. 1 through

different input image sizes and scale factors. In this figure,

the ground truth is illustrated in part (a). Also, part (b) is the

low-resolution input image with a size of 128× 128× 3, and

(f) is its corresponding image that has been enlarged by two

times. Also, part (c) shows the low-resolution input image

with the size of 64× 64× 3, and part (g) is the result of our

algorithm while increasing the size of the input image by the

factor of 4 to reach the size of 256× 256× 3. To increase the

size of the images by the factor of 8 and 16, the input sizes of

the images are considered as 32×32×3 and 16×16×3 that

are shown in part (d) and (e) respectively. The results of our
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FIGURE 5. The results of WA-SRGAN in each epoch with the highest result of each metric
performance. (a) Is the ground truth of the image with the size of 256 × 256 × 3. (b) Is the low
resolution (LR) input image with the size of 64 × 64 × 3. (c) Is the result of the bicubic method.
(d) Is the result of epoch 22 of the model that received the highest result for the PSNR. (e) Is the
results for epoch 30 with the highest result for SSIM metric performance. (f) Shows the results of
the model in epoch 21 in which we have gained the best result for MS-SSIM. (g) Is the results for
epoch 57 with the highest score for the QILV metric.

TABLE 1. The Results Of WA-SRGAN By Using Four Different Upscale Factors For The Ground Truth Of 256 × 256 × 3. We Have Performed All The
Experiments By Using The Batch Normalization Technique.

method after enlarging the images are illustrated in part (h)

for 8 times scale factor and part (i) for 16 times scale factor.

Moreover, as the weight normalization technique gained

attention for GAN models, we have used both batch and

weight normalization with our proposed model to observe

the impact of each method on our proposed model. Then,

we compared our proposedmodel,WA-SRGAN (with weight

and batch normalization) with other models, including bicu-

bic, SRGAN, and A-SRGAN.

As illustrated in Table. 2, the best results of each model

have been compared with others, and our proposed model,

WA-SRGAN, with the weight normalization gained the

best results in comparison with other models in terms of

SSIM, MSE, PSNR, MS-SSIM metric performances. More-

over, our proposed model reached the highest QILV result

by using Batch normalization. Additionally, using weight

normalization helped us to train the model faster as our model

with weight normalization took almost three minutes less

than our model with batch normalization. In this examination,

the size of input images is 64× 64× 3 and the size of output

images is 256× 256× 3. Fig. 7 shows the evaluation results

of five super-resolution methods, including bicubic, SRGAN,

A-SRGAN, WA-SRGAN_BN, and WA-SRGAN_WN that

are compared through Table. 2.

Similarly, we have trained our WA-SRGAN model with

both batch normalization and weight normalization methods

with different batch sizes of one and eight to observe the best

batch size that is tailored for each method.

Table. 3 shows four different experiments with dif-

ferent methods and batch sizes on our proposed model

WA-SRGAN. In this experiment, the best results for SSIM,

and MS-SSIM gained by our model with the weight nor-

malization technique and batch size of one. Also, our

model gained the best result for the QILV by using batch

normalization.

Furthermore, Fig.8 shows the visual evaluation results

related to Table. 3. In this figure, part (a) is the ground

truth, part (b) shows the low-resolution input image, part (e)

shows the results for the bicubic method, part (d) shows the

results of WA-SRGAN while using weight normalization,

finally, part (e) illustrates the results ofWA-SRGAN by batch

normalization method.
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FIGURE 6. The results of the WA-SRGAN model with batch normalization technique to enlarge the images through
different scale factors. In this figure, part (a) shows the ground truth of the input image. In the upper row,
the low-resolution input images with different sizes, including (b) 128 × 128 × 3, (c) 64 × 64 × 3, (d) 32 × 32 × 3, and
(e) 16 × 16 × 3 have been displayed. Also, the images that are located in the lower row are their corresponding enlarged
images through different upscale factors, including (f) two scale factor, (g) four scale factor, (h) eight scale factor, and
(i) sixteen scale factor.

FIGURE 7. The results of all five examined methods, including bicubic, SRGAN, A-SRGAN, WA-SRGAN_WN,
and WA-SRGAN_BN to enlarge the images from 64 × 64 × 3 to 256 × 256 × 3. In this figure, (a) shows the
ground truth, (b) shows the LR input image, (c) displays the result of the bicubic method, (d) illustrates
the result of SRGAN, (e) demonstrates the output gained from A-SRGAN, (f) shows the results gained by
our proposed model, with weight normalization technique that is called WA-SRGAN-WN, and (g) is our
proposed model by using batch normalization that is named WA-SRGAN-BN.

According to Fig.8 part (e), our model with batch nor-

malization method and a batch size of eight could gain the

highest QILV results. This metric has been highlighted by

some researchers such as Upadhyay and Awate [29]. But

we can observe that the color of the results in part (e) is

less similar to the ground truth, part (a), than our model

with weight normalization and a batch size of one, part (d).

According to Fig. 8, better results were gained by our model

by using weight normalization, and a batch size of one than

using the same model using batch normalization and a batch

size of eight. Moreover, the results are visually realistic in

terms of color and context while gaining a better SSIM met-

ric. This experiment confirms the importance of the SSIM

metric in terms of gaining visually acceptable results.
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TABLE 2. The Results Of Five Different Models For Upscaling The Images By Four Times. The Results For Each Epoch Based On The Highest SSIM Metric
Have Been Selected. The Models Were Trained With The Same Techniques For 60 Epochs And A Batch Size Of Eight.

TABLE 3. The Results Of WA-SRGAN By Using Two Different Methods, Including Batch And Weigh Normalization With The Batch Sizes Of One And Eight.

FIGURE 8. The results of three examined methods, including bicubic,
WA-SRGAN-WN, and WA-SRGAN-BN to enlarge the images from
64 × 64 × 3 to 256 × 256 × 3. In this figure, (a) shows the ground truth
(b) demonstrates the low-resolution input image with the size of
64 × 64 × 3, (c) is the output of the bicubic method, (d) illustrates the
result of WA-SRGAN_WN which is our proposed model with weight
normalization and a batch size of one, and (d) shows the output that is
gained from WA-SRGAN while using batch normalization with the batch
size of eight.

B. TWO-CLASS CLASSIFICATION RESULTS

According to the general framework that is shown in Fig.4,

three types of images, including HR, LR, and SR were fed

into the ResNeXt-101(32 × 8d) model. The input image

size in this experiment was 256 × 256 × 3. This model

was trained for about 70 epochs for each type. Further-

more, we have employed three types of models, including

WA_SRGAN_WN, A_SRGAN, and SRGAN in the prepro-

cessing phase of the classification to gain SR images from

LR images. We kept the epoch with the lowest error loss

score and the highest test accuracy score. The results of these

experiments for each type of images were compared through

Table. 4. As this table shows, the ResNeXt model gained

TABLE 4. The Results of two-class Classification For LR, HR, And SR
Images Separately That Are Gained By ResNeXt-101(32 × 8d) Model.

a 99.49% of accuracy score and a 0.006 loss value for the

test dataset in epoch 66 for HR images. Also, classification

accuracy reached a value of 95.82% along with a loss value

of 0.098 for LR images for the test dataset in epoch 47.

By using the WA_SRGAN model in the preprocessing

phase to enlarge the LR images to SR images, and then

training and evaluating the ResNeXt model, the results show

a 99.11% of accuracy score and a 0.022 loss value for the

test dataset in epoch 62. This process was completed for

A_SRGAN and SRGAN models as well. ResNeXt model

scored 98.86% of accuracy and 0.034 of loss in epoch

45 for the test dataset while using A_SRGAN. Subsequently,

the ResNeXt model yielded a 98.73% accuracy score and a

0.032 loss value in epoch 58 for the test dataset while using

the SRGAN model in the pre-processing phase.

According to Table. 4, there is a positive relationship

between the accuracy results for the job of classification and

metric performance in terms of SSIM.Moreover, among all of

the SR images that were illustrated in Table. 4, our proposed

model, WA_SRGANwith the best SSIMmetric performance

achieved the highest accuracy score and the lowest loss error

while classifying.

Therefore, the results demonstrate the positive impact of

using our model on the accuracy score and the loss value in

the pre-processing phase before the job of classification.
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VI. CONCLUSION

We proposed a novel WA-SRGAN framework for super-

resolution that makes the model robust to learn prior infor-

mation in the training set by using the wide residual blocks

and plain self-attention layer before up-sampling in the gen-

erator network. The combination of several loss functions,

including image loss, adversarial loss, perception loss, and

TV loss have been applied in ourmodel to compare high-level

differences, like content and style discrepancies, between

images. To compute the perception loss function, the pre-

trained VGG-19 model has been retrained and applied, and

in order to compare the SR and HR images, the MSE metric

function has been used.

To fairly correct the generator, a self-attention layer has

been applied in the discriminator. Also, the gradient penalty

was added to the discriminator criterion through improved

Wasserstein extension. This technique enabled us to train the

model easily by clipping the gradients of the model in a small

range. Similarly, our proposed model has been compared

with other algorithms, including SRGAN andA-SRGAN that

have been trained with the same techniques and our proposed

model achieved the best results in terms of objective metrics

in comparison with other models. Also, two different meth-

ods, including weight and batch normalizations have been

applied in our architecture and compared in terms of several

performance metrics, including PSNR, SSIM, MSSSIM, and

QILV to evaluate our model. It has been observed that our

model works the best through weight normalization with the

batch size of one.

Although we could improve the objective metrics by our

proposed model, WA-SRGAN-WN, we applied a pre-trained

ResNeXt-101 (32 × 8d) model to compare the results of the

classification while using our model in the pre-processing

phase. The accuracy result gained by the SR images for

the classification is 99.11% that is almost the same as the

accuracy score obtained for the HR images that is 99.49%.

Thus, the results show the positive impact of our model on the

resolution of the images as the classification accuracy score

can be improved from 96.83% for the low-quality images to

99.11% for the SR images.
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