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Abstract

Background: Increasing evidence suggests that gut microbiota play a role in the pathogenesis of breast cancer.

The composition and functional capacity of gut microbiota associated with breast cancer have not been studied

systematically.

Methods: We performed a comprehensive shotgun metagenomic analysis of 18 premenopausal breast cancer

patients, 25 premenopausal healthy controls, 44 postmenopausal breast cancer patients, and 46 postmenopausal

healthy controls.

Results: Microbial diversity was higher in breast cancer patients than in controls. Relative species abundance in gut

microbiota did not differ significantly between premenopausal breast cancer patients and premenopausal controls.

In contrast, relative abundance of 45 species differed significantly between postmenopausal patients and postmenopausal

controls: 38 species were enriched in postmenopausal patients, including Escherichia coli, Klebsiella sp_1_1_55, Prevotella

amnii, Enterococcus gallinarum, Actinomyces sp. HPA0247, Shewanella putrefaciens, and Erwinia amylovora, and 7 species

were less abundant in postmenopausal patients, including Eubacterium eligens and Lactobacillus vaginalis. Acinetobacter

radioresistens and Enterococcus gallinarum were positively but weakly associated with expression of high-sensitivity

C-reactive protein; Shewanella putrefaciens and Erwinia amylovora were positively but weakly associated with estradiol

levels. Actinomyces sp. HPA0247 negatively but weakly correlated with CD3+CD8+ T cell numbers. Further characterization

of metagenome functional capacity indicated that the gut metagenomes of postmenopausal breast cancer patients were

enriched in genes encoding lipopolysaccharide biosynthesis, iron complex transport system, PTS system, secretion system,

and beta-oxidation.

Conclusion: The composition and functions of the gut microbial community differ between postmenopausal breast

cancer patients and healthy controls. The gut microbiota may regulate or respond to host immunity and metabolic

balance. Thus, while cause and effect cannot be determined, there is a reproducible change in the microbiota of

treatment-naive patients relative to matched controls.
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Background
The human gut harbors thousands of bacterial species,

together making up a population as large as 1013–14 mi-

crobes, which encode 150-fold more genes than the hu-

man genome [1–3]. The gut microbiota is composed of

a large number of anaerobic microorganisms, predomin-

antly Bacteroidetes and Firmicutes [4, 5], which are

affected by a multitude of factors including host genet-

ics, lifestyle, and environment. The microbiota plays im-

portant roles in maintaining an intestinal mucosal

barrier, antagonizing the colonization of pathogenic mi-

croorganisms, and contributing to metabolism and im-

mune homeostasis [6].

The gut microbiota has been linked to various dis-

eases, such as inflammatory bowel disease [7, 8], obesity

[9], diabetes [10, 11], rheumatoid arthritis [12], atopic

manifestations [13], liver cirrhosis [14], cardiovascular

diseases [15], mental diseases [16, 17], and colorectal

cancer [18, 19]. The gut microbiota exert an influence

on both local and systemic metabolism and immunity

[20, 21], and alterations of gut microbiota have been as-

sociated with extra-intestinal cancers including hepato-

cellular carcinoma, to which they may contribute by

triggering chronic inflammation and altering microenvir-

onment and metabolism [22, 23].

Increasing evidence suggests that microbe-host inter-

actions have the potential to influence or serve as a bio-

marker of breast cancer pathogenesis [24, 25]. A

comparison of 11 breast cancer patients and 7 healthy

controls revealed differences in the gut microbiota, with

Clostridia, Enterobacterium, Lactobacilli, Bacteroides,

and Escherichia coli enriched in patients [24]. A com-

parison of 48 postmenopausal breast cancer case pa-

tients and 48 healthy controls [25] revealed an altered,

less diverse gut microbiota in patients: Clostridiales,

Clostridiaceae, Faecalibacterium, and Ruminococcaceae

were enriched in patients, while Dorea and Lachnospira-

ceae were relatively less abundant in patients. Among

controls, microbiota diversity correlated with total estro-

gen levels, suggesting that gut microbiota may be

implicated in breast cancer by responding to or affecting

estrogen metabolism.

Those previous studies have provided useful insights

into the potential response of gut microbiota in breast

cancer, but they have not been able to comprehensively

catalog the taxonomies of the microbiota because they

have relied on only biochemical analysis or 16S rRNA

gene sequencing. In addition, previous studies did not

explore the functional capacity of the gut microbiota in

patients with breast cancer, which could provide more

mechanistic insights into the role of the gut microbiota

in this disease. As a result, how the gut microbiota and

their biochemical and metabolic products change in

breast cancer is unclear.

To address these questions, we used shotgun metage-

nomic analysis to compare the gut microbial community

and its functional capabilities between breast cancer pa-

tients and healthy controls.

Methods

Subjects

The study was approved by the Ethics Committee of the

Affiliated Tumor Hospital of Guangxi Medical University

(Nanning, China). Fecal samples were collected from 18

premenopausal breast cancer patients, 25 premenopausal

healthy controls, 44 postmenopausal breast cancer pa-

tients, and 46 postmenopausal healthy controls (Table 1).

All patients with breast cancer were diagnosed by patho-

logical examination at the Affiliated Tumor Hospital, and

healthy controls were recruited from the Medical Examin-

ation Center of the First Affiliated Hospital of Guangxi

Medical University. Controls were free of breast cancer at

medical examination. None of the study subjects had diar-

rhea, diabetes, ulcerative colitis, Crohn’s disease, or other

infectious diseases. No subjects took antibiotics, steroid

hormones, Chinese herbal medicine (including oral, intra-

muscular, or intravenous injection), or probiotics such as

yogurt during the 3 months before fecal sample collection.

Breast cancer patients did not receive chemotherapy, radi-

ation, or surgery prior to fecal sample collection.

Table 1 Demographic characteristics of participants

Premenopausal group P value Postmenopausal group P value

Characteristic Cases
N = 18

Controls
N = 25

Cases
N = 44

Controls
N = 46

Age (m ± sd) 37.06 ± 5.23 35.52 ± 6.02 0.389 57.45 ± 7.41 56.89 ± 6.41 0.7

BMI (m ± sd) 22.95 ± 3.88 23.01 ± 1.95 0.952 23.64 ± 2.77 23.97 ± 2.50 0.559

Age at menopause, years – – – 49.39 ± 3.15 48.70 ± 2.87 0.29

Ethnicity, n (%) 0.607 0.985

Han 12 (66.7) 20 (80.0) 33 (75.0) 34 (73.9)

Zhuang 5 (27.8) 4 (16.0) 8 (18.2) 9 (19.6)

Other 1 (5.5) 1 (4.0) 3 (6.8) 3 (6.5)
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Fecal samples were freshly collected from individuals

and transported to the laboratory on ice. Samples were

stored at − 80 °C until extraction. Bacterial DNA was ex-

tracted from fecal samples using the QIAampDNA Stool

MiniKit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions.

Metagenomic DNA sequencing and annotation

All samples were sequenced on the Illumina HiSeq × 10

platform. A paired-end library was constructed with 350-bp

inserts for each sample. Low-quality reads and reads map-

ping to human DNA were removed from the raw data. For

taxonomic assignments, the high-quality reads from each

sample were aligned against the integrated reference catalog

of the human gut microbiome (IGC) by bowtie2 using the

criterion of “identity > 90%,” genes from the existing refer-

ence gene catalog IGC inherited their original taxonomic

annotation, and the relative abundance of a taxon was cal-

culated from the relative abundance of its genes [26, 27].

During KO profiling, genes from IGC inherited their ori-

ginal KO annotation, and KO abundance was calculated by

summing the relative abundance of genes annotated to the

same KO [26, 27].

Quantification of virulence factors and pathogen-host

interaction genes

Genes in the catalog were aligned against proteins in the

Virulence Factors of Pathogenic Bacteria database [28]

using BLAST (version 2.2.24) set to default parameters,

except that -p blastx -e 1e-5 -F F -a 4 -m 8. We selected

the matches with the highest-scoring annotated hit con-

taining identity > 40% and high-scoring segment pair

scoring > 60 bits. The relative abundance of a virulence

factor was calculated by summing the relative abundance

of genes annotated to a feature. Genes in the gene cata-

log were aligned against the proteins in the

Pathogen-Host Interactions database [29] using BLAST

(version 2.2.24) set to default parameters except that

-p blastx -e 1e-5 -F F -a 4 -m 8. We selected the matches

with the highest-scoring annotated hits containing an

identity > 40% and high-scoring segment pair scoring > 60

bits. The relative abundance of an interaction gene was

calculated by summing the abundance of genes annotated

to a feature.

Gut microbiota diversity

Based on the species profile, we calculated the within-

sample (alpha) diversity to estimate gut microbiota rich-

ness and evenness based on the Shannon index and

Chao1 index [30]. High alpha diversity indicates high

diversity of gut microbiota within a sample. Between-

sample differences in microbial composition (beta diver-

sity) were assessed in terms of the Jensen-Shannon

divergence (JSD) [31]. The JSD was calculated by the

following steps: (1) We first calculated JSD between each

two samples within one group. (2) The mean of all JSD

values between a sample and others within one group

was computed (the mean value represented the similar-

ity of the sample to others). We compared the mean JSD

values to find if the beta diversity is different or not

among the groups.

Enterotyping

Samples were clustered based on relative genus abundances

using JSD distance and the “partitioning around medoids”

(PAM) clustering algorithm. The Calinski-Harabasz (CH)

index was used to calculate the optimal number of clusters

[32]. Principal component analysis was used to visualize the

taxonomic drivers of clusters.

Statistical analysis

Demographics were compared among groups using

Student’s t test or the chi-square test in SPSS 16.0 soft-

ware (IBM, Chicago, IL, USA). R software (version 3.3.2)

was used to perform other analyses. The Wilcoxon rank

sum test was used to identify significant differences in

abundance of genes, genera, virulence factors, inter-

action genes, and KOs. Differentially enriched pathways

and modules were identified according to their reporter

score from the Z scores of significant KOs. A module

with a reporter score of Z > 1.6 was defined as differen-

tially enriched [33, 34]. P values were adjusted based on

the false discovery rate (FDR) using the method of

Benjamini and Hochberg [35]. Permutational multivari-

ate analysis of variance (PERMANOVA) using the

“adonis” function in the R Vegan package was performed

to assess effects of phenotype on gene/taxa profiles. The

R package “ade4,” which involves instrumental principal

component analysis [36], was used to visualize the taxo-

nomic drivers of clusters during enterotyping. The

“pheatmap” package (version 1.0.8) was used to generate

heat maps, and the clustering method used in “pheat-

map” function was “correlation.” Spearman’s rank correl-

ation was used to find correlations of metagenomic

features and clinical indices.

A species-based classifier was trained using the ran-

dom forest package in R. A tenfold cross-validation was

performed on a random forest model using the relative

species abundance profile. The minimum error was cal-

culated using fivefold cross-validation with the “rfcv”

function, and the minimum error plus the s.d. at that

point was used as the cutoff. The optimal number of

species was selected by cross-validation with one SE

rule. The case probability was calculated using this set of

species and a receiver operating characteristic (ROC)

curve within the pROC package in R. The model was

tested on the testing set, and the prediction error was

determined [37]. Differentially enriched genes were
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identified using the Wilcoxon rank test, and adjusted

P values were estimated using the R package “q value”

(version 2.2.2). All differentially enriched genes

(q value < 0.05) were annotated to the butanoate metabol-

ism pathways (using their original KO annotation which

was inherited from the integrated reference catalog of the

human gut microbiome database).

Results

Taxonomic characterization of gut microbiota in breast

cancer patients and healthy controls

A total of 133 stool samples were sequenced from pre-

menopausal breast cancer patients (n = 18), premeno-

pausal healthy controls (n = 25), postmenopausal breast

cancer patients (n = 44), and postmenopausal healthy

controls (n = 46). The premenopausal breast cancer pa-

tients and controls were similar for age, BMI, and ethni-

city (P > 0.05, Table 1); the postmenopausal breast

cancer patients and controls were similar for age, BMI,

age at menopause, and ethnicity (P > 0.05, Table 1). A

total of 965 million 150-bp paired-end reads were gener-

ated, with an average (s.d.) of 7.25 ± 1.13 million reads

for each sample. After quality control, we obtained 902

million high-quality reads free of adaptor and human

DNA contaminants, with an average (s.d.) of 6.78 ± 1.08

million reads per sample (Additional file 1: Table S1).

To determine whether the sequencing adequately cap-

tured the gene diversity of the gut microbiota, rarefac-

tion analysis was performed. The curves in all samples

were near saturation, suggesting that the sequencing

depth was sufficient to capture most gene diversity

(Additional file 2: Figure S1).

A similar number of species was detected in premeno-

pausal breast cancer patients and premenopausal healthy

controls (P = 0.767, Wilcoxon rank sum test, Fig. 1a).

Based on the species profile, we calculated the

within-sample (alpha) diversity to estimate gut microbiota

richness and evenness based on the Shannon index and

Fig. 1 Diversity of gut microbiota in breast cancer patients and healthy controls. a Total number of species in the four groups. b, c Alpha diversity of

the four cohorts at species level, measured in terms of the Chao1 index and Shannon index. d Beta diversity of the four cohorts at species level. Each

dot refers to a sample; if a sample has a high average JSD value, it indicates that the gut microbiota community structure of this sample is very

different. Furthermore, if most samples of a group have high average JSD values, it indicates that the between-sample variability of the group is high.

NS non-significant. *P < 0.05, **P < 0.01, ***P < 0.001
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Chao1 index. The mean Chao1 index was similar between

premenopausal breast cancer patients and premenopausal

controls (P = 0.777, Wilcoxon rank sum test, Fig. 1b). The

mean Shannon index was higher for premenopausal pa-

tients than premenopausal controls (P = 0.027, Wilcoxon

rank sum test, Fig. 1c).

In contrast, the between-sample variability (beta diver-

sity) of the gut microbiota community structure tended

to be lower in premenopausal patients than in premeno-

pausal controls (P = 0.056, Fig. 1d).

The number of species was significantly higher in post-

menopausal breast cancer patients than in postmeno-

pausal controls (P = 0.003, Wilcoxon rank sum test,

Fig. 1a). Consistently, the mean Chao1 index was higher

in postmenopausal patients than in postmenopausal

controls (P = 0.007, Wilcoxon rank sum test, Fig. 1b).

However, mean Shannon index was similar between post-

menopausal breast cancer patients and postmenopausal

controls (P = 0.502, Wilcoxon rank sum test, Fig. 1c). Beta

diversity was higher for postmenopausal patients than

postmenopausal controls (P < 0.001, Fig. 1d).

Previous studies have suggested that the human gut

microbiome can be assigned to several robust enterotypes

[38, 39]. To group the breast cancer patients and control

samples into enterotype clusters, we applied the PAM

method using JSD for the relative abundance of genera.

The optimal number of enterotypes was 2 as indicated

by the CH index (Additional file 2: Figure S2a). Principal

component analysis was used to cluster the samples of

the four groups into two enterotypes (Additional file 2:

Figure S2b). Enterotype 1 had a relatively high level of

Bacteroides, enterotype 2, a relatively high level of

Prevotella (Additional file 2: Figure S2c). These two

enterotypes have been observed in European and

Chinese populations [38, 39]. However, we found no sig-

nificant relationship between enterotype and breast cancer

disease status, either when we compared premenopausal

patients with premenopausal controls (P = 0.141) or when

we compared postmenopausal patients with postmeno-

pausal controls (P = 0.445; Fisher’s exact test in both cases;

Additional file 1: Table S2; Additional file 2: Figure S2d).

To further explore features of the gut microbial com-

munity in breast cancer patients, we compared the rela-

tive abundances of species between patients and

controls. The taxonomic assignment for the metage-

nomic data was carried out using bowtie. The relative

abundance of gut microbiota was calculated by summing

the abundance of genes. Relative abundance of the gut

microbiota in the four groups at the species level is

shown in Fig. 2.

There was no significant difference in gut microbiota

species between premenopausal breast cancer patients

and premenopausal healthy controls (q value > 0.05,

Wilcoxon rank sum test; Additional file 1: Table S3). In

contrast, 45 species differed significantly between post-

menopausal patients and postmenopausal controls: 38

species were enriched in patients, including Escherichia

coli, Klebsiella sp_1_1_55, and Prevotella amnii, while 7

species were reduced in patients, including Porphyromo-

nas uenonis, Eubacterium eligens, and Lactobacillus vagi-

nalis (q value < 0.05; Table 2; Additional file 1: Table S4,

Fig. 3). PERMANOVA analysis showed that breast cancer

Fig. 2 Relative abundance of the gut microbiota in the four groups at species level
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Table 2 Relative abundance of the different species between postmenopausal breast cancer patients and postmenopausal healthy

controls

P value q value Control_mean Control_sd Case_mean Case_sd

Increased in postmenopausal breast cancer patients

Escherichia_coli 1.45E−07 4.77E−05 1.04E−02 4.34E−02 3.74E−02 8.18E−02

Shigella_sp_D9 1.86E−07 4.77E−05 1.80E−06 8.35E−06 5.36E−06 1.50E−05

Escherichia_sp_3_2_53FAA 3.03E−07 4.77E−05 6.92E−05 2.96E−04 2.40E−04 5.14E−04

Shigella_sonnei 3.01E−07 4.77E−05 4.38E−06 1.94E−05 1.46E−05 3.42E−05

Escherichia_sp_1_1_43 6.49E−07 8.17E−05 2.53E−06 1.11E−05 8.11E−06 1.84E−05

Proteus_mirabilis 1.53E−06 1.61E−04 1.94E−06 5.26E−06 1.46E−03 9.47E−03

Shigella_boydii 2.17E−06 1.95E−04 3.07E−06 1.29E−05 1.01E−05 2.27E−05

Vibrio_cholerae 2.66E−06 2.09E−04 1.18E−06 3.46E−06 2.95E−05 1.17E−04

Escherichia_fergusonii 1.25E−05 8.72E−04 3.52E−07 1.68E−06 1.67E−06 3.34E−06

Escherichia_sp_4_1_40B 1.86E−05 1.06E−03 1.60E−06 7.36E−06 4.13E−06 1.06E−05

Shigella_flexneri 1.75E−05 1.06E−03 2.86E−06 1.20E−05 1.20E−05 4.58E−05

Acinetobacter_baumannii 5.39E−05 2.83E−03 1.73E−06 5.39E−06 1.25E−05 5.13E−05

Escherichia_sp_TW09276 8.01E−05 3.88E−03 6.60E−07 3.13E−06 1.95E−06 4.75E−06

Actinomyces_sp_HPA0247 9.98E−05 4.42E−03 2.65E−08 9.16E−08 1.67E−07 3.52E−07

Acinetobacter_johnsonii 1.23E−04 4.46E−03 4.28E−08 1.64E−07 5.64E−06 3.32E−05

Providencia_rettgeri 1.28E−04 4.46E−03 2.39E−06 7.06E−06 1.05E−05 3.25E−05

Lactobacillus_mucosae 1.27E−04 4.46E−03 4.19E−07 2.14E−06 5.36E−05 3.52E−04

unclassified_Citrobacter_sp._30_2 2.12E−04 7.02E−03 1.93E−04 1.12E−03 6.39E−04 2.27E−03

Citrobacter_sp_30_2 2.58E−04 8.11E−03 7.53E−07 3.99E−06 2.59E−06 7.86E−06

Porphyromonas_uenonis 4.41E−04 1.32E−02 7.70E−07 2.88E−06 1.19E−06 3.73E−06

Citrobacter_koseri 4.81E−04 1.38E−02 2.49E−05 5.29E−05 8.09E−05 1.87E−04

Desulfovibrio_piger 5.27E−04 1.44E−02 1.14E−04 3.37E−04 3.15E−04 7.13E−04

Klebsiella_sp_1_1_55 7.03E−04 1.62E−02 3.14E−06 8.91E−06 7.58E−06 1.77E−05

Enterococcus_gallinarum 6.76E−04 1.62E−02 2.62E−07 8.17E−07 1.48E−05 8.63E−05

Salmonella_enterica 6.49E−04 1.62E−02 4.29E−05 9.78E−05 1.49E−04 4.36E−04

Erwinia_amylovora 8.12E−04 1.71E−02 1.23E−08 5.96E−08 8.77E−07 3.02E−06

Sodalis_glossinidius 8.15E−04 1.71E−02 3.44E−07 2.09E−06 1.55E−06 5.56E−06

Acinetobacter_radioresistens 8.57E−04 1.74E−02 1.15E−08 7.82E−08 5.84E−06 3.50E−05

Fusobacterium_varium 1.00E−03 1.97E−02 1.62E−04 6.01E−04 2.49E−03 1.31E−02

Acidaminococcus_intestini 1.06E−03 2.02E−02 1.14E−06 3.45E−06 1.99E−04 8.37E−04

Prevotella_amnii 1.28E−03 2.37E−02 6.72E−07 3.56E−06 3.56E−06 1.87E−05

Yersinia_enterocolitica 1.32E−03 2.38E−02 4.48E−08 2.69E−07 7.96E−07 4.09E−06

unclassified_Fusobacterium 1.89E−03 2.90E−02 7.79E−06 1.68E−05 4.58E−05 1.52E−04

unclassified_Prevotella_sp._oral_taxon_299 1.79E−03 2.90E−02 2.17E−08 1.18E−07 4.34E−07 1.92E−06

Anaerococcus_vaginalis 1.81E−03 2.90E−02 1.11E−06 4.26E−06 1.46E−06 2.81E−06

Shewanella_putrefaciens 1.84E−03 2.90E−02 7.68E−08 2.12E−07 3.60E−06 2.05E−05

Fusobacterium_nucleatum 2.53E−03 3.79E−02 3.40E−07 8.82E−07 3.33E−06 1.74E−05

Escherichia_sp_TW11588 3.22E−03 4.61E−02 2.76E−07 1.75E−06 1.25E−06 3.63E−06

Decreased in postmenopausal breast cancer patients

Eubacterium_eligens 1.05E−04 4.42E−03 4.02E−03 5.95E−03 1.46E−03 3.84E−03

Escherichia_albertii 7.21E−04 1.62E−02 1.28E−05 8.26E−05 9.96E−06 4.44E−05

Campylobacter_concisus 6.80E−04 1.62E−02 1.51E−05 4.24E−05 2.05E−06 4.30E−06
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status, menopause status, and age were significant factors

for explaining the variation in the examined gut microbial

samples (P < 0.05; Additional file 1: Table S5).

Identification of postmenopausal breast cancer patients

based on gut microbiota

To illustrate the potential diagnostic value of gut micro-

biota for breast cancer in postmenopausal women, we

used a random forest classifier in an attempt to detect

breast cancer samples from among a mixture of samples

from postmenopausal patients and healthy controls.

Tenfold cross-validation was repeated for five times with

a training set consisting of 44 postmenopausal patients

and 46 postmenopausal controls; 14 optimal species

markers were selected, including Escherichia coli,

Shigella sp_D9, Eubacterium eligens, Proteus mirabilis,

and Fusobacterium varium (Additional file 2: Figure S6,

Additional file 1: Table S6). ROC curves for the training

set showed a remarkable performance in the training set

when discriminating between postmenopausal breast

cancer patients and postmenopausal healthy controls by

specificity and sensitivity; the area under receiver operat-

ing curve (AUC) was 85.52; and 95% confidence interval

(CI) is 77.57–93.47% (Fig. 4b). Next, we tested the same

markers for their ability to detect breast cancer among

43 samples not used during training, comprising 18

premenopausal breast cancer patients and 25 premeno-

pausal healthy controls. The AUC was 72% (95% CI

56.01–88.44%; Fig. 4d).

Quantification of virulence factors and pathogen-host

interaction genes in the gut microbiota of postmenopausal

breast cancer patients and postmenopausal healthy controls

To analyze proteins encoded by genes in gut microbiota,

genes in the catalog were aligned against proteins in the

Pathogen-Host Interactions (PHI) database and in the

Virulence Factors of Pathogenic Bacteria database. The

relative abundances of genes encoding virulence factors

or pathogen-host interaction were calculated by sum-

ming the abundances of genes annotated to a feature.

Table 2 Relative abundance of the different species between postmenopausal breast cancer patients and postmenopausal healthy

controls (Continued)

P value q value Control_mean Control_sd Case_mean Case_sd

unclassified_Enterobacteriaceae_bacterium_9_2_54FAA 1.45E−03 2.53E−02 1.04E−05 4.38E−05 1.00E−05 1.78E−05

Roseburia_inulinivorans 1.89E−03 2.90E−02 3.69E−03 3.72E−03 2.64E−03 5.39E−03

Brucella_melitensis 3.15E−03 4.61E−02 1.83E−06 1.23E−05 5.73E−07 1.49E−06

Lactobacillus_vaginalis 3.44E−03 4.81E−02 4.32E−05 2.89E−04 7.07E−06 2.97E−05

Fig. 3 Relative abundance of 45 species differing significantly between postmenopausal breast cancer patients and postmenopausal healthy controls
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PHI genes were relatively more abundant in postmen-

opausal breast cancer patients than in postmenopausal

controls (P = 0.021, Fig. 5a). The top 15 representation

of Pathogen-Host Interactions genes implicated in sev-

eral human diseases, such as urinary tract infections,

other infections, and tuberculosis (q value < 0.05,

Wilcoxon rank sum test, Fig. 5b; Additional file 1: Table S7).

Virulence factors were relatively more abundant in post-

menopausal patients than in controls (P = 0.016, Fig. 5c);

these factors included LOS glycosyltransferase, peritri-

chous flagella, and type I fimbriae (q value < 0.05,

Wilcoxon rank sum test, Fig. 5d; Additional file 1: Table S8).

Association between gut microbiota and clinical indices

Next, we asked whether the 45 microbial species differing

between postmenopausal breast cancer patients and post-

menopausal controls correlated with well-established clin-

ical indices of breast cancer based on Spearman

correlation analysis (Fig. 6). Two gut microbiota

species, Acinetobacter radioresistens (Spearman rho = 0.413,

P= 0.015, q value > 0.05) and Vibrio cholerae (Spearman

rho = 0.349, P = 0.043, q value > 0.05), positively but

weakly correlated with C4 levels, whereas Yersinia

enterocolitica (Spearman rho = − 0.345, P = 0.046, q

value > 0.05) negatively but weakly correlated with C4

levels. Two species, Acinetobacter radioresistens

(Spearman rho = 0.442, P = 0.009, q value > 0.05) and

Enterococcus gallinarum (Spearman rho = 0.386, P = 0.024,

q value > 0.05), positively but weakly correlated with

levels of high-sensitivity C-reactive protein (hsCRP).

Anaerococcus vaginalis (Spearman rho = 0.48, P = 0.002,

q value > 0.05) and Porphyromonas uenonis (Spearman

rho = 0.42, P = 0.009, q value > 0.05) positively but

weakly correlated with CD19 levels, while Enterococcus

gallinarum (Spearman rho = − 0.351, P = 0.031, q value

> 0.05) negatively but weakly correlated with CD19

levels. Shewanella putrefaciens (Spearman rho = 0.379,

P = 0.025, q value > 0.05) and Erwinia amylovora

(Spearman rho = 0.351, P = 0.039, q value > 0.05) posi-

tively but weakly correlated with estradiol levels.

Fig. 4 Classification to differentiate samples from postmenopausal breast cancer patients or postmenopausal healthy controls. a Probability of

postmenopausal breast cancer in the training set. b ROC curves for the training set. The AUC was 87.25% (95% CI 79.82–94.68%). Classification of

the test set consisted of 18 premenopausal breast cancer patients (red) and 25 premenopausal healthy controls (blue). c Classification of each

sample. We used two cutoffs to assign the samples into three groups: 50% cases were classified into “Case” (probability of case > 50%), and 68%

controls were classified into “Not case” (probability of case < 35%). Four cases and five controls stayed in “Uncertain.” d ROC for the test set. The

AUC is 72% and the 95% CI is 56.01–88.44%
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Actinomyces sp. HPA0247 (Spearman rho = − 0.384,

P = 0.017, q value > 0.05) negatively but weakly correlated

with CD3+CD8+ T cell numbers. All these gut flora species

were enriched in postmenopausal breast cancer patients

relative to controls. Conversely, Eubacterium eligens was

enriched in controls relative to patients, yet it negatively

but weakly correlated with CD3+CD4+ T cell numbers

(Spearman rho = − 0.349, P = 0.032, q value > 0.05) and IgA

levels (Spearman rho = − 0.532, P = 0.001, q value > 0.05).

Metabolic functions of the gut microbiota in breast cancer

patients and healthy controls

We explored functional features of the gut microbiota

across the four groups in our study by annotating the

gene catalog based on the KEGG modules. Modules

differing between breast cancer patients and healthy

controls with a reporter score > 1.6 were identified.

Among premenopausal women, 44 KEGG modules

were significantly different between patients and controls

(q value < 0.05, Wilcoxon rank sum test, Fig. 7a;

Additional file 1: Table S9). Modules enriched in patients

included the PTS system, secretion system, vitamin B12

transport system, amino acid transport system, and

manganese/iron transport system. Modules enriched in

controls included aminoacyl-tRNA biosynthesis, coenzyme

A biosynthesis, nucleotide synthesis, and dicarboxylate-

hydroxybutyrate cycle.

Among postmenopausal women, 43 KEGG modules

were enriched in patients, including lipopolysaccharide bio-

synthesis, iron complex transport system, vitamin B12

transport system, PTS system, secretion system, amino acid

transport system, and beta-oxidation (q value < 0.05,

Wilcoxon rank sum test, Fig. 7b; Additional file 1: Table S10).

The genes annotated to butanoate metabolism pathways

differentially enriched in gut microbiome of postmenopausal

patients and controls. Fourteen butyrate-synthesis genes

were found: 10 genes were enriched in controls and 4 genes

were enriched in postmenopausal patients (q value < 0.05,

Wilcoxon rank sum test; Additional file 1: Table S11).

Discussion

Here, we performed a comprehensive metagenomic

comparison of gut microbiota in breast cancer patients

and healthy controls. Microbiota were analyzed in terms

of taxonomic profile, genetic functional capacity, and as-

sociations with clinical indices of breast cancer. Our re-

sults identify various compositional and functional

features of the gut microbiota metagenome that differ

a b 

c 

Pathogen-Host Interactions

Virulence Factors d 

Fig. 5 Relative abundance of genes encoding virulence factors and pathogen-host interactions in postmenopausal breast cancer patients and

postmenopausal controls. a Relative abundance of pathogen-host interaction genes in the two groups. b The top 15 representation of Pathogen-Host

Interactions genes in the two groups and their implication in human diseases. c Relative abundance of virulence factor genes in the two groups. d

Relative abundance of the top 15 virulence factor genes in the two groups
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between postmenopausal patients and healthy controls,

suggesting that they may be associated with postmeno-

pausal breast cancer.

Significant taxonomic differences in gut microbiota

were not detected between premenopausal breast cancer

patients and controls. In contrast, several bacterial

species were found to be enriched in postmenopausal

patients relative to controls: Escherichia coli, Citrobacter

koseri, Acinetobacter radioresistens, Enterococcus galli-

narum, Shewanella putrefaciens, Erwinia amylovora,

Actinomyces sp. HPA0247, Salmonella enterica, and

Fusobacterium nucleatum. These results are consistent

with previous research on several of these species, which

has suggested associations with breast cancer [24]. In

addition, we found a weak positive correlation of

Shewanella putrefaciens and Erwinia amylovora with es-

tradiol (P < 0.05), although there is no statistical signifi-

cance after correction for multiple testing (q value > 0.05),

which may be related to the small sample, but the associ-

ation can still be considered exploratory. These results are

consistent with the idea that the gut microbiota can influ-

ence or be affected by estrogen metabolism and thereby

provide an independent biomarker of breast cancer. Re-

cent literature has demonstrated that the gut microbiota

is the modulation of systemic estrogens [40–42]. Elevated

levels of circulating estrogens are associated with an in-

creased risk of breast cancer [43–47].

We found that Eubacterium eligens and Roseburia inuli-

nivorans were less abundant in postmenopausal breast can-

cer patients than in postmenopausal controls. Roseburia

inulinivorans produces butyrate [48, 49]. In order to

explore a potential association between butyrate-producing

bacteria and breast cancer, we had added a differentially

enriched gene analysis to show the potential association, all

differentially enriched genes were annotated to the

butanoate metabolism pathways, and finally, 14

butyrate-synthesis genes were found: 10 genes were

enriched in controls and 4 genes were enriched in

postmenopausal patients. Notably, these butyrate-

synthesis genes were reduced in postmenopausal pa-

tients, which may be related to the decrease in

butyrate-producing bacteria.

Butyrate acts as an anti-inflammatory agent, mainly by

inhibiting the activation of nuclear factor κB (NF-κB) in

intestinal epithelial cells [50]. Butyrate can also act on

immune cells via specific G-protein-coupled receptors

expressed on immune cells [51]. Reductions in colonic

butyrate can promote inflammation. These findings

Fig. 6 Correlation between gut microbiota species and clinical indices of breast cancer. Spearman’s rank correlation coefficient is indicated using

a color gradient: red indicates positive correlation; blue, negative correlation. *P < 0.05
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provide further evidence for the idea that alterations in

the gut microbial community are associated with breast

cancer. For example, a decrease in Roseburia inulinivor-

ans may render postmenopausal women more prone to

inflammation and therefore at higher risk of breast can-

cer if the decrease in Roseburia had occurred at the time

breast cancer was initiated.

Dysbiosis was detected in the gut microbiomes of

postmenopausal breast cancer patients, but it was not

detected in premenopausal patients. Therefore, the dys-

biosis observed in the gut microbiomes of breast cancer

patients may depend on age and menopause status.

Breast cancer-associated alterations in the gut micro-

bial community likely translate into alterations in gut

microbial functions. Among premenopausal women,

breast cancer was associated in our study with enrich-

ment in genes involved in the PTS system, secretion sys-

tem, vitamin B12 transport system, and manganese/iron

transport system. Among postmenopausal women,

breast cancer was associated with enrichment in genes

involved in lipopolysaccharide (LPS) biosynthesis, iron

complex transport system, vitamin B12 transport system,

PTS system, and secretion system. Iron enrichment af-

fects the gut microbiome, increases pathogen abun-

dance, and induces intestinal inflammation [52]. The

PTS and secretion systems are associated with diabetes,

liver cirrhosis, and rheumatoid arthritis [38, 53], while

vitamin B12 status correlates positively with breast

Fig. 7 Functions of genes expressed in gut microbiota in pre- and postmenopausal breast cancer patients and healthy controls. a Gene functions

in gut microbiota in premenopausal patients and controls; 26 KEGG modules were enriched in patients (red), and 18 were enriched in controls

(blue). b Gene functions in gut microbiota in postmenopausal patients and controls; 43 KEGG modules were enriched in patients (blue)
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cancer risk in women [54]. Lipopolysaccharide is a po-

tent trigger of macrophage-mediated systemic inflamma-

tion [55], which has been suggested to play an important

role in promoting the transformation of inflammation

into tumorigenesis [56–58]. Enrichment of the iron

transport system and lipopolysaccharide biosynthesis in

gut microbiota may cause systemic low-grade inflamma-

tion, thereby increasing the risk of breast cancer if the

dysbiosis observed in the patient cohort was present in

the same cohort prior to contracting breast cancer.

Conclusion
In conclusion, we have found alterations of gut microbial

community and functions in postmenopausal breast can-

cer patients. The gut microbiota may regulate or respond

to host immunity and metabolic balance. In this way, our

study suggests an association between gut microbiota and

development of postmenopausal breast cancer. However,

our data do not allow us to determine whether the altered

gut metagenome is the consequence of the disease process

or is somehow involved in its pathogenesis.
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Additional file 1: Table S1. Generated data of the four groups.
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healthy controls. Table S4. Relative abundance of the different species

between postmenopausal breast cancer patients and postmenopausal
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breast cancer patients and postmenopausal healthy controls. Table S7.
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Relative abundance of the species of all the samples. Table S13. The species
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Additional file 2: Figure S1. Rarefaction for gut microbial gene in

premenopausal breast cancer patients (n = 18), premenopausal healthy

controls (n = 25), postmenopausal breast cancer patients (n = 44), and

postmenopausal healthy controls (n = 46). Group 1 indicates premenopausal

healthy controls, group 2 indicates premenopausal breast cancer patients,

group 3 indicates postmenopausal healthy controls, and group 4 indicates

postmenopausal breast cancer patients. Figure S2. The enterotypes of

gut microbiota in breast cancer patients and healthy controls. (a) The

optimal number of enterotypes was two of the four groups as indicated by

Calinski-Harabasz (CH) index. The maximum CH index at two clusters

(enterotypes) indicated the optimal enterotype number. (b) The gut

microbiota of the four cohorts are clustered into two enterotypes at the

genus level, dominated by either Bacteroides (enterotype 1) or Prevotella

(enterotype 2). (c) Relative abundances of the top genera in the two

enterotypes. (d) Distribution of the samples of the four groups in the

two enterotypes. Figure S3. Relative abundance of the gut microbiota

in the four groups at the phylum level. Figure S4. Relative abundance

of the gut microbiota in the four groups at the genus level. Figure S5.

Abundance distribution of the gut microbiota differed significantly

between postmenopausal breast cancer patients and postmenopausal

healthy controls at the genus level. Figure S6. Distribution of five trials

of tenfold cross-validation error in random forest classification of

postmenopausal breast cancer patients. The model was trained using

the relative species abundances in patients and controls. The black line

marks the average of the five trials (gray lines). The red line indicates

the number of optimal species markers. Figure S7. Scatter plots for

correlations between gut microbiota species and clinical indices.
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