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Abstract: Breast cancer has affected many women worldwide. To perform detection and classification
of breast cancer many computer-aided diagnosis (CAD) systems have been established because the
inspection of the mammogram images by the radiologist is a difficult and time taken task. To early
diagnose the disease and provide better treatment lot of CAD systems were established. There is still
a need to improve existing CAD systems by incorporating new methods and technologies in order
to provide more precise results. This paper aims to investigate ways to prevent the disease as well
as to provide new methods of classification in order to reduce the risk of breast cancer in women’s
lives. The best feature optimization is performed to classify the results accurately. The CAD system’s
accuracy improved by reducing the false-positive rates.The Modified Entropy Whale Optimization
Algorithm (MEWOA) is proposed based on fusion for deep feature extraction and perform the
classification. In the proposed method, the fine-tuned MobilenetV2 and Nasnet Mobile are applied
for simulation. The features are extracted, and optimization is performed. The optimized features are
fused and optimized by using MEWOA. Finally, by using the optimized deep features, the machine
learning classifiers are applied to classify the breast cancer images. To extract the features and perform
the classification, three publicly available datasets are used: INbreast, MIAS, and CBIS-DDSM. The
maximum accuracy achieved in INbreast dataset is 99.7%, MIAS dataset has 99.8% and CBIS-DDSM
has 93.8%. Finally, a comparison with other existing methods is performed, demonstrating that the
proposed algorithm outperforms the other approaches.

Keywords: breast cancer; classification; deep learning; features fusion; features optimization

1. Introduction

Cancer is a fatal disease, with an estimated ten million deaths and 19.3 million cancer
cases reported in 2020 [1]. Breast cancer after lung cancer is the second utmost common
cancer [2], and a fifth foremost reason of death in women [2,3]. In 2020, 684,996 deaths
occurred with breast cancer and 2.3 million new cases diagnosed in women (https://gco.
iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf) (accessed on 20 October
2021) [1]. In less developed countries the breast cancer is the foremost cause of death [4,5].
The cells in the breast tissues change and split into multiple cells, causing a mass or
lump. Cancer begins in ducts or lobules that are connected to the nipples (https://www.
cancer.org/content/dam/cancer-org/research (accessed on 11 November 2021)) [3]. Most
masses in the breast are benign that is, noncancerous, and cause fibroids, tenderness,
area thickening, or lumps [3]. Mostly, breast tumors have no signs when small in size
and can be easily treated (https://www.cancer.org/content/dam/cancer-org/research
(accessed on 11 November 2021)). Painless mass is the sign of abnormal cells. Family
history, reproductive factors, personal characteristics, excess body weight, diet, alcohol,
tobacco, environmental factors, and other risk factors, such as night shift work, are all breast
cancer issues. In primary phase, breast cancer spreads slowly but with passage of time it
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affect to other body parts.(https://www.cancer.org/content/dam/cancer-org/research
(accessed on 11 November 2021)).

Many tests are recommended for the diagnosis of breast tumors, including mam-
mography, magnetic resonance imaging (MRI) [6], ultrasound [7], and digital breast to-
mosynthesis (https://www.cancer.org/content/dam/cancer-org/research (accessed on
11 November 2021)) [1]. The most recommended test at an early stage is mammogra-
phy. The mammography is an affordable, low radiation test that is suggested for early
diagnosis of the breast tumor [1,8]. The MRI is an alternative test that is used to con-
firm the presence of a tumor. An allergic reaction to the contrast dye may occur during
the MRI test. This is an unintended consequence of the MRI test. At an initial phase,
the recommended test is mammography.In an initial phase, treatment of breast cancer
is possible [8]. There are many treatment methods such as surgery to remove the de-
fected area, medication, radiation therapy, chemotherapy, hormonal therapy, and im-
munotherapy (https://www.cancer.org/content/dam/cancer-org/research (accessed on
11 November 2021)) [2]. These treatments, when administered early on, have the poten-
tial to save lives. The survival rate is 90% in developed countries, 40% in South Africa
and 66% in India if detected in an initial stage. The low-income countries have fewer
resources, so early diagnosis methods and treatments can be helpful to save women’s
lives (https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on
18 November 2021)) [8].

In medical imaging diagnosis of breast cancer has been extensively used. In the initial
stage detection of breast tumors is critical. Mammography is the recommended procedure
for early detection (https://www.cancer.org/content/dam/cancer-org/research (accessed
on 11 November 2021)). In the diagnostic centers, more than one radiologist is present to
diagnose the mammogram breast tumor. The radiologists accomplished single readings
with or without CAD systems, as well as double readings in a known or non-known manner.
For accurate results, a double reading is recommended for confirmation. In Dutch, double
reading is the quality of practice. In double reading, the radiologists can classify the results
into different types and stages. It can generate false-positive results [9]. To reduce burden of
human observers and to minimize the false negative results many hospitals implemented
double reading. Double reading is not an appropriate procedure due to cost and time
constraints [10,11]. The results can be inaccurate due to two readings. The false-positive
rates can be high, so there is a need to precisely diagnose abnormal regions and classify
them into malignant or benign.In medical field, CAD systems always required to support
the radiologists as a second opinion.To reduce the perceptual errors CAD systems have
been investigated. The computerized methods are used in CAD systems to detect image
anomalies and perform tests. Human perception and decision-making abilities are aided
by CAD systems. The medical diagnostician makes the final decision. CAD systems help
radiologists detect and differentiate between normal and abnormal tissues [8,11,12]. The
masses are symptoms of breast tumors. The masses are benign and malignant. The benign
are round or oval-shaped, while the masses are round or irregular in shape. The most
whitened area in mammogram images is mass [5,8]. Mammogram images have a complex
structure, making it difficult for radiologists to extract features and precisely classify the
images. Many researchers have introduced numerous methods for feature extraction and
classifying diseases, but these methods still need to be improved.

Different deep learning models are available that perform different tasks such as object
detection [13], visual tracking [14], semantic segmentation [15], and classification [16]. The
researchers proposed different models like AlexNet, GoogleNet, ResNet, MobileNet, and
EfficientNet to perform the classifications [17].

In this research study, Features are extracted to achieve the best performance of the
model by using Fine-tuned MobilenetV2 and Fine-tuned Nasnet Mobile. The Modified
Entropy Whale Optimization Algorithm (MEWOA) is applied to improve the features.
The performance speed of the system will be increase by minimizing the computation
cost. The selection of features is performed. The feature selection methods will increase
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the performance of the model by decreasing the computational cost and the load of the
classification. The feature selection technique is used to choose the model’s most relevant
features that will improve the model’s accuracy. The feature fusion is performed to get
the internal information of the multiple input data by joining it into a single feature vector.
Feature fusion helps to join the multiple data into a single place.

In this paper, three datasets are taken. Data augmentation is performed to increase the
images. The Modified Entropy controlled Whale Optimization Algorithm (MEWOA) is
proposed for optimal features selection. The major contributions are as follows:

• Data augmentation is performed using three mathematical formulas: horizontal shift,
vertical shift, and rotation 90.

• Two deep learning pre-trained models are fine-tuned such as Nasnet mobile andMo-
bilenetV2 and deep features are extracted from the middle layer (average pool) instead
of the FC layer.

• We proposed a Modified Entropy-controlled Whale Optimization Algorithm for opti-
mal feature selection and reducing the computational cost.

• We fused the optimal deep learning features using a serial-based threshold approach.

Literature Review

To perform the feature extraction and classification lot of models have been pro-
posed [18]. To extract the features and to perform mammogram images classification into
malignant and benign CAD is developed by deploying the Deep Convolutional Neural
Network (DCNN) and AlexNet model [19]. The SVM approach is used to connect to the
last layer, which is fully connected to achieve good accuracy. Fine-tuning is also performed.
The AUC is 0.94% and accuracy is 87.2% achieved [20]. The DCNN model is used for
mammogram images detection. The model is fine-tuned [21]. To classify the malignant
and non-malignant images, a CAD system is proposed. The K-Clustering technique and
SVM classifier is used. Sensitivity and specificity of 96% are achieved by using the dataset
DDSM [22]. The researcher took INbreast and CBIS-DDSM datasets in the form of png,
resizing of the images is performed. The VGG and Resnet methods used for classifica-
tion. The CBIS-DDSM achieved 0.90 AUC and 0.98 on INbreast dataset [23]. The Deep
Learning models VGG, Resnet, Xception are applied to the CBIS-DDSM dataset. Transfer
learning and fine tuning methods used to adjust the overfitting problem. The 0.84 AUC
value is achieved on CBIS-DDSM [24]. To perofrm the classification researchers proposed
Multi-View Feature Fusion(MVFF) method on mini-MIAS and CBIS-DDSM dataset. The
AUC 0.932% is achieved [25]. The researchers used the MobilenetV2 model and performed
transfer learning on the CBIS-DDSM dataset to perform the classification. The 74.5% accu-
racy is achieved. The data resizing and augmentation are performed [26]. The multi-level
thresholding and radial region-growing methods are used on the DDSM dataset with an
accuracy of 83.30% and an AUC of 0.92, which reduce the false positive rates [27].The CAD
system is proposed by using the DDSM and mini-MIAS datasets. The histogram regions
are used for segmentation and classification. K-means analysis is used to segment the
images. The shape and texture features extracted and SVM classifier is used to perform the
classification. The classification accuracy in mini-MIAS is 94.2% with an AUC 0.95% and in
CBIS-DDSM 90.44% accuracy with an AUC value of 0.90% is achieved [28].

The Fuzzy Gaussian Mixture Model (FGMM) is used to classify the mammogram
DDSM images. The FGMM achieves 93% accuracy, 90% sensitivity, and 96% specificity [29].

The CAD system is proposed to classify the INbreast dataset. To perform the clas-
sification the deep CNN model is used. The 95.64% accuracy, 94.78% AUC and 96.84%
F1-score is achieved [30]. In the other study, the Modified VGG (MVGG) model is used to
classify data from the CBIS-DDSM dataset. The hybrid transfer learning fusion approach
is used in MVGG and ImageNet models. The modified MVGG achieves 89.8% accuracy,
while MVGG and Imagenet combined by the fusion method achieve 94.3% accuracy [31].
In the other study, the researchers extract the features by using the Maximum Response
(MR) filter bank that is convolved by the CNN to perform the classification. The fusion
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approach is applied to address the mass features. The accuracy on the CBIS-DDSM dataset
after the fusion reduction approach is 94.3%, an AUC is 0.97%, and the specificity is 97.19%
is achieved [32]. To extract features ensemble transfer learning approach is used.The neural
networks are used to perform the classification. The 88% accuracy and an AUC 0.88%
achieved on CBIS-DDSM [33]. To generate the ROI and classification of the INbreast dataset,
a CAD system is proposed. Deep learning techniques such as a Gaussian mixture model
and deep belief network are proposed. The cascade deep learning method is used to reduce
the false-positive results. Bayesian optimization is performed to learn and segment the
ROIs. In the last, the deep learning classifier is used to classify the INbreast images by
achieving an accuracy of 91% and AUC is 0.76% [34].

The transfer learning [13] approach is used for improving the efficiency of the training
models that are used to perform the classification. This approach makes learning faster and
easier. Transfer learning is helpful when data is not available in a large amount. Transfer
learning with fine-tuning is usually faster and training is easier when initialized the weights.
It quickly learned transfer features using a small number of [33–36]. The transfer learning
approach with CNNs has been used to classify the different types of images like histological
cancer images, digital mammograms, and chest-X ray images [37].

To classify the INbreast and DDSM datasets, deep learning models CNN, ResNet-50,
Inception-ResNetV2 were used. Mammogram images are classified as benign or malig-
nant.The INbreast dataset achieved an accuracy of 88.74%, 92.55%, and 95.32% [38]. In
another study, Faster-RCNN is used to detect and perform classification on the INbreast and
CBIS-DDSM datasets. An AUC of 0.95 on the INbreast dataset is achieved [39]. The large
number of data set require to train the deep learning models, so augmentation on the mini-
MIAS dataset is performed by using the rotation and flipping method. The 450,000 images
of MIAS after augmentation are taken and resized into 192 × 192. The images are classified
into three categories using the multiscale convolutional neural network method (MCNN):
normal, benign, and malignant. The AUC is 0.99 and the sensitivity is 96% [40]. The ran-
dom forest (RF) on CNN with a pre-training approach is used to extract the hand-crafted
features from the INbreast dataset. The 91.0% accuracy is achieved [41]. The author’s used
physics informed neural network (PINN) by applying regression adaptive activation func-
tions to predict the smooth and discontinuous functions to solve the linear and non-linear
differential equation. To provide the smooth solution the nonlinear Klein Gordon equation
has been solved, to use the high gradient solutions the non-linear Burgers equation and the
Helmholtz equation, in particular, are used. To achieve the network best performance the
activation function hyper parameter is optimized by changing the topology loss function
that participates in the optimization process. To improve the convergence rate during initial
training and solution accuracy the adaptive activation function outperforms in terms of
learning capabilities. The efficiency can be increased by using this method [42]. To improve
the performance of PINN the adaptive activation function use layer-wise and neuron-wise
approaches. To complete the local adaption of activation function the scalable parameter is
initialized in each layer of layer-wise and neuron to perform the optimization updation
by utilizing the stochastic gradient descent algorithm. To increase the training speed the
slope-based activation with loss function is applied [43]. The adaptive activation functions
are utilizd to propose the Kronecker neural networks (KNNs). The number of parameters in
the large network is reduced by KNNs by using the Kronecker product. The KNNs tempts
faster loss decay as compare to feed forward network. For KNNs, the global convergence
of gradient descent is established. The Rowdy activation function remove the saturation
region with training parameters by using sinusoidal fluctuations [44].

2. Methods and Materials

This section illustrates the proposed methodology. The six steps are involved in the
proposed methodology. In the first step, to increase the number of training samples the
data augmentation is applied. In the second step, fine-tuning is performed on two selected
deep models: MobilenetV2 and Nasnet mobile. Fine-tuned models are used to extract the
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features from the global average pool layer. In the third step, a Modified Entropy Whale
Optimization Algorithm (MEWOA) is applied to the extracted deep features. In the fourth
step, features are fused using a serial-based non-redundant approach. In fifth step, again, to
reduce thecomputational time MEWOA is applied, and finally, classification is performed
using machine learning classifiers. Figure 1 shows the detailed architecture of the proposed
method. The detail of each step is given below.
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Figure 1. Proposed architecture of classification of breast cancer using deep learning.

2.1. Datasets

In this work, three publicly available mammography datasets are utilized for the
experimental process: CBIS-DDSM [45], INbreast [46], and MIAS (http://peipa.essex.
ac.uk/info/mias.html (accessed on 10 October 2019)). For evaluation of the proposed
framework, a 50:50 approach has opted which means 50% of the images of each dataset are
consumed for the training and remaining for testing. A few sample images of each dataset
are illustrated in the figures. The each dataset description is given below.

CBIS-DDSM: The Curated Breast Imaging Subset of Digital Database for Screening
Mammography (CBIS-DDSM) is an improved and standardized form of DDSM. A trained
mammographer curated the dataset. The images are in the Dicom form. The ROI annota-
tions are also provided of the images. The two views craniocaudal(CC) and mediolateral
oblique (MLO) are available. The 1696 mass images with pathological information training
and testing are available [45]. Figure 2 shows a few examples of images from this dataset.
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INbreast: The Portugal breast research group generated INbreast dataset. The INbreast
database includes 410 images from 115 patients. The 108 mass mammogram images with
BIRADS information are available. The 107 images with mass annotations are available.
The INbreast images are available in Dicom format. The images size is 3328 × 4084 or
2560 × 3328 pixels [46]. The 108 mass mammogram images are taken for the experiment.
Figure 3 represents a few sample images as well.
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Figure 3. Samples Images of INbreast dataset.

mini_MIAS (Mammographic Image Analysis Society): This is publicly available
dataset. There are 322 images in this dataset. MIAS images have been condensed to
200-micron pixel edges. Every image is 1024 × 1024 pixels. The benign, malignant, and nor-
mal images are given. The complete information of the dataset regarding normal, benign,
and malignant images is available (http://peipa.essex.ac.uk/info/mias.html (accessed on
10 October 2019)). The images are available in a portable gray map (PGM). The 300 images
without calcification cases are taken for the experiment. Figure 4, represent sample images
of this dataset.
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These three datasets CBIS-DDSM, INbreast, and mini-MIAS are converted into portable
network graphic (PNG) format [47]. The resizing of the images is performed by using the
neighbor interpolation method into 256× 256.
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2.2. Data Augmentation

To enable the deep learning models the sample images increased by using data aug-
mentation [47]. The deep learning models give promising results on a large amount of
data. In this work, three mathematical operations are implemented such as flip left to
right, flip up to down, and rotation at 90 degrees. Algorithm 1 of data augmentation is
presented below.

Algorithm 1: Data Augmentation

While (i = 1 to target object)
Step 1: Input read
Step 2: Flip Left to right
Step 3: Flip-up to down
Step 4: Rotate image to 90◦

Step 5: Image write step 2
Step 6: Image write step 3
Step 7: Image write Step 4
End

In Figure 5, data augmentation is presented of the CBIS-DDSM [45] images. The
augmentation of the data is performed by using flip left to right, up to down, and by
rotating at 90◦.
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Table 1 shows the detailed information of the three datasets CBIS-DDSM, INbreast,
and MIAS. The detail of original images and data augmentation is given below.
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Table 1. Dataset information.

Dataset Total Images Classes Augmented Images

CBIS-DDSM 1696 2 14,328

INbreast 108 2 7200

MIAS 300 3 14,400

2.3. Convolutional Neural Network

There are several layers in the CNN model, including an input layer, convolutional
layers, batch normalization layers, Pooling, ReLu, softmax layers, and one output layer.
The input layer consist of dimensions a× b× c of the input image. The number of channels
described by c. The convolutional layer that is main and first layer utilizes three inputs: a,
b, and c. The mapping of features is performed in the convolutional layer. These features
are utilized for visualization and used in the activation layer.

2.4. Fine-Tuned MobilenetV2

The MobilenetV2 model is a portable custom-based model in computer vision. This
model sustains the same accuracy by decreasing the number of operations and consuming a
small amount of memory. In this model, the inverted residual layer with a linear bottleneck
is included. In this model, the compressed representation of low-dimensional input is used
that is converted into high dimension by using the light weight depth-wise convolution
filters [48].

MobilenetV2 performs efficiently in any framework. This model reduces the need for
main memory in many embedded hardware designs while providing a small amount of
cache memory that increases the speed and efficiency of the system. It reduces the main
memory need. The MobilenetV2 performs best in object detection, semantic segmentation,
and classification tasks. In Mobilenetv2, depth-wise convolution, linear bottleneck, inverted
residuals, and information flow interpretation are used [49].

The depth-wise separable convolution blocks achieve good performance. In Mo-
bilenetV2, the convolution layers are replaced with the two other layers. The depth-wise
convolution that is the first layer uses the single convolution filter per input unit to perform
the lightweight filtering. The pointwise convolution that is the second layer generates
new features by utilizing the input channels of the linear combinations. In the residual
bottleneck, the information in the deep convolutional layer is encoded in some manifold
that is residing in a low-dimensional subspace. This procedure can be captured by reducing
the layer dimensionality and operating space dimensionality.

The manifold expands the space by allowing us to reduce the activation space di-
mensionality. The deep convolution neural network has ReLU, which is a nonlinear per
coordinate transformation that breaks down intuition. If the volume of the manifold of inter-
est after ReLU transformation remains non-zero, the linear transformation is formed. ReLU
has complete information about the input manifold if it remains in the low-dimensional
subspace of the input space. The inverted residuals are built up that is more memory
efficient [49].

In fine-tuned MobilenetV2 the last three layers replaced by adding new layers ac-
cording to the target datasets. The target dataset is based on mini-MIAS, CBIS-DDSM,
and INbreast. To train the fine-tuned model transfer learning approach is used. In the
training process, 100 epochs, 0.00001 learning rate, and 8 batch size is set. The Single Shot
Multibox Detector (SSD) [50] and Adam optimizer are utilized for the learning method. To
quantize bounding box space, the SSD uses default anchor boxes with different fractions
and measures. SSD adds different feature layers in the network end [2]. Finally, deep
features are extracted for further processing from the fine-tuned model of layer global
average pool (GAP). The vector output size of this layer is N× 1280.
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2.5. Fine-Tuned Nasnet Mobile

The Nasnet Mobile is a search network of neural architecture. By using a small dataset,
the architectural building block searched and transferred on the large dataset. The best
cells or convolutional layers are searched and applied to the Imagenet by making more
copies of the convolution layers. The new method ScheduleDropPath regularization is
proposed that improves the generalization of the Nasnet models [51]. The samples child
of the different networks is added in the recurrent neural network (RNN) to propose the
NAS [52]. To achieve accuracy the network child is trained. To update the controller, the
resulting accuracies are used that generate the best architecture. The controller weights
are updated by using the gradient. The RNN controller only returns the structure of the
normal and reduction cells [51]. The Nasnet search space is familiar with CNN architecture
engineering because it identifies motifs such as convolutional filter bank combinations,
nonlinearities, and connections prudent selection [53–55].

The above-mentioned studies suggests to predict the generic convolutional cells that
are utilized to express motifs for the controller RNN. To control the filter depth and
spatial dimensions of the input the cells are stacked in the form of series. While in Nasnet
convolutional, nets manually pertain to the architecture. These are built up by convolutional
cells and repeated several times by using different weights but the same architecture [51].

In Nasnet proposed by [51], the reinforcement learning search method is used to
search the blocks. The initial convolutional filters and motif repetitions N is free from the
parameters and used in scaling. The features map of the same dimensions is returned by
the convolutional cells when in normal cell form, otherwise in reduction cells the features
map with their height and width reduced by a factor of two.

The Nasnet model uses scalable, convolutional cells from data and can be transferred
to the other image classification tasks. The parameters and computational cost of the
architecture are quite flexible and this model can be used model for a lot of different
problems. The search space is used to minimize the architecture complexity from the depth
of the network. The searching space achieves good architecture on small datasets and shifts
the learned architecture to the classification.

The last three layers of the Nasnet are replaced by adding new layers based on the
target dadasset during the fine-tuning phase. The target dataset consists of mini-MIAS,
CBIS-DDSM, and INbreast. The transfer learning approach is used to train the fine-tuned
models. The number of epochs used to train the process is 100, the learning rate is 0.00001,
and the batch size is 8. To learn the methods, the Adam optimizer and SSD are used [50].
To quantize bounding box space, the SSD uses default anchor boxes with different fractions
and measures. SSD adds different feature layers in the network end [2]. Finally, deep
features are extracted for further processing from the fine-tuned model of the layer Global
Average Pool (GAP). This layer’s output vector size is N*1056.

2.6. Transfer Learning

Transfer learning makes use of an already trained and reused model as the foundation
for a new task and model. The model used for one task can be repurposed for other tasks
as an optimization to improve performance. By applying transfer learnin the model can be
train with a small volume of data. It is helpful to save time and achieve good results [56,57].

In the transfer learning approach, we transfer knowledge from the source mammo-
gram input images Is to the target domain mammogram mass images IT . The target
classifier Tc (Mt) is to be trained from the input mammogram image Is to the target image
IT to get the classifier prediction about BMNTi, which stands for benign, malignant, and
normal. To extract the features transfer layer is used. The top layer from the classifier
retrained the new target classes while the other layers kept frozen.

BMNTi = Tc (Mt)
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To extract the features from MobilenetV2 and Nasnet the transfer learning approach is
used. In Figure 6, multiple classes of knowledge have been utilized into two classes.
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2.7. Whale Optimization Algorithm (WOA)

To explore the feasible solution to the problems in the search space, whale individuals
are used in the community. There are three functions performed by WOA: encircling,
shrinking, and hunting. In the exploitation phase, the encircling and shrinking operations
are used, while in the exploration phase, the hunting function is used [58].

To provide the solution of the dimension optimization problems (DO) the procedures
of the ith individual in the cth generation is used to find the best solution.

The WOA procedures are following.
Encircling Operation

ESHij(c + 1) = ESH∗j (c)− B·Oij(c) (1)

Shrinking Operation

ESHij(c + 1) = ESH∗j(c) + get · cos(2πt)·O′ ij(c) (2)

Hunting Operation

ESHij (c + 1) = ESHkj (c)− B·O∗ij (c) (3)

B = 2
(

1− c
cmax

)
·(2rd− 1) (4)

The arbitrary number in the range [0 1] is described by (rd), The present number of the
iterations is represented by c, iterations maximum no is described by cmax, the best solution
positive vector is represented by ESH∗(c). To define logarithmical spiral shape the constant e
is used, and the random number in [−1, 1] is represented by t. The arbitraryposition vector
ESHK(c) is selected from the present population. Three distances are following. The first is∣∣Oij (c) =

∣∣2rd.ESH∗j (c)− ESHij(c)
∣∣, the 2nd distance is O′ ij (c) =

∣∣ESH∗j (c)− ESHij (c)
∣∣,

and the 3rd distance is O∗ ij(c) =
∣∣∣2rd.ESHkj(c)− ESHij(c)

∣∣∣. According to the probabil-
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ity prob, Equations (1)–(3) are executed by WOA. The whale individuals are updated by
Equation (1), when prob < 0.5 and |B| < 1; otherwise individuals are corrected by Equation
(3), when |B| ≥ 1. The Equation (2) is used to update the individuals, when prob ≥ 0.5.

2.7.1. Modified Entropy Whale Optimization Algorithm (MEWOA)

The WOA learns the best current solution from the exploitation phase, which easily
succumbs to local optimization and reduces population diversity. The random individual
learning operation has some sightlessness and does not perform any effective interchange
of information between groups in the exploration phase, which disrupts the algorithm
convergence rate. The WOA needed to be improved to reduce these issues. The new
algorithm MEWOA is proposed. To balance the WOA’s an exploration and exploitation
functions the control parameter B is used.The exploration probability in WOA is only 0.1535,
during the iterative process of the algorithm.WOA has limited ability. The development
and exploration process in the MEWOA is controlled by linearly increasing the probability.
Individual quality in the animal large group improves when individuals learn from the elite
and other members of the group. Individual neighborhoods are formed through adaptive
social learning procedures that use the social position of the individual, social influence, and
social network formation. The adaptive social networking approach is used to build whales’
adaptive community and to improve the interaction between groups, as well as to improve
the MEWOA’s calculation accuracy. The new approach is proposed based on neighborhood,
which will also increase the population diversity. The MEWOA’s convergence speed
increases when the population jumps out from a local optimum by introducing the wavelet
mutation strategy, and the algorithm exhibits premature convergence when the population
falls into the local optimum [58].

2.7.2. Linear Increasing Probability

The control parameters |B| ∈ [0, 2] in the WOA, the global exploration is performed
by the algorithm when |B| ≥ 1. As presented in Equation (4), when c ≥ 1

2 cmax, |B| < 1 is
always true. The algorithm has weak exploration ability in the second half of the iteration.
Let q = 2

(
1− c

cmax

)
, Λ = 2rd − 1, then B = q.Λ in the whole iteration, and the probability

of |B ≥ 1| is

Prob(|B| ≥ 1) = 0 +
∫ 2

1

∫ 1

1/q

OΛOq ≈ 0.307. (5)

The WOA performs exploitation operations when the prob ≥ 0.5 and the exploration
probability is 0.5 × 0.307 = 0.1535 in the iterations. The search ability of the MEWOA is
not maintained by |B| due to weak exploration ability, so the exploitation and exploration
ability is handled by probability Pi that will increase the number of iterations linearly to
conduct global exploration.

Pi = 0.5 + x.
c

cmax
(6)

where 0.2 ≤ x < 0.5.
The rno is arbitrary no in [0 1]. The exploitation operation is performed when the

rno < pi; otherwise, an exploration operation is performed by the algorithm. The global
exploration has a possibility of 0.1 when the coefficient of C

cmax
< 0.5 even in the last

iteration, which will rise algorithm capacity to jump out of local optimization.
Average exploration probability according to Equation (6) will be

Pi = 1− 1
cmax

.
cmax

∑
c=1

(
0.5 + 0.4.

c
cmax

)
= 0.3− 0.2

cmax
(7)

when cmax ≥ 2, P̌i ≥ 0.2 > 0.1535. The exploitation and exploration is controlled by linear
increasing probability Pi that will increase the algorithm search ability.
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2.7.3. Adaptive Social Learning Strategy

In social behavior, each whale can build a neighborhood membership relationship and
can change its current best solution behavior of imitation. The algorithm (MEWOA) moves
away from the local optimal solution by improving and enhancing information sharing between
groups. For the current population, G(c) = {ESH1(c), ESH2(c), . . . . . . .ESHPN(c)}, the pop-
ulation size is denoted by PN. The fitness value is computed and ordered from minor to huge
to achieve the stored population G1 (c) =

{
ESH(1)(c), ESH(2)(c), . . . . . . ., ESH(PN)(c) }, and

ESH(i)(c) is used to describe the social ranking.

SR(i)(c) = PN + 1− i, i = 1, 2, . . . . . . . . . PN. (8)

ESHi(c) social impact is

ti(c) =
SR(i)(c) ∗ Si f

PN
, i = 1, 2, . . . . . . . . . . . . PN (9)

The social impact is represented by Si f , and Si f ≤ 0.4. Equations (8) and (9) defined that
when the social impact is greater the social ranking is also greater that denote the better
individual and by using the specific limit of Si f the influence will be limited. For G1(c)
population, the social network is constructed according to social influence. The relationship
between ESH i(c) and ESHj(c) is defined as

SR(ij)(c) =

{
1, i f rd1 ≤ max

(
ti(c), tj(c)

)
0, otherwise

(10)

where rd1 is a random number in [0, 1]. When the social influence is greater, the individ-
ual has the strongest connection with other individuals as shown in Equation (10), and
enhance the likelihood possibility (t(j)(c)), and when there is less social influence, the
likelihood (ti(c)) of the relationship enhances between the individuals and other individu-
als. More Individuals can adopt the best individual behavior. The greater an individual’s
social influence, the more interaction between the individuals. The ESHi(c) the adaptive
neighborhood of individuals built up the relationship between individuals:

PN(i)(c) =
[

ESH(j)(c)
∣∣∣j ∈ [1, PN] and J 6= i and SR(ij)(c) = 1]. (11)

In the algorithm, the exploitation stage is in the center of the best search solution, and
the exploration ability is finished due to interaction between the group members. The new
search strategy of a whale is recognized using community adaptive strategy and linearly
increasing probability. The new strategy is described here.

If prob1 < pi, the jth dimension of ith individual, ESH(i)(c) in population G1(c)
updates its position as follows.

ESH(i)j(c + 1) =

{
ESH(1)j(c)− B.O(i)j(c) rd′ < 0.5

ESH(1)j(c) + get . cos(2πt). O′(i)j (c) rd′ ≥ 0.5
(12)

where O(i)j(c) =
∣∣∣2rd.ESH(1)j(c)− ESH(i)j(c)

∣∣∣, O′(i)j(c) =
∣∣∣ESH(1)j (c)− ESH(i)j(c)

∣∣∣. if
prob1 ≥ pi, the adaptive neighborhood procedure is used by the algorithm to explore. This
process is described in Equation (13). Let the following:

f(i)1 = B.
Ui

∑
U=1,ESHmU (c)∈PNi(c)

WU .(2rd.ESH(i)j(c)− ESHmU J (c))
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f(i)2 = get. cos(2πt).
Ui

∑
U=1,ESHmU(c)∈PN(i)(c)

WU

(
ESH(i)j(c)− ESHmU j(c)

)
Then,

ESH(i)j(c + 1) =

{
ESH(1)j(c)− f(i)1 rd′ < 0.5

ESH(1)j(c) + f(i)2 rd′ ≥ 0.5
Prob2<0.5 (13)

where Prob1, prob2, rd and rd′ are the arbitrary number in [0, 1], Pi is represented in
Equation (6). Ui is the cardinality of PN(i)(c), Ui= | PN(i)(c)

∣∣∣. WU is the weight, WU =

SRmU (c)

∑
Ui
U=1 SRmU (c)

. Using Equations (12) and (13), updating individuals fully utilizes the most

recent best solution and individual adaptive neighborhood information while effectively
increasing population diversity.

2.7.4. Morlet Wavelet Mutation

MEWOA holds the key to breaking out of the local optimum for optimization prob-
lems involving extreme points of intensive distribution. In biological growth, change is
the main factor. To adjust the mutation space dynamically that increases the solution fre-
quency. The amplitude function can be reduced by fixing the wavelet function, extending
parameters, and fixing the mutation space of the number of iterations to a specific limit, the
change operation can be grasped by using the fine-tuning effect. The WOA is incorporated
by using the wavelet mutation to improve the algorithm’s convergence and correctness
speed and by allowing it to release from local optimization by enhancing its ability. The
purpose of the change in the algorithm’s exploration phase is to find the best solution from
all other solutions.

Suppose the Probm is the mutation probability, and random no in [0, 1] is represented
by rd. When Prob1 ≥ Pi and rd ≥ probm, modified wavelet mutation represent the position
of whale according to probm.

f(i)3 = σj.
(

yj − ESH(i)j(c)
)

f(i)4 = σj.
(

ESH(i)j(c)− tj

)
ESH(i)j(c + 1) =

 ESH(i)j(c)+ f(i)3 rd′ < 0.5

ESH(i)j(c)+ f(i)4 rd′ ≥ 0.5
Prob2 ≥ 0.5 (14)

The random number is represented by Prob1, Prob2, rd, and rd′ in the range of [0 1] as
mentioned above. The upper and lower bounds of jth dimensions are described by yj and

tj The σ coefficient wavelet mutation is σj =
1√
v $
(
∅J
v

)
, J ∈ {1, 2, . . . ., DO}. The Morlet

Wavelet mutation is $(ESH) and $(ESH) = g− esh2

2 . cos(5ESH), the function energy 99%
is consists of [−2.5, 2.5], so ∅J in [−2.5v, 2.5v] is represented as a random number.

When iterations increase the scaling parameter v also increases makes possible for the
algorithm to find the best solution when there are huge at the end of the iteration.

v = a
(

1
a

)(
1− c

cmax

)
(15)

The constant number is represented by a. The proposed Algorithm 2 MEWOA is
presented below.
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Algorithm 2: Modified Entropy Whale Optimization Algorithm.

Start
Parameters to initialize MEWOA such as a, cmax, e, t, PN, Sif,probm
The initial population randomly generates
G(0) = {ESH1 (0), ESH2(0), . . . . . . . . . . . . . . . . . . . . . , ESHPN(0)}
Assess each whale’s individual fitness values, ESH∗(0), search individual best c = 1
While (c < cmax)
Update pi according to Equation (6), compute the neighborhood PN(i)(c) of whale, for each search
individual ESH(i)(c) according to Equations (8)–(11)
If (Prob1 < pi)
update the whale individual by using Equation (12);
Else
If Prob2 < 0.5
Use Equation (13);
Else
Use Equation (14);
End if
End if
End for
Fix boundaries of the whale individuals that go beyond.
Evaluate individual whale fitness values; Update the ESH∗(c) global best solution.
c = c+1;
End while
Output the best search individual ESH∗;
End

3. Results

The experimental results are offered in this section by using three datasets: CBIS-
DDSM, Mini-MIAS, and INbreast. The detail of the datasets is given in Section 2.1. The
results of each dataset are measured by applying the deep learning models from a different
perspective. For the validation purpose, several classifiers of machine learning are applied
by using 10-fold cross-validation. In the 10-fold cross-validation test, the provided learning
set is divided into ten distinct subsets of comparable size.

The number of subsets created is referred to as the fold in this context. Then, these
subsets are used for training and testing, and the loop is repeated until the model has
trained and tested every subset, whereas the 10-fold cross-validation performed better than
any other k fold selection.

As a result, the 10-fold cross-validation method is used to validate the models in
order to avoid over- and under-fitting during the training process. Different measures like
Sensitivity, Precision, F1-Score, AUC, FPR, Accuracy, and Time are computed to evaluate
the performance of the proposed method. All the training is conducted on MATLAB2020a
by using a Personal Computer of 16 GB Ram and a 4 GB graphics card.

3.1. Experimental Results

1. Several experiments are conducted to validate the proposed method.
2. Classification using Fine-tuned MobilenetV2 deep features.
3. Classification using Fine-tuned Nasnet Mobile deep features.
4. Classification using MEWOA on Fine-tuned MobilenetV2 deep features.
5. Classification using MEWOA on Fine-tuned Nasnet Mobile deep features.
6. Classification using serial-based non-redundant fusion approach.
7. Classification using MEWOA on fused features.

3.2. Classification Results

The classification results are conducted on three datasets. Several classifiers are
applied to compute the classification results. In Table 2, the Fine-tuned MobilenetV2 model
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is applied to the CBIS-DDSM dataset. The deep features of the dataset are extracted from
the GAP layer and fed to classifiers. The highest accuracy is 90.3%, which is achieved by
the Cubic SVM classifier in 260.13 (s). The minimum time is taken by Gaussian Naïve Bayes
is 20.432 (s), but the accuracy is 71.5%, which is less than that of Cubic SVM. The second
highest accuracy is achieved by Weighted KNN, which is 88.2% in 72.92 (s). The sensitivity
rate of each classifier is also calculated, and the best-noted value is 90.20% for Cubic SVM.
The sensitivity can be confirmed by using a confusion matrix, as mentioned in Figure 7.
The machine learning classifiers Cubic SVM, Fine Tree, Linear SVM(LSVM), Quadratic
SVM(QSVM), Fine Gaussian SVM (FG-SVM), Gaussian Naïve Bayes (GN-Bayes), Fine KNN
(FKNN), Medium KNN (MKNN), Weighted KNN (WKNN), and Coarse KNN(Co-KNN)
are applied to classify the mammography images.

Table 2. Classification results using Fine-tuned MobilenetV2 deep features for CBIS-DDSM.

Model Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 90.20 90.25 90.22 0.96 0.100 90.3 260.13
Fine Tree 72.25 72.50 72.34 0.78 0.275 72.6 30.13

LSVM 77.45 77.55 77.49 0.85 0.225 77.6 296.91
QSVM 85.85 85.95 85.89 0.93 0.140 86.0 287.09

FG-SVM 84.20 88.50 86.29 0.94 0.155 85.2 361.36
GN-Bayes 71.65 71.55 71.59 0.78 0.285 71.5 20.43

FKNN 87.05 86.90 86.97 0.87 0.130 87.0 73.68
MKNN 69.75 70.05 69.89 0.77 0.305 69.2 73.00
WKNN 88.25 88.10 88.17 0.96 0.120 88.2 72.92

Co-KNN 67.45 67.50 67.47 0.75 0.325 67.1 72.90
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In Table 3, the Fine-tuned Nasnet model is applied to the CBIS-DDSM dataset. The
deep features of the dataset are extracted from the GAP layer and fed to classifiers. The
highest accuracy is 93.9%, which is achieved by the Cubic SVM classifier in 112.96 (s). In
this table, the minimum time is taken by Fine Tree, which is 16.91 (s), but the accuracy is
89.8%, which is less than Cubic SVM.
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Table 3. Classification results using Fine-tuned Nasnet deep features for CBIS-DDSM.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 94.00 94.00 94.00 0.98 0.060 93.9 112.96
Fine Tree 89.50 90.00 89.74 0.93 0.105 89.8 16.91

LSVM 89.50 89.50 89.50 0.96 0.105 89.4 117.51
QSVM 92.50 92.00 92.24 0.98 0.075 92.4 113.75

FG-SVM 84.00 87.50 85.71 0.95 0.160 84.6 275.70
GN-Bayes 84.50 84.50 84.50 0.86 0.155 84.0 18.27

FKNN 93.00 93.00 93.00 0.93 0.010 92.9 60.35
MKNN 87.00 86.50 86.74 0.94 0.130 86.5 60.00
WKNN 94.00 93.50 93.74 0.98 0.060 93.6 59.90

Co-KNN 86.50 86.50 86.50 0.94 0.135 86.4 60.19

The second highest accuracy is achieved by WKNN, which is 93.6% in 59.909 (s). Each
classifier sensitivity rate is also computed, and the Cubic SVM achieved the best-noted
value that is 94%. A confusion matrix, as shown in Figure 8, can be used to confirm it.
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Figure 8. Fine-tuned Nasnet CBIS-DDSM.

In Table 4, MEWOA on MobilenetV2 is applied to the CBIS-DDSM dataset. The deep features
of the dataset are extracted from the GAP layer and fed to classifiers. The highest accuracy is
90.0%, which is achieved by Cubic SVM in 132.98 (s). In this table, the minimum time is taken by
GN-Bayes, which is 8.70 (s), but the accuracy is 70.5%, which is less than Cubic SVM.

Table 4. Classification results using MEWOA on MobilenetV2 deep features for CBIS-DDSM.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 89.95 90.05 89.99 0.96 0.105 90.0 132.98
Fine Tree 70.20 70.25 70.22 0.76 0.300 70.4 14.83

LSVM 75.45 75.55 75.49 0.83 0.245 75.7 146.36
QSVM 85.15 85.25 85.19 0.92 0.150 85.3 150.17

FG-SVM 83.45 88.05 85.68 0.94 0.165 84.5 178.98
GN-Bayes 70.60 70.50 70.54 0.78 0.295 70.5 8.70

FKNN 86.75 86.60 86.67 0.87 0.130 86.7 37.96
MKNN 69.40 69.55 69.47 0.77 0.305 68.9 37.01
WKNN 87.40 87.35 87.37 0.96 0.125 87.4 37.38

Co-KNN 67.30 67.25 67.27 0.74 0.330 67.3 37.49
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The second highest accuracy is achieved by WKNN, which is 87.4% in 37.385 (s). Every
classifier sensitivity rate is also calculated, and Cubic SVM achieved the best-noted value
that is 89.95%. A confusion matrix, as shown in Figure 9, can be used to confirm it.
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Figure 9. MEWOA TPR on MobilenetV2 CBIS-DDSM.

In Table 5, MEWOA on Nasnet is applied to the CBIS-DDSM dataset. The deep features
of the dataset are extracted from the GAP layer and fed to classifiers. The highest accuracy
is 93.50%, which is achieved by Cubic SVM in 73.24 (s).

Table 5. Classification results using MEWOA Nasnet Mobile deep features for CBIS-DDSM.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 93.50 93.45 93.47 0.98 0.065 93.5 73.24
Fine Tree 88.95 88.95 88.95 0.92 0.110 89.0 996.56

LSVM 89.15 89.25 89.19 0.96 0.110 89.3 77.09
QSVM 92.25 92.35 92.30 0.97 0.080 92.3 75.26

FG-SVM 84.25 87.60 85.89 0.95 0.160 85.1 182.78
GN-Bayes 84.20 84.45 84.32 0.86 0.160 83.7 11.57

FKNN 92.65 92.50 92.57 0.93 0.075 92.6 40.46
MKNN 86.60 86.40 86.49 0.94 0.135 86.4 39.42
WKNN 93.50 93.45 93.47 0.98 0.065 93.5 42.39

Co-KNN 86.10 86.00 86.04 0.94 0.140 86.1 39.88

In this table, the minimum time is taken by GN-Bayes, which is 11.57 (s), but the
accuracy is 83.7%, which is less than Cubic SVM. The second highest accuracy is achieved
by QSVM, which is 92.30% in 75.26 (s). The sensitivity rate of each classifier is also
computed, and the Cubic SVM achieves the best-noted value that is 93.50%. The sensitivity
can be calculated by the confusion matrix, as illustrated in Figure 10.
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Figure 10. MEWOA TPR on Nasnet Mobile CBIS-DDSM.

In Table 6, by using CBIS-DDSM dataset, Serial Fusion on MobilenetV2 and Nasnet
deep features is applied. The GAP layer extracts deep features from the dataset and feeds
them to classifiers.

Table 6. Classification results using Fusion on MobilenetV2 and Nasnet deep features for CBIS-DDSM.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 94.10 94.10 94.10 0.99 0.060 94.1 314.97
Fine Tree 88.60 88.65 88.62 0.91 0.115 88.7 151.53

LSVM 92.05 92.05 92.05 0.98 0.080 92.1 271.30
QSVM 93.00 93.05 93.02 0.98 0.070 93.0 265.45

FG-SVM 50.65 76.85 61.05 0.72 0.495 54.0 795.29
GN-Bayes 85.85 86.30 86.07 0.87 0.145 85.5 55.16

FKNN 92.80 92.60 92.69 0.93 0.075 92.6 135.51
MKNN 89.35 89.20 89.27 0.96 0.105 89.2 134.29
WKNN 92.10 92.00 92.04 0.98 0.080 92.1 134.09

Co-KNN 88.60 88.45 88.52 0.96 0.150 88.5 483.34

The highest accuracy is 94.1%, which is achieved by Cubic SVM in 314.97 (s). In this
table, the minimum time is taken by GN-Bayes, which is 55.161 (s), but the accuracy is
85.5%, which is less than Cubic SVM. The second highest accuracy is achieved by QSVM,
which is 93.0% in 265.45 (s). Each classifier sensitivity rate is also calculated and the Cubic
SVM has the best-noted value that is 94.1% and can be confirmed by using the confusion
matrix as described in Figure 11.
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In Table 7, MEWOA on fusion is applied to the CBIS-DDSM dataset. The deep features
of the dataset are extracted from the GAP layer and fed to classifiers.

Table 7. Classification results using MEWOA on fusion deep features for CBIS-DDSM.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 93.75 93.80 93.77 0.98 0.120 93.8 255.84
Fine Tree 87.90 87.95 87.92 0.90 0.120 88.0 42.42

LSVM 91.75 91.80 91.77 0.98 0.080 91.8 241.52
QSVM 92.90 92.95 92.92 0.98 0.510 93.0 227.28

FG-SVM 50.70 76.85 61.09 0.69 0.450 54.0 692.97
GN-Bayes 85.95 86.00 85.97 0.88 0.140 85.5 59.89

FKNN 92.50 92.45 92.47 0.93 0.075 92.5 408.99
MKNN 88.50 88.40 88.44 0.96 0.115 88.2 83.916
WKNN 92.20 91.75 91.97 0.98 0.085 91.8 407.35

Co-KNN 88.60 88.45 88.52 0.96 0.115 88.5 407.14

The highest accuracy is 93.8%, which is achieved by Cubic SVM in 255.84 (s). In this
table, the minimum time is taken by Fine Tree, which is 42.42 (s), but the accuracy is 88%,
which is less than Cubic SVM.

The second highest accuracy is achieved by QSVM, which is 93.0% in 227.28 (s). Each
classifier sensitivity rate is also calculated and Cubic SVM has a best-noted value that is
93.75% and can be verified by using the confusion matrix as defined in Figure 12.

In Figure 13, the deep learning model’s time comparison graph by using the machine
learning classifiers is shown.

The Fine Tree utilized maximum time in the MEWOA in Fine-tuned Nasnet model.
The FG-SVM classifier utilized maximum time in serial fusion. The GN-Bayes utilized
minimum time.

In Table 8, the Fine-tuned MobilenetV2 model is applied to the MIAS dataset. The
GAP layer is used to extract the deep features and fed to classifiers.
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Table 8. Classification results using Fine-tuned MobilenetV2 deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98.73 99.10 98.91 1.00 0.003 99.4 85.29
Fine Tree 79.73 86.03 82.76 0.91 0.933 88.9 22.82

LSVM 96.86 98.20 97.52 1.00 0.013 98.4 97.40
QSVM 98.50 98.96 98.72 1.00 0.003 99.3 79.88

FG-SVM 96.03 98.63 97.31 1.00 0.016 98.2 353.67
GN-Bayes 89.03 81.43 85.06 0.97 0.060 88.5 24.15

FKNN 98.90 98.93 98.91 1.00 0.000 99.4 73.83
MKNN 88.23 89.90 89.05 0.99 0.053 92.6 75.73
WKNN 97.70 98.26 97.97 1.00 0.006 98.8 75.39

Co-KNN 52.06 88.40 65.52 0.96 0.236 77.9 74.30

The highest accuracy is 99.4%, which is achieved by the Cubic SVM classifier in
85.29 (s). In this table, the minimum time is taken by Fine Tree, which is 22.82 (s), but the
accuracy is 88.9%, which is less than Cubic SVM.

The second highest accuracy is achieved by QSVM, which is 99.3% in 79.88 (s). Each
classifiers sensitivity is computed and Cubic SVM has 98.73% best-noted value that can be
verified by using the confusion matrix that is presented in Figure 14.

In Table 9, the Fine-tuned Nasnet model is applied to the MIAS dataset. The GAP
layer extracts the dataset’s deep features and feeds them to the classifiers.

The highest accuracy is 99.7%, which is achieved by the WKNN classifier in 81.459 (s).
In this table, the minimum time is taken by Fine Tree, which is 35.187 (s), but the accuracy
is 99.1%, which is less than WKNN.

The second highest accuracy is achieved by Cubic SVM, which is 99.6% in 267.43 (s).
Every classifier sensitivity rate is computed and WKNN has a 99.2% best sensitivity rate
that can be confirmed by using a confusion matrix, as described in Figure 15.
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Table 9. Classification results using Fine-tuned Nasnet deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 99.03 99.13 99.08 1.00 0.000 99.6 267.43
Fine Tree 98.33 98.30 98.31 1.00 0.006 99.1 35.18

LSVM 97.13 98.60 97.86 1.00 0.020 98.7 56.34
QSVM 98.06 98.86 98.46 1.00 0.006 99.1 58.91

FG-SVM 95.83 98.56 97.17 1.00 0.016 98.2 193.88
GN-Bayes 96.00 91.00 93.43 0.98 0.020 95.4 71.71

FKNN 99.03 99.33 99.18 1.00 0.000 99.6 85.83
MKNN 97.63 98.03 97.83 1.00 0.010 98.7 80.99
WKNN 99.20 99.30 99.24 1.00 0.000 99.7 81.45

Co-KNN 96.20 97.8 96.99 1.00 0.01 98.1 82.53
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In Table 10, MEWOA on Fine-tuned MobilenetV2 model is applied to the MIAS dataset.
The GAP layer is used to extract the deep features and fed to classifiers.

Table 10. Classification results using MEWOA on Fine-tuned MobilenetV2 deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98.87 98.16 99.01 1.00 0.000 99.4 75.49
Fine Tree 80.00 86.56 83.15 0.91 0.093 89.1 20.09

LSVM 96.77 98.16 97.46 1.00 0.016 98.3 86.78
QSVM 98.73 99.06 98.89 1.00 0.000 99.4 69.90

FG-SVM 95.77 98.66 97.19 0.99 0.016 98.1 305.64
GN-Bayes 89.40 81.80 85.43 0.96 0.056 88.9 22.38

FKNN 98.77 98.83 98.79 0.99 0.006 99.3 65.81
MKNN 88.40 89.50 88.94 0.98 0.056 92.4 65.34
WKNN 97.80 98.40 98.09 1.00 0.006 98.9 64.05

Co-KNN 51.30 88.30 64.89 0.96 0.240 77.6 67.94

The highest accuracy is 99.4%, which is achieved by the Cubic SVM classifier in
75.49 (s). In this table, the minimum time is taken by Fine Tree that is 20.09 (s), but the
accuracy is 89.1%, which is less than Cubic SVM.

The second highest accuracy is achieved by FKNN, which is 99.3% in 65.81 (s). Each
classifier sensitivity rate is calculated and Cubic SVM has a best-noted value that is 98.87%.
The sensitivity rate can be confirmed by using the confusion matrix as described below in
Figure 16.
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Figure 16. MEWOA on Fine-tuned MobilenetV2 TPR for MIAS.

In Table 11, MEWOA on the Fine-tuned Nasnet model is applied to the MIAS dataset.
The deep features are extracted from the GAP layer and fed to classifiers. The highest
accuracy is 99.7%, which is achieved by the WKNN classifier in 24.70 (s). In this table, the
minimum time is taken by Fine Tree, which is 9.40 (s), but the accuracy is 98.9%, which is
less than that of WKNN.
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Table 11. Classification results using MEWOA on Fine-tuned Nasnet deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

CSVM 99.00 99.00 99.00 1.00 0.000 99.6 18.35
Fine Tree 97.66 98.00 97.83 1.00 0.003 98.9 9.40

LSVM 97.00 99.00 97.98 1.00 0.010 98.8 17.49
QSVM 98.00 99.00 98.49 1.00 0.006 99.1 18.92

FG-SVM 96.00 98.66 97.31 1.00 0.016 98.2 80.55
GN-Bayes 95.00 90.00 92.43 0.97 0.023 94.9 9.06

FKNN 98.66 98.66 98.66 0.99 0.000 99.6 25.15
MKNN 97.33 97.66 97.49 1.00 0.010 98.5 24.62
WKNN 99.00 99.00 99.00 1.00 0.000 99.7 24.70

Co-KNN 95.66 98.00 96.81 1.00 0.013 98.1 25.10

The second highest accuracy is achieved by Cubic SVM, which is 99.6% in 18.35 (s).
Each classifier sensitivity rate is calculated and WKNN has the best value of 99%, which
can be confirmed using the confusion matrix shown in Figure 17.
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Figure 17. MEWOA on Fine-tuned Nasnet TPR for MIAS.

In Table 12, Fusion on Fine-tuned MobilenetV2 and the Nasnet model are applied on
the MIAS dataset. The GAP layer extracts deep features from the dataset and fed them to
the classifiers.

Table 12. Classification results using Fusion deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 99.66 99.86 99.73 1.00 0.003 99.8 133.46
Fine Tree 98.00 98.00 98.00 0.98 0.006 98.9 175.03

LSVM 99.20 99.73 99.46 1.00 0.006 99.6 115.46
QSVM 99.66 99.90 99.78 1.00 0.000 99.8 113.38

FG-SVM 47.33 91.60 62.05 0.83 0.260 76.2 1276.20
GN-Bayes 97.23 92.70 94.91 0.98 0.016 96.4 60.06

FKNN 99.16 98.96 99.06 0.99 0.003 99.4 490.17
MKNN 98.33 99.00 98.66 1.00 0.020 99.3 140.46
WKNN 98.76 99.46 99.11 1.00 0.003 99.4 484.52

Co-KNN 96.60 98.30 97.44 1.00 0.010 98.7 141.04
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The highest accuracy is 99.8%, which is achieved by the Cubic SVM classifier in
133.46 (s). In this table, the minimum time is taken by GN-Bayes, which is 60.069 (s), but
the accuracy is 96.4%, which is less than that of Cubic SVM.

The second highest accuracy is achieved by Linear SVM, which is 99.6% in 115.46 (s).
Each classifier sensitivity rate is calculated and Cubic SVM has the best value that is 99.66%
and can be verified by confusion matrix as described in Figure 18.
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Figure 18. Fusion TPR for MIAS.

In Table 13, MEWOA on Fusion is applied to the MIAS dataset. The deep features of
the dataset are extracted from the GAP layer and fed to classifiers.

Table 13. Classification results using MEWOA on Fusion deep features for MIAS.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 99.00 99.33 99.16 1.00 0.000 99.8 63.28
Fine Tree 97.20 97.10 97.14 0.99 0.013 98.2 31.91

LSVM 98.76 99.16 98.96 1.00 0.000 99.3 16.55
QSVM 99.43 99.70 99.56 1.00 0.000 99.7 15.37

FG-SVM 47.60 91.60 62.64 0.78 0.260 76.3 699.49
GN-Bayes 96.00 91.66 93.78 0.98 0.020 95.7 7.09

FKNN 99.20 99.20 99.20 0.99 0.003 99.5 62.45
MKNN 98.30 98.53 98.41 1.00 0.006 98.9 62.35
WKNN 98.83 99.40 99.11 1.00 0.003 99.4 62.49

Co-KNN 96.46 98.03 97.24 1.00 0.013 98.2 63.85

The highest accuracy is 99.8%, which is achieved by the Cubic SVM classifier in
63.287 (s). In this table, the minimum time is taken by GN-Bayes, which is 7.9 (s), but the
accuracy is 95.7%, which is less than that of Cubic SVM.

The second highest accuracy is achieved by QSVM, which is 99.7% in 15.37 (s). The
sensitivity rate of each classifier is also computed, and the best-noted value for Cubic SVM
is 99 %, which can be verified using a confusion matrix, as shown in Figure 19.
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Figure 19. MEWOA on fusion TPR MIAS.

In Figure 20, the time comparison graph of the models by using the machine learning
classifiers is shown. FG-SVM utilized the maximum time in the fusion model. The second
highest time was utilized by the FG-SVM classifier in MEWOA serial fusion deep features.
GN-Bayes utilized minimum time.
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Figure 20. Time compared with individual machine learning classifiers of deep learning models
for MIAS.

In Table 14, Fine-tuned MobilenetV2 was applied on the INbreast dataset. The GAP
layer is used to extract the deep features of the dataset and fed to classifiers. The highest
accuracy is 98.3%, which is achieved by the LSVM classifier in 18.80 (s). In this table, the
minimum time is taken by GN-Bayes, which is 13.53 (s), but the accuracy is 94.8%, which is
less than that of Linear SVM. The second highest accuracy is achieved by QSVM, which is
98.2% in 16.11 (s).
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Table 14. Classification results using Fine-tuned MobilenetV2 deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score
(%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98.20 98.15 98.17 0.99 0.020 98.1 18.89
Fine Tree 97.85 97.75 97.79 0.99 0.020 97.8 34.00

LSVM 98.35 98.25 98.29 1.00 0.015 98.3 18.80
QSVM 98.25 98.20 98.22 0.99 0.015 98.2 16.11

FG-SVM 97.65 97.60 97.62 0.98 0.025 97.6 46.86
GN-Bayes 94.85 94.80 94.82 0.97 0.050 94.8 13.53

FKNN 98.30 98.20 98.24 0.98 0.015 98.2 71.07
MKNN 95.30 95.25 95.27 1.00 0.065 95.1 22.20
WKNN 98.05 98.00 98.02 1.00 0.020 98.0 70.38

Co-KNN 92.70 92.80 92.74 0.99 0.075 92.4 22.05

The sensitivity rate of each classifier is also computed, and the best-noted value is
98.35% for LSVM. It can be confirmed using a confusion matrix, as illustrated in Figure 21.
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Figure 21. Fine-tuned MobilenetV2 TPR for INbreast.

In Table 15, Fine-tuned Nasnet is applied on the INbreast dataset. The deep features of
the dataset are extracted from the GAP layer and fed to classifiers. The highest accuracy is
98.6%, which is achieved by the Cubic SVM classifier in 10.85 (s). In this table, the minimum
time is taken by QSVM, which is 9.549 (s), and the accuracy is 98.6%.

Table 15. Classification results using Fine-tuned Nasnet deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98.50 98.50 98.50 1.00 0.0150 98.6 10.85
Fine Tree 98.50 98.50 98.50 1.00 0.0150 98.3 14.92

LSVM 98.50 98.50 98.50 1.00 0.0150 98.6 13.23
QSVM 98.50 98.50 98.50 1.00 0.0150 98.6 9.54

FG-SVM 98.50 98.00 98.24 0.99 0.0150 98.2 33.00
GN-Bayes 98.00 98.00 98.00 0.99 0.0150 98.4 13.07

FKNN 98.50 98.50 98.50 0.99 0.0150 98.6 59.50
MKNN 98.00 98.00 98.00 1.00 0.0150 98.4 18.79
WKNN 98.50 98.00 98.25 1.00 0.0150 98.4 18.53

Co-KNN 98.00 98.00 98.00 1.00 0.020 98.1 59.31
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The second highest accuracy is achieved by GN-Bayes, which is 98.4% in 13.07 (s).
Each classifier sensitivity rate is calculated and QSVM has a best-noted value that is 98.5%.
The sensitivity rate can be verified by the confusion matrix that is described in Figure 22.
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Figure 22. Fine-tuned Nasnet TPR for INbreast.

In Table 16, MEWOA was applied on Fine-tuned MobilenetV2 by using INbreast
dataset. The deep features of the dataset are extracted from the GAP layer and fed to
classifiers. The highest accuracy is 98.3%, which is achieved by the Fine KNN classifier in
35.41 (s). In this table, the minimum time is taken by GN-Bayes, which is 8.4453 (s), and the
accuracy is 94.0%.

Table 16. Classification results using MEWOA on Fine-tuned MobilenetV2 deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98 98 98 0.99 0.02 98.1 8.77
Fine Tree 98 98 98 1.00 0.02 97.8 24.05

LSVM 98 98 98 1.00 0.02 98.1 10.92
QSVM 98 98 98 0.99 0.015 98.2 8.86

FG-SVM 97.5 97.5 97.5 0.98 0.025 97.8 19.83
GN-Bayes 94 94 94 0.97 0.06 94.0 8.44

FKNN 98 98 98 0.98 0.015 98.3 35.41
MKNN 94.5 94.5 94.5 1.00 0.055 94.2 34.88
WKNN 98 98 98 1.00 0.02 98.2 34.86

Co-KNN 93.5 93.5 93.5 0.98 0.065 93.4 34.89

The second highest accuracy is achieved by QSVM, which is 98.2% in 8.86 (s). The
sensitivity rate of each classifier is also computed, and the best-noted value is 98% for Cubic
SVM. A confusion matrix, as shown in Figure 23, can be used to verify it.

In Table 17, MEWOA was applied on Fine-tuned Nasnet by using INbreast dataset. The
GAP layer is used to extract the deep features of the dataset and features are fed to classifiers.

The highest accuracy is 98.6%, which is achieved by the Cubic SVM classifier in
6.24 (s). In this table, the minimum time is taken by QSVM, which is 4.55 (s), and the
accuracy is 98.6%.

The second highest accuracy is achieved by WKNN, which is 98.5% in 10.47 (s). The
sensitivity rate of each classifier is also computed and Cubic SVM has the best noted value
that is 98.5 and It can be verified by using a confusion matrix, as described in Figure 24.
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Table 17. Classification results using MEWOA Fine-tuned Nasnet deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 98.50 98.50 98.50 1.00 0.0150 98.6 6.24
Fine Tree 98.50 98.50 98.50 1.00 0.0150 98.4 5.44

LSVM 98.50 98.50 98.50 1.00 0.0150 98.6 7.47
QSVM 98.50 98.50 98.50 1.00 0.0150 98.6 4.55

FG-SVM 98.50 98.00 98.24 0.99 0.0150 98.2 14.49
GN-Bayes 98.00 98.00 98.00 0.99 0.0150 98.4 7.47

FKNN 98.50 98.50 98.50 0.99 0.0150 98.6 29.35
MKNN 98.50 98.40 98.44 1.00 0.0150 98.4 9.47
WKNN 98.50 98.50 98.50 1.00 0.0150 98.5 10.47
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Cubic SVM 99.90 99.90 99.90 1.00 0.000 99.9 23.04 
Fine Tree 99.00 99.0 99.00 0.99 0.010 98.8 17.63 

LSVM 99.50 99.50 99.50 1.00 0.000 99.8 26.72 
QSVM 99.50 99.50 99.50 1.00 0.000 99.8 23.68 

FG-SVM 52.65 76.95 62.52 0.76 0.475 55.0 149.5 
GN-Bayes 99.00 99.00 99.00 0.99 0.010 99.1 37.75 

FKNN 99.00 99.00 99.00 1.00 0.000 99.6 44.00 
MKNN 99.00 99.00 99.00 1.00 0.010 98.9 43.68 
WKNN 99.50 99.50 99.50 1.00 0.005 99.5 43.64 

Co-KNN 98.50 98.50 98.50 1.00 0.015 98.5 43.93 

Figure 24. MEWOA on Fine-tuned Nasnet TPR for INbreast.
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In Table 18, Fusion on MEWOA MobilenetV2 & Nasnet model is applied on the
INbreast dataset. The deep features of the dataset are extracted from the GAP layer and fed
to classifiers.

Table 18. Classification results using Fusion deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time (s)

Cubic SVM 99.90 99.90 99.90 1.00 0.000 99.9 23.04
Fine Tree 99.00 99.0 99.00 0.99 0.010 98.8 17.63

LSVM 99.50 99.50 99.50 1.00 0.000 99.8 26.72
QSVM 99.50 99.50 99.50 1.00 0.000 99.8 23.68

FG-SVM 52.65 76.95 62.52 0.76 0.475 55.0 149.5
GN-Bayes 99.00 99.00 99.00 0.99 0.010 99.1 37.75

FKNN 99.00 99.00 99.00 1.00 0.000 99.6 44.00
MKNN 99.00 99.00 99.00 1.00 0.010 98.9 43.68
WKNN 99.50 99.50 99.50 1.00 0.005 99.5 43.64

Co-KNN 98.50 98.50 98.50 1.00 0.015 98.5 43.93

The highest accuracy is 99.9%, which is achieved by the Cubic SVM classifier in
23.04 (s). In this table, the minimum time is taken by Fine Tree, which is 17.63 (s), and the
accuracy is 98.8%.

The second highest accuracy is achieved by QSVM, which is 99.8% in 23.68 (s). The
sensitivity rate of each classifier is also computed, and the best-noted value is 99.9% for
Cubic SVM. The confusion matrix is illustrated in Figure 25 to verify the results.

In Table 19, MEWOA on Fusion is applied to the INbreast dataset. The deep features
of the dataset are extracted from the GAP layer and fed to classifiers.

The highest accuracy is 99.7%, which is achieved by the WKNN classifier in 6.57 (s). In
this table, the minimum time is taken by Cubic SVM is 1.6178 (s), and the accuracy is 99.1%.

The second highest accuracy is achieved by Quadratic SVM, which is 99.6% in
1.9933 (s). The sensitivity rate of each classifier is also computed, and the Cubic SVM
has a best-noted value that is 99%. A confusion matrix, as shown in Figure 26, can be used
to verify the sensitivity rate.
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Table 19. Classification results using MEWOA on Fusion deep features for INbreast.

Models Sensitivity (%) Precision (%) F1-Score (%) AUC FPR Accuracy (%) Time

Cubic SVM 99.00 99.10 99.10 1.00 0.010 99.1 1.61
Fine Tree 98.50 98.50 98.50 0.99 0.015 98.6 21.07

LSVM 99.00 99.00 99.00 1.00 0.005 99.6 5.30
QSVM 99.00 99.00 99.00 1.00 0.000 99.6 1.99

FG-SVM 52.50 77.00 62.43 0.78 0.475 54.9 8.40
GN-Bayes 98.00 98.50 98.24 1.00 0.020 98.2 5.33

FKNN 99.00 99.00 99.00 0.99 0.010 99.4 8.16
MKNN 99.00 99.00 99.00 1.00 0.005 99.4 6.43
WKNN 99.00 99.00 99.00 1.00 0.000 99.7 6.57

Co-KNN 99.00 99.00 99.00 1.00 0.005 99.4 6.95Diagnostics 2022, 12, x FOR PEER REVIEW 33 of 38 
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In Figure 27, the time comparison graph of the deep learning models by using the
machine learning classifiers is presented. FG-SVM utilized maximum time in the fusion
model. The second highest time was utilized by the Fine KNN classifier in Fine-tuned
MobilenetV2. The QSVM utilized minimum time.
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Table 20 illustrates comparisons of CBIS-DDSM classification images with respect to
other classification studies. The number of images, methods, sensitivity, precision, F1-score,
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AUC, and accuracy is mentioned in the table. The proposed method shows better results as
compared to the other studies.

Table 20. Comparisons with state of art CBIS-DDSM dataset.

References Year Method Images Sensitivity (%) Precision (%) F1-Score (%) AUC (%) Accuracy (%)

[59] 2021 CNN 1592 92.31 90.00 91.76 0.92 91.2

[24] 2020
Nasnet, MobileNet,

VGG, Resnet,
Xception

1696 _____ ______ 85.0 0.84 84.4

[26] 2020 MobilenetV1,
MobilenetV2 1696 ______ 70.00 76.00 ______ 74.5

[60] 2020 DE-Ada* _____ ______ ______ ______ 92.19 87.05

[23] 2019 VGG, Residual
Network _____ 86.10 80.10 ______ 0.91 ______

[61] 2019 DCNN, Alexnet 1696 ______ ______ ______ 0.80 75.0

[62] 2018 Deep GeneRAtive
Multitask _____ ______ ______ ______ 88.4 89

Proposed
Method 2021

MobilenetV2,
Nasnet Mobile,

MEWOM
1696 93.75 93.80 93.77 0.98 93.8

Table 21 contrasts comparative analysis on MIAS dataset classification images. The
number of images, methods, sensitivity, precision, F1-score, AUC, and accuracy compared
with the other studies. The proposed method shows good results compared to other studies.

Table 21. Comparisons with the state of the art for the MIAS Dataset.

References Year Method Images Sensitivity (%) Precision (%) F1-Score (%) AUC (%) Accuracy (%)

[63] 2021 ResNet-18,
(ICS-ELM) 322 ______ ______ ______ _____ 98.13

[59] 2021 CNN 322 92.72 94.12 93.58 0.94 93.39

[64] 2020 AlexNet,
GoogleNet 68 100, 80 97.37, 94.74 98.3, 85.71 0.98, 0.94 98.53,

88.24
[40] 2019 (MA-CNN) 322 96.00 ______ ______ 0.99 96.47
[65] 2019 DCNN, MSVM 322 ______ ______ ______ 0.99 96.90

[66] 2019

Convolutional
Neural Network

Improvement
(CNNI-BCC)

______ 89.47 90.71 ______ 0.90 90.50

Proposed
Method 2021

Mobilenet V2 &
NasNet Mobile,

MEWOA
300 99.00 99.33 99.16 1.00 99.80

Table 22 shows classification comparisons of the INbreast images with respect to other
classification studies. The number of images, methodology, sensitivity, F1-Score, precision,
AUC, and accuracy results are mentioned in the table. The proposed method shows good
results as compared to the other studies.

Table 22. Comparisons with state of art for INbreast Dataset.

References Year Method Images Sensitivity (%) Precision (%) F1-Score (%) AUC (%) Accuracy (%)

[63] 2021 ResNet-18,
(ICS-ELM) 179 ______ ______ ______ _____ 98.26

[59] 2021 CNN 387 94.83 91.23 93.22 0.94 93.04

[38] 2020 Inception ResNet
V2 107 ______ ______ ______ 0.95 95.32

[60] 2020 De-ada* ______ ______ ______ ______ 92.65 87.93

[34] 2017 Transfer learning,
Random Forest 108 98.0 70.0 ______ _____ 90.0

Proposed
Method 2021

Fine-tuned
MobilenetV2,

Nasnet, MEWOM
108 99.0 99.0 99.0 1.00 99.7
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4. Discussion

Breast cancer for women is a fatal disease all over the world. The women’s life can
be saved if cancer is detected at an initial phase. To classify the mammogram images on
the basis of features is difficult because optimal features extraction from mammogram
images is a challenging task. The three publically available mammogram images dataset
of CBIS-DDSM, INbreast, and mini-MIAS are taken to extract the features and perform
the classification. Data augmentation is performed to increase the volume of data. Deep
learning models achieve best when train with large datasets.The datasets are simulated
using the Fine-tuned MobilenetV2 and Nasnet Mobile approaches. To improve the model
efficiency the deep features are extracted from the middle layer and fed into MEWOA. The
ideal features are selected by using the MEWOA, which reduces the computational cost.
The optimal features are selected by using the MEWOA, which reduces the computational
cost. The serial fusion is performed by using the MEWOA on MobilenetV2 and MEWOA
Nasnet mobile. In the latter, the MEWOA is performed on the fused features to select
the best optimized features. The machine learning classifiers are applied. To estimate the
performance of the system different measures are applied such as Sensitivity, Precision,
F1-Score, AUC, FPR, Accuracy, and Time are computed. All computation is performed on
MATLAB2020a by using the personal computer of 16 GB RAM, 4 GB graphics card is used.
The comparison time graphs of the figures are made to represent the comparisons of the
different classifiers.

The limitation of this proposed approach is that it entails a large volume of the datasets.
To rise the size of the datasets, data augmentation is required. The results increased when
the data size is large. The deep learning training on a large number of datasets also takes
more time. The transfer learning approach is used to increase the efficiency of the system.

5. Conclusions

In medical imaging field, extract the features and on the basis of optimized features
classification of images is the main domain by using the deep learning procedures. The
machine learning classifiers are applied to generate more productive results. This proposed
work employed Fine-tuned MobilenetV2 and Nasnet Mobile models to perform the training
of the three imbalanced datasets. To extract the deep features the average pool layer is
used. Transfer learning and the Adam optimization approaches are utilized to extract the
deep features by using the MEWOA on fine-tuned models. The extracted deep features
of these optimized models are fused by using the non-redundant serial fusion. The fused
deep features are again optimized by using the MEWOA. Finally, classification results are
established by applying the machine learning classifiers. The fusion practice increases the
accuracy of the results but increases the time of the system. The MEWOM is applied, which
optimized the features by reducing the time of computation. By using these techniques, the
false-negative and true positive rates decreased. This methodology will be helpful for the
radiologists as a second opinion to address the problems of optimal feature extraction and
on the basis of optimal features perform the classifications.
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