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Abstract

Background: Models that accurately predict risk of breast cancer are needed to help younger women make
decisions about when to begin screening. Premenopausal concentrations of circulating anti-Müllerian hormone
(AMH), a biomarker of ovarian reserve, and testosterone have been positively associated with breast cancer risk in
prospective studies. We assessed whether adding AMH and/or testosterone to the Gail model improves its prediction
performance for women aged 35–50.

Methods: In a nested case-control study including ten prospective cohorts (1762 invasive cases/1890 matched controls)
with pre-diagnostic serum/plasma samples, we estimated relative risks (RR) for the biomarkers and Gail risk factors using
conditional logistic regression and random-effects meta-analysis. Absolute risk models were developed using these RR
estimates, attributable risk fractions calculated using the distributions of the risk factors in the cases from the consortium,
and population-based incidence and mortality rates. The area under the receiver operating characteristic curve (AUC) was
used to compare the discriminatory accuracy of the models with and without biomarkers.

Results: The AUC for invasive breast cancer including only the Gail risk factor variables was 55.3 (95% CI 53.4, 57.1). The
AUC increased moderately with the addition of AMH (AUC 57.6, 95% CI 55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4,
58.1), or both (AUC 58.1, 95% CI 56.2, 59.9). The largest AUC improvement (4.0) was among women without a family
history of breast cancer.

Conclusions: AMH and testosterone moderately increase the discriminatory accuracy of the Gail model among women
aged 35–50. We observed the largest AUC increase for women without a family history of breast cancer, the group that
would benefit most from improved risk prediction because early screening is already recommended for women with a
family history.
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Background
Breast cancer risk prediction models can help women

and their health providers make decisions about screen-

ing and chemoprevention. While women aged 50 are

uniformly included in mammographic screening recom-

mendations, the guidelines regarding at what age to start

screening are inconsistent, varying from age 40 to 50,

particularly for women without a family history of breast

cancer (https://www.uspreventiveservicestaskforce.org/

Page/Document/UpdateSummaryFinal/breast-cancer-scr

eening1 [1–7]). Improvements in individualized risk as-

sessment would therefore be particularly valuable for

women younger than 50 to decide when to start mam-

mographic screening. A risk prediction model with high

accuracy could also help women decide whether to take

tamoxifen for breast cancer prevention. Younger women

are more likely to benefit from tamoxifen than older

women because they have lower risks of tamoxifen-re-

lated adverse events [8–13]. Nonetheless, an accurate es-

timate of risk of breast cancer is critical in calculating

the benefit-risk index for these women.

The Gail model 2 [14] is the most widely studied

breast cancer risk prediction model for women without

a strong family history of breast cancer or an inherited

mutation associated with high susceptibility. The breast

cancer risk factors in the model are age, age at menar-

che, age at first live birth, number of previous breast bi-

opsies, history of atypical hyperplasia, and first-degree

family history of breast cancer [14]. The Gail model 2

was initially developed using data from white women,

and race/ethnicity-specific adaptations of the model

were subsequently developed. The model was imple-

mented in the National Cancer Institute’s Breast Cancer

Risk Assessment Tool (BCRAT) which is available on-

line. The model has been validated in studies in the USA

and several Western European countries, including stud-

ies of younger women [15–23]. It has been shown in

most studies to be well calibrated [14, 15, 23], i.e., it pre-

dicts fairly accurately the number of women who will

develop breast cancer overall and in subgroups defined

by risk factors. However, the model has limited discrim-

inatory accuracy, i.e., it does not separate well women

who subsequently develop cancer from those who do

not [15].

We recently showed that the premenopausal circulat-

ing concentration of anti-Müllerian hormone (AMH), a

marker of ovarian reserve, is associated with risk of

breast cancer [24]. Circulating testosterone concentration,

measured before [25–30] or after menopause [31–38], has

also been consistently associated with breast cancer risk.

AMH and testosterone are fairly stable during the men-

strual cycle and temporal reliability studies have shown

that a single measurement of AMH or testosterone can be

used to rank premenopausal women with regard to their

average hormone level over a several-year period with rea-

sonable accuracy [25, 34, 39–42]. They are also relatively

inexpensive to measure. Thus, these two hormones are

good candidate biomarkers for inclusion in breast cancer

risk prediction models for younger women, who have

large fluctuations in other hormone-related biomarkers

during the menstrual cycle.

The objective of this study was to evaluate whether

adding circulating AMH and/or testosterone measure-

ments to the Gail model improves its discriminatory ac-

curacy among women aged 35–50.

Methods
Study subjects

Participants in a nested case-control study in a consor-

tium of ten prospective cohorts from the USA, UK, Italy,

and Sweden [24] were included in this study. The parent

cohorts were the Generations Study (BGS); CLUE II;

Columbia, MO Serum Bank (CSB); Guernsey Cohort;

New York University Women’s Health Study (NYUWHS);

Nurses’ Health Studies (NHS) I and II; Northern Sweden

Mammary Screening Cohort (NSMSC); Hormones and

Diet in the Etiology of Breast Cancer (ORDET); and the

Sister Study (Sister). A brief description of the cohorts can

be found in Ge et al. [24]. Each cohort was approved by

its institutional review board, and informed consent was

obtained from each participant.

Incident breast cancer cases were ascertained by each

cohort through self-report on follow-up questionnaires

and/or linkages with local, regional, or national cancer

registries. All cases of incident invasive breast cancer di-

agnosed among women who were 35–50 at the time of

blood donation were included except in the NHS co-

horts, which further limited case selection to women

who were premenopausal and between the ages of 35–

50 at diagnosis. Controls were selected within each co-

hort using incidence density sampling. One control was

selected for each case (except for the Sister Study, which

matched 1:2). Matching variables included age and date

of blood donation, and race/ethnicity [24]. Many of the

cohorts matched on additional variables, for example,

phase or day of menstrual cycle and technical sample

characteristics, such as time between collection and pro-

cessing. Women who were ever users of hormone ther-

apy (HT) or current users of oral contraceptives (OCs)

were excluded.

Laboratory measurements

AMH was measured in serum or plasma samples from

women who were premenopausal at the time of blood

donation using the picoAMH assay (ANSH laboratories)

[24]. Women who had AMH concentrations below the

lowest detectable value (LDV) (< 10% of samples for

eight cohorts and < 20% for the remaining two cohorts)
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were classified into the lowest quartile for analyses (see

“Statistical methods”). Because it has previously been

shown that postmenopausal women have AMH concen-

trations below the LDV [43, 44], we did not measure

AMH in postmenopausal women (23 cases and 40 con-

trols) but also classified them into the lowest quartile.

Total testosterone was measured for all subjects in

CLUE II, NHS, and NSMSC and for the matched sets

for which it was not measured previously for the other

cohorts. Measurements were done in the Immunochem-

ical Core Laboratory of the Mayo Clinic by liquid chro-

matography-tandem mass spectrometry (LC-MS/MS).

Assay coefficients of variation (CVs) were calculated using

blinded quality control samples. For AMH, the mean

intra-batch CV was 5.1% and the inter-batch CV was

21.4%. For testosterone, all intra- and inter-batch CVs

were ≤ 10.6%. Previous testosterone measurements were

performed as described in [25, 26, 29, 45–48].

Statistical methods

Relative risk estimation

We estimated cohort-specific relative risks (RRs) associ-

ated with the breast cancer risk factors included in the

Gail model and with each of the biomarkers (testoster-

one and AMH) using conditional logistic regression

(odds ratio estimates are referred to throughout as

relative risks (RRs), by convention). Cohort-specific

RRs were combined to obtain consortium-wide RR

estimates using the random-effects meta-analytic method.

I2 and Q-tests were used to test for heterogeneity across

cohorts.

We used the same coding as the BCRAT for age at

menarche (< 12 years, 12 to 13, or ≥ 14) and age at first

live birth (< 20, 20 to 24, 25 to 29/nulliparous, or ≥ 30

years) [14]. Family history of breast cancer was coded

using a three-category variable (0/1/> 1 affected rela-

tive(s)). For cohorts that collected family history as a

yes/no variable, women who responded yes were in-

cluded in the intermediate category (1 affected relative).

History of breast biopsy was coded as yes/no. We did

not include an interaction between breast biopsy and

age (< 50/≥ 50 years) because this study was restricted to

younger women (≤ 50). The interaction term between

age at first birth and number of affected relatives was

not statistically significant for any cohort and thus not

included in the model. To be consistent with BCRAT,

which imputes missing data to the lowest risk category,

we imputed missing data as follows: age at menarche: ≥

14 for 35 cases (1.5%) and 49 controls (1.9%); age at first

live birth: < 20 for 5 cases (0.2%) and 7 (0.3%) controls;

and number of breast biopsies: 0 for 42 cases (1.8%) and

40 controls (1.6%). Data on history of atypical hyperpla-

sia were not available from any of the cohorts and this

variable was set to the lowest risk category as is the case

when “unknown” is entered in the BCRAT. Because we

could not exclude the possibility that cohort differences

in the AMH and testosterone concentration distribu-

tions were related to collection/handling/storage of sam-

ples [24], biomarkers were categorized into quartiles

using cohort-specific cutpoints and modeled as ordered

categorical variables.

Absolute risk estimation

We used the method described by Gail et al. [22, 49] to

estimate the 5-year absolute breast cancer risk for each

participant. We used consortium-wide estimates of RRs

for the Gail variables and biomarkers (calculated as de-

scribed above), consortium-based estimates of attribut-

able risk fractions, and population-based breast cancer

incidence and mortality rates. Attributable risk fractions

were estimated using consortium-wide RR estimates and

distributions of the Gail variables and biomarkers in the

cases (excluding the Sister Study because all women in

this study had a family history of breast cancer) [49].

Breast cancer incidence and competing mortality (i.e.,

non-breast cancer mortality) rates were obtained from

the countries of the participating cohorts (US, UK, Italy,

and Sweden) for the relevant 5-year age categories

(35–39, 40–44, 45–49) and calendar years of blood

collection (Additional file 1: Table S1).

For comparison, we also calculated the 5-year absolute

risks of developing breast cancer using the BCRAT SAS

macro (available at: https://dceg.cancer.gov/tools/risk-as-

sessment/bcrasasmacro), which uses US population-

based RR estimates [8, 14, 15, 22]. We refer to results

using these calculations as “BCRAT” (to distinguish

them from results based on RRs estimated from our

dataset, called “Gail model”).

Assessment of discriminatory accuracy

We estimated the area under the receiver operating

characteristic curve (AUC) based on the 5-year absolute

risk estimates from the BCRAT, the Gail model, and the

Gail model with addition of AMH and/or testosterone.

Summary AUCs were estimated from the cohort-specific

AUCs using random-effects meta-analytic methods.

AUCs were also estimated within subgroups, i.e., by age,

estrogen receptor (ER) status of the tumor, and Gail risk

score (< 1%/≥ 1%), and for women without a family his-

tory of breast cancer. AUCs are expressed throughout as

percentages (AUC × 100) for ease of interpretation. Fi-

nally, we assessed reclassification of 5-year absolute risks

upon addition of biomarkers.

Results

Descriptive characteristics of the cases and controls are

shown in Table 1. By design, women were between the

ages of 35–50 at blood donation. About 40% of cases
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Table 1 Descriptive characteristics of invasive breast cancer cases
and matched controls

Cases (n = 1762) Controls (n = 1890)

Cohort, n

BGS 230 230

CLUE II 87 87

CSB 69 69

Guernsey 124 124

NHS 93 93

NHS II 248 250

NSMSC 31 31

NYUWHS 493 496

ORDET 214 224

Sister 173 286

Age at blood donation, years, n (%)

35–40 472 (26.8) 487 (25.8)

41–45 708 (40.2) 752 (39.8)

46–50a 582 (33.0) 651 (34.5)

Race/ethnicity, n (%)

White 1587 (90.1) 1696 (89.7)

Black/African American 76 (4.3) 73 (3.9)

Other or missing 99 (5.6) 121 (6.4)

Age at diagnosis, years, n (%)

35–45 287 (16.3)

46–50 579 (32.9)

51–55 436 (24.7)

56–60 235 (13.3)

61–65 141 (8.0)

> 65 84 (4.8)

Lag time between blood donation and diagnosis, years, n (%)

0–2 274 (15.6)

3–5 420 (23.8)

6–10 443 (25.1)

11–15 286 (16.2)

16–20 201 (11.4)

> 20 138 (7.8)

Age at menarche, years, n (%)

< 12 376 (21.3) 411 (21.7)

12–13 976 (55.4) 1012 (53.5)

≥14 or missingb 410 (23.3) 467 (24.7)

Age at first live birth, years, n (%)

< 20 or missingb 114 (6.5) 143 (7.6)

20–24 457 (25.9) 521 (27.6)

25–29c 473 (26.8) 511 (27.1)

≥ 30 304 (17.3) 307 (16.2)

Nulliparous 414 (23.5) 408 (21.5)

Table 1 Descriptive characteristics of invasive breast cancer cases
and matched controls (Continued)

Cases (n = 1762) Controls (n = 1890)

Number of benign breast biopsies, n (%)

0 or missingb 1339 (76.0) 1559 (82.5)

≥ 1 423 (24.0) 331 (17.5)

0 1311 (74.4) 1415 (74.9)

1d 382 (21.7) 412 (21.8)

> 1d 69 (3.9) 63 (3.3)

BMI, kg/m2, n (%)

< 25 1097 (59.9) 1124 (62.6)

25–29 420 (24.8) 465 (24.0)

≥ 30 234 (15.4) 289 (13.4)

Missing 11 12

AMH cohort-specific quartiles, n(%)

Q1 365 (20.7) 480 (25.4)

Q2 444 (25.1) 468 (24.8)

Q3 453 (25.7) 468 (24.8)

Q4 500 (28.4) 474 (25.1)

Testosterone cohort-specific quartiles, n (%)

Q1 423 (24.0) 511 (27.0)

Q2 414 (23.5) 464 (24.6)

Q3 452 (25.7) 460 (24.3)

Q4 473 (26.8) 455 (24.1)

BCRAT 5-year risk score (%), n (%)e

< 0.6% 296 (16.8) 332 (17.6)

0.6–0.99% 679 (38.5) 765 (40.5)

1–1.66% 525 (29.8) 517 (27.3)

1.67–1.99% 110 (6.2) 130 (6.9)

2–2.99% 115 (6.5) 115 (6.1)

≥ 3% 37 (2.1) 31 (1.6)

ER status, n (%)

ER-positive 1139 (79.8)

ER-negative 289 (20.2)

Unknown 334

Note: Cases and controls were matched 1:1 for all cohorts except for Sister

Study which matched 1:2
aAll cases had age at blood donation ≤ 50, though for 24 sets, matched

controls ages were ≤ 51.2 years at blood donation
bTo be consistent with BCRAT, which imputes missing data to the lowest risk category,

we imputed missing data as follows: age at menarche: ≥ 14 for 35 cases (1.5%) and 49

controls (1.9%); age at first live birth: < 20 for 5 cases (0.2%) and 7 (0.3%) controls;

number of breast biopsies: 0 for 42 cases (1.8%) and 40 controls (1.6%)
cAs done in BCRAT, nulliparous and women who were 25–29 at first birth were

combined in all models
dThe number of first-degree family members with breast cancer was coded as 0, 1,

or > 1 affected relatives. For cohorts that collected family history as a no/yes variable,

“yes” answers were assigned to the intermediate category (1 affected relative)
eCalculated using the following variables: race, age at menarche, age at first

live birth, number of breast biopsies, and number of first-degree family

members with breast cancer, history of atypical hyperplasia was missing for

all cohorts and set to “no.” Gail model 2 rates and parameters were used as

described in [14]
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donated blood samples in the 5 years preceding breast

cancer diagnosis. Consistent with known breast cancer

risk factor associations, cases were more likely than con-

trols to have had a breast biopsy, to have a family history

of breast cancer, and to be nulliparous or have had their

first live birth after age 30. The vast majority of women

had low to average BCRAT 5-year risk scores (over half

of the women had a risk < 1%), as expected in a study of

younger women.

Table 2 shows the RR estimates for invasive breast

cancer associated with Gail model risk factors and bio-

markers. The RRs for the Gail model variables did not

change appreciably with the addition of biomarkers to

the model. When individually added to the Gail model,

AMH was associated with a 55% increase in risk and tes-

tosterone with a 27% increase in risk for the 4th vs. 1st

quartiles; when added together, AMH was associated

with a 53%, and testosterone with a 22%, increase.

Table 2 also shows the attributable risk fraction esti-

mates for each unit increase in risk factor or biomarker.

For Gail model variables, the risk attributable to age at

menarche was low (< 1%), while attributable risks were

higher for family history of breast cancer (7%), history of

breast biopsy (8%), and age at first pregnancy (18%). The

attributable risk for a one-quartile increase in AMH was

19% and for testosterone 9%. In a sensitivity analysis re-

stricted to the five US cohorts included in our study, the

attributable risks calculated using US population risk

factor distributions were similar to estimates based on

risk factor distributions in the cases (data not shown)

[22, 49–51]. Cohort-specific RR estimates for invasive

breast cancer from the model including both biomarkers

Table 2 Relative risks calculated using random-effects meta-analysis and attributable risk fractions

Risk factor RR estimates Attributable risk (%) for
Gail+ AMH + testosterone
modelb

Gail Gail + AMH Gail + testosterone Gail + AMH + testosterone

Age at menarche, years 0.67%

< 12 1.00 (0.90, 1.11) 1.02 (0.91, 1.13) 1.00 (0.90, 1.11) 1.01 (0.91, 1.12)

12–13 1.00 (0.90, 1.11) 1.01 (0.91, 1.12) 1.00 (0.90, 1.11) 1.01 (0.91, 1.12)

≥ 14 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

Age at first live birth, years 18.47%

< 20 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

20–24 1.11 (1.00, 1.24) 1.12 (1.00, 1.25) 1.12 (1.00, 1.26) 1.12 (1.00, 1.26)

25–29 or nulliparous 1.24 (1.11, 1.38) 1.25 (1.12, 1.39) 1.26 (1.12, 1.41) 1.26 (1.13, 1.42)

≥ 30 1.38 (1.23, 1.54) 1.40 (1.25, 1.56) 1.41 (1.26, 1.58) 1.42 (1.27, 1.60)

Number of benign breast biopsies 8.13%

0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

≥ 1 1.58 (1.33, 1.88) 1.55 (1.31, 1.85) 1.59 (1.34, 1.89) 1.56 (1.31, 1.86)

Number of first-degree family members with breast cancera 6.56%

0 1.0 (ref) 1.0 (ref) 1.0 (ref) 1.0 (ref)

1 1.58 (1.32, 1.89) 1.57 (1.31, 1.88) 1.57 (1.30, 1.88) 1.56 (1.30, 1.87)

> 1 2.49 (2.08, 2.99) 2.47 (2.06, 2.96) 2.45 (2.04, 2.94) 2.43 (2.03, 2.92)

AMH 19.38%

Q1 – 1.0 (ref) – 1.0 (ref)

Q2 – 1.16 (1.04, 1.29) – 1.15 (1.03, 1.28)

Q3 – 1.34 (1.20, 1.49) – 1.33 (1.19, 1.48)

Q4 – 1.55 (1.39, 1.73) – 1.53 (1.37, 1.70)

Testosterone 9.48%

Q1 – – 1.0 (ref) 1.0 (ref)

Q2 – – 1.08 (1.02, 1.15) 1.07 (1.00, 1.14)

Q3 – – 1.17 (1.10, 1.25) 1.14 (1.07, 1.22)

Q4 – – 1.27 (1.19, 1.35) 1.22 (1.15, 1.30)
aThe number of first-degree family members with breast cancer was coded as either 0, 1, or > 1 affected relatives. For cohorts that collected family history as a

no/yes variable, “yes” answers were assigned to the intermediate category (1 affected relative)
bWe used the method described in Bruzzi et al. [49] to estimate attributable risk for a one-category increase (or decrease for age at menarche) in the risk factor.

The Sister study was excluded from attributable risk estimation because all participants had a family history of breast cancer
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are shown in Additional file 1: Figure S1. Tests for het-

erogeneity by cohort were not statistically significant.

Removing one cohort at a time from the analysis did not

change the RRs appreciably (data not shown).

Figure 1 and Table 3 show the AUCs based on

BCRAT, the Gail model, and the Gail model with bio-

markers. The summary AUC for invasive breast cancer

using the BCRAT was 55.0 (95% CI 53.1, 56.8). The

AUC in our implementation of the Gail model was very

similar (AUC 55.3, 95% CI 53.4, 57.1). The AUC in-

creased with the addition of AMH (AUC 57.6, 95% CI

55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4, 58.1),

and both AMH and testosterone (AUC 58.1, 95% CI

56.2, 59.9). The percent increase relative to the Gail

model was statistically significant for the model includ-

ing AMH (4.2%, p = 0.007) and the model including both

AMH and testosterone (5.1%, p = 0.001), but not testos-

terone alone (1.6%, p = 0.086). AUCs were similar when

Fig. 1 Area under the receiver operating curve (AUC) estimates and 95% confidence intervals
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both in situ and invasive cases were considered together

(Additional file 1: Figure S4).

Table 3 also shows AUCs in subgroups. Small im-

provements in AUCs with the addition of both bio-

markers to the Gail model were observed in each

age-at-blood-donation subgroup, with the largest in-

crease (3.5, a relative increase of 6.0%) for women ages

45–50, for whom the Gail model also had the highest

AUC (58.6). AUC improvements for women with a

5-year risk lower than 1% were greater (3.0, a relative in-

crease of 5.7%) than those for women with risk of at

least 1% (1.0, a relative increase of 1.7%). AUC improve-

ment was larger for ER-positive tumors (2.8, a relative

increase of 5.0%) than ER-negative tumors (0.3, a relative

increase of 0.5%). We also found that the AUC increased

(4.0, a relative increase of 7.6%) with the addition of

biomarkers for the subgroup of women without a

family history of breast cancer, but less so for women

with a family history (2.2, a relative increase of 4.4%).

Figure 2 shows the histograms displaying absolute

risk estimates of cases and controls for the Gail

model with and without testosterone and AMH.

Though there was substantial overlap between the

distributions in cases and controls, the distribution

was skewed to the right for cases. Adding the bio-

markers resulted in a slight shift of the distribution

to the right for cases (9.3% had risk estimates move

from below to above 1%, while 8.1% moved down,

Table 4) and a slight shift to the left for controls

(8.7% had risk estimates move from below to above

1%, while 10.4% moved down, Table 4).

Discussion

Circulating AMH and testosterone moderately increased

the discriminatory accuracy of the Gail breast cancer

risk prediction model among women ages 35–50 in our

study of 1762 invasive cases and 1890 matched controls.

Discriminatory accuracy improved with the addition of

either AMH or testosterone, though the improvement

was only statistically significant for AMH. In the model

including both biomarkers, we observed an AUC in-

crease from 55.3 to 58.1 (relative increase of 5.1%).

Overall, inclusion of biomarkers tended to moderately

increase 5-year risk estimates for cases and reduce esti-

mates for controls.

The increase in AUC resulting from the addition of

biomarkers was slightly higher in analyses limited to

women without a family history of breast cancer than

that observed in analyses including all women. This is of

interest because the majority of breast cancers occur

among women without a family history. Further, women

without a family history are the group in which improve-

ments in risk prediction could have the most impact,

since it is already recommended that women with a fam-

ily history start screening early (https://www.uspreventi

veservicestaskforce.org/Page/Document/UpdateSummar

yFinal/breast-cancer-screening1).

While risk prediction models applicable to younger

women would be valuable for screening and preventive

treatment decision-making, less work has focused on

this group of women as compared to older women

[52–54]. To our knowledge, risk prediction estimation

has been assessed for premenopausal women from

Table 3 AUCs by subgroups

BCRATa Gailb Gail + AMHb Gail + testosteroneb Gail + AMH + testosteroneb

Total AUC 55.0 (53.1, 56.8) 55.3 (53.4, 57.1) 57.6 (55.7, 59.5) 56.2 (54.4, 58.1) 58.1 (56.2, 59.9)

Age at blood donation, years

≤ 40 55.9 (52.3, 59.6) 56.2 (52.5, 59.8) 57.5 (53.8, 61.1) 57.3 (53.7, 61.0) 58.1 (54.4, 61.8)

41–45 55.2 (52.2, 58.2) 54.9 (51.9, 57.9) 56.3 (53.3, 59.2) 56.0 (53.0, 58.9) 56.6 (53.7, 59.6)

> 45 58.6 (55.4, 61.9) 58.6 (55.3, 61.9) 60.6 (57.4, 63.8) 60.9 (57.7, 64.1) 62.1 (58.9, 65.3)

Gail 5-year risk score, %

< 1c 53.2 (50.2, 55.2) 52.9 (50.4, 55.4) 54.7 (52.2, 57.2) 54.3 (51.8, 56.8) 55.9 (53.4, 58.3)

≥ 1c 56.6 (53.7, 59.5) 58.2 (55.3, 61.0) 59.1 (56.3, 62.0) 57.4 (54.3, 60.5) 59.2 (56.3, 62.1)

Estrogen receptor status

ER-positive 56.1 (53.8, 58.4) 56.4 (54.1, 58.8) 58.9 (56.2, 61.6) 57.2 (54.9, 59.5) 59.2 (56.3, 62.0)

ER-negative 55.8 (51.1, 60.5) 56.8 (52.1, 61.5) 58.0 (53.3, 62.7) 57.1 (52.4, 61.8) 57.1 (52.3, 61.8)

Number of first-degree family members with breast cancer, n (%)

0 52.2 (50.0, 54.3) 52.8 (50.6, 55.0) 55.6 (52.9, 58.3) 54.6 (52.4, 56.8) 56.8 (54.6, 58.9)

≥ 1 55.9 (52.1, 59.6) 55.0 (51.3, 58.7) 57.2 (53.4, 60.9) 56.4 (52.7, 60.1) 57.2 (52.0, 62.4)
aEstimates from the model as implemented in BCRAT and using BCRAT regression coefficients
bModel including Gail model variables and biomarker(s) and using regression coefficients in Table 2
cMedian 5-year absolute risk was approximately 1%
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the general population in six studies [55–60]. Most of

these assessed or modified the Gail model, but some

had extensive missing data for Gail model variables

[55, 57] or did not assess discriminatory accuracy

[57]. Others developed new models for which validation

has not yet been attempted in independent studies

[55, 60]. Testosterone was added to the Gail model in

one study that included premenopausal women [56]. In

this study of 430 cases/684 controls, the addition of hor-

mones, including testosterone, to the Gail model did not

result in any change in the AUC for premenopausal

women [56]. Unlike this study, the increase in AUC that

we observed with the addition of testosterone is in agree-

ment with the premenopausal testosterone-breast cancer

risk association that has been consistently observed

[25–30]. AMH has not been included in breast cancer

risk prediction models previously.

Some studies, though not all [61, 62], have reported

correlations of BMI with testosterone and AMH in pre-

menopausal women [39, 63, 64]. These correlations have

generally been weak, including in our study (Spearman

partial correlations with BMI among controls, adjusted

for cohort and age, were 0.06 for testosterone, and −

0.07 for AMH). This suggests that including BMI in the

model, though it would be easier than including bio-

markers because BMI does not require a blood draw,

would not capture the impact of AMH and testosterone

on breast cancer risk.

The AUC increases with the addition of AMH, and

testosterone were greater for ER-positive than ER-nega-

tive tumors, as expected since AMH was more strongly

associated with risk of ER-positive than ER-negative tu-

mors in our study [24]. Though AMH and estrogen con-

centrations are not strongly correlated in premenopausal

women [39, 64], AMH is strongly associated with age at

Fig. 2 Reclassification of absolute 5-year risk of breast cancer with the addition of AMH and testosterone to the Gail model

Table 4 Absolute risk reclassification upon adding AMH and
testosterone to the Gail model

Gail + AMH +
testosterone
5-year risk

Moved
up (%)

Moved
down (%)

Reclassification in cases < 1% ≥ 1%

Gail 5-year risk < 1% 588 163

≥ 1% 143 868

9.3% 8.1%

Reclassification in controls < 1% ≥ 1%

Gail 5-year risk < 1% 708 165

≥ 1% 196 821

8.7% 10.4%
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menopause, at which time estrogen exposure decreases.

This association may explain the greater improvement

in prediction of estrogen-sensitive tumors than

ER-negative tumors with the inclusion of AMH in the

Gail model.

Several other risk factors have been proposed for in-

clusion in the Gail model to improve discriminatory ac-

curacy, with varying applicability to premenopausal

women. Mammographic density has been shown to in-

crease the discriminatory accuracy of the Gail model in

several studies [51, 55, 65, 66], but density is not avail-

able yet to women deciding when to begin screening.

Endogenous hormones other than AMH and testoster-

one, such as estrogen, progesterone, and prolactin, fluc-

tuate during the menstrual cycle and/or are not

consistently associated with risk in premenopausal

women [31, 67]. Common, low-penetrance genetic risk

factors may also have utility for risk prediction in

younger women. Single nucleotide polymorphisms

(SNPs), and their combined risk scores (ranging from

6 to 77 SNPs across studies), have increased Gail

model AUCs (AUC increases of 0.6–7.0) in most

studies [54, 59, 68–75], including among younger

women [59]. Inclusion of a 77-SNP score increased

the AUC from 0.64 to 0.66 among women < 50 years

of age [59], an increase comparable to that observed

with the addition of AMH and testosterone. Because

most genetic variants that are associated with breast

cancer risk are not in hormone-related genes, they

are likely to contribute to risk prediction independ-

ently of AMH and testosterone. Thus, models includ-

ing both genetic variants and hormone biomarkers as

a panel may perform better than models including

only one type of marker.

We could not directly assess the calibration of the

model including biomarkers because AMH and testos-

terone were measured only in matched case-control sets;

thus, the expected number of cases in the full cohorts

using the model including biomarkers could not be esti-

mated [76]. Another method to indirectly assess calibra-

tion is inverse probability weighting [77], which uses the

probability of being selected into the nested case-control

study as a weighting factor to estimate the expected

number of cases in the cohort. However, closely matched

nested case-control studies, as in this consortium, yield

high selection probabilities for a substantial proportion of

controls because the risk sets from which controls are se-

lected can be very small. For example, for the 496 controls

in the NYUWHS, we would expect an average selection

probability of ~ 10% (5600 cohort participants were be-

tween the ages of 35 and 50 at enrollment), but the aver-

age probability was 35%. The controls in this study

provided insufficient information about the full cohort,

precluding the assessment of calibration [76].

Our study included past users of oral contraceptives

(> 65%) [24], but not current users because AMH levels

go down during oral contraceptive use [62, 78, 79].

Thus, our results only apply to women not on oral

contraceptives.

In addition to the large size of our study, its major

strength is the prospective design. Samples collected

prior to diagnosis are valuable for measuring biomarkers

that can be affected by the diagnosis and/or treatment of

breast cancer. Another strength is that detailed epi-

demiological data on breast cancer risk factors were col-

lected from all cohorts.

Conclusions

In conclusion, we observed moderate increases in the

discriminatory accuracy of the Gail model 2 for women

aged 35–50 with the addition of AMH and testosterone.

Combining these markers with others (e.g., SNPs) may

improve risk prediction models, though the improve-

ment in discriminatory accuracy will remain limited

until new markers with stronger associations with breast

cancer risk are identified [80, 81].
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