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Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles

to successful treatment of breast cancer. Identifying mechanisms by which cancer

spreads, survives treatment regimes and regenerates more aggressive tumors are critical

to improving patient survival. Substantial evidence gathered over the last 10 years

suggests that breast cancer progression and recurrence is supported by cancer stem cells

(CSCs). Understanding how CSCs form and how they contribute to the pathology of breast

cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This

review will summarize what is currently known about the origins of breast CSCs, their role

in disease progression and ways in which they may be targeted therapeutically.
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INTRODUCTION

Breast cancer is the leading cause of cancer death in women,
causing extensive morbidity and psychological distress to millions
globally. Encouragingly, the combination of better screening and
treatment programmes have moderately improved the chances of
surviving the disease, but there is still much to be done if the many
women who are refractory to current therapies are to have a bet-
ter chance of survival. Over the last decade breast cancer cells
with stem-cell-like properties have been identified and charac-
terized. There is now much interest around the role that these
breast cancer stem cells (CSCs) have in the disease and whether
they provide the key to unlocking new insight into the mech-
anisms driving breast cancer progression, drug resistance and
reoccurrence.

Often described as a caricature of normal tissue development,
cancer occurs when the regulation of tissue homeostasis is per-
turbed, resulting in the evolution of cells with increased growth
and survival potential. The breast, like many other organs, is a
hierarchically-organized tissue maintained by a series of stem and
progenitor cells that have decreasing potency as they differentiate
toward terminally-committed epithelial cells. Below, we describe
briefly the normal breast epithelial hierarchy, but for compre-
hensive analyses we recommend (Visvader, 2009; Van Keymeulen
et al., 2011; Raouf et al., 2012; Šale et al., 2013).

The breast is composed of a bilayered epithelium comprising
two main epithelial cell types; luminal and basal (Watson and
Khaled, 2008; Gusterson and Stein, 2012). The luminal cells line
the ductal structures that will transport milk to the nipple dur-
ing lactation. The basal cells surround the luminal cells and are
in contact with the surrounding basement membrane that sepa-
rates the parachyme from the stromal component of the tissue.
Mammary stem cells (MaSCs) share cell surface and expres-
sion profiles consistent with basal cells and are hence thought to
reside within the basal compartment of the gland. Isolated several

years ago through the use of cell surface expression markers,
cell populations greatly enriched for MSCs have been shown to
be capable of reconstituting an entire mammary gland when
transplanted into a mammary fat pad cleared of endogenous
epithelium. Furthermore, serial transplants have demonstrated
that the MSCs can self-renew as well as give rise to the other cell
types (Shackleton et al., 2006; Stingl et al., 2006).

Initially thought to be restricted to relatively few cell types
(luminal, basal, and stem cells), the repertoire of mammary cell
types has expanded over the last few years. Development of
lineage-specific markers and in vitro functional assays has enabled
the isolation of discrete sub-populations of epithelial progeni-
tors (Raouf et al., 2012; Sheta et al., 2012). Using an alternative
approach, in vivo lineage-tracing has recently identified previ-
ously undescribed epithelial cell types (Šale et al., 2013). In the
future, these techniques will likely unearth additional levels of
complexity in the epithelial cell hierarchy that will no doubt aid
our understanding of breast cancer and CSCs. However, when
discussing CSCs, it is imperative to highlight that they are distinct
from normal stem cells.

DEFINING CANCER STEM CELLS

It is important to clarify that although they share functional sim-
ilarities to normal stem cells, CSCs are not necessarily derived
from stem cells. A CSC is functionally defined by the ability to
(1) form a tumor in immunocompromised mice, (2) self-renew—
shown by tumor formation in secondary mice and (3) “dif-
ferentiate,” i.e., produce cells with non-stem cell characteristics
(McDermott and Wicha, 2010).

In certain tissues, new technological advances are enabling
CSCs to be studied in their primary setting, without the need for
transplantation, however comparable studies have not yet been
described in the breast (Chen et al., 2012; Driessens et al., 2012;
Schepers et al., 2012).
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We have chosen to use the term CSC but we recognize that
cells with defining features of CSCs are also referred to as tumor-
initiating cells (TICs) and tumor-propagating cells. In the major-
ity of cases, these terms refer to the same functional entity. TICs
can also describe the cell from which the cancer originated and
CSCs may form long after the tumor was initiated. The cancer
cell of origin is discussed in length elsewhere (Visvader, 2011).
This review will focus on breast CSCs, their origins, pathological
significance and potential therapeutic strategies to tackle them.

DISCOVERY OF BREAST CANCER STEM CELLS

Historically, the hematopoietic field has led the way in the identi-
fication of stem and progenitor cells and their resulting lineages.
The same was true in the CSC field, with the CSC-theory in solid
tumors validated only relatively recently (Al-Hajj et al., 2003).
Using cell surface markers Al-Hajj and colleagues found that
CD44+CD24−/low Lin− cells from breast cancer patients were sig-
nificantly enriched for tumor forming ability in NOD/SCID mice
compared with CD44+CD24+ Lin− cells. Moreover, the tumors
formed by CD44+CD24−/low Lin− cells could be serial passaged
(self-renew) and also reproduce the tumor cellular heterogeneity
observed in the initial tumor (differentiation).

CD44 is a cell surface receptor for the extracellular matrix
molecule hyaluronan, that influences cell behavior by direct sig-
naling/structural roles or by acting as a co-receptor for receptor
tyrosine kinases (Ponta et al., 2003). CD24 is a cell surface glyco-
protein whose level of expression has become commonly used to
isolate distinct cell populations from the normal mammary gland
and breast cancer cells. CD24high expression in normal human
mammary gland and breast carcinoma corresponds to a differ-
entiated gene expression signature, whereas, CD44+ cells exhibit
a more “stem-like” signature of gene expression (Shipitsin et al.,
2007). In the mouse mammary gland, CD24−, CD24low, and
CD24high expression levels correspond to populations of non-
epithelial, basal and luminal epithelial cells, respectively (Sleeman
et al., 2006). Functionally, the epithelial cell populations exhibited
differential stem potential in mammary fat pad transplanta-
tion assays, with CD24low cells being significantly enriched for
mammary gland repopulating capacity.

The combination of CD44 and CD24 expression have been
used to successfully enrich for CSCs in both cell line and
tumor samples but caution must be exercised. For example,
within epithelial populations CD44highCD24− was shown to
mark mesenchymal-like cells that formed mammospheres and
had an invasive phenotype, but the cells lacked the capacity to
produce the heterogeneity of the parental cell line (Sarrio et al.,
2012). Therefore, these cells did not meet all the criteria of
bona fide CSCs and thus highlight the importance of function-
ally testing “stemness” rather than assuming that a particular
combination of cell surface markers is indicative of a phenotype.

In addition to cell surface markers, other expression-based
methods of CSC-enrichment have been developed. Aldehyde
dehydrogenase (ALDH) activity has been identified as a method
of enriching for normal human breast stem and CSCs (Ginestier
et al., 2007). Furthermore, by combining ALDH activity with
CD44highCD24− expression, the CSC fraction was refined fur-
ther compared to either method alone. Interestingly, the ALDH−,

CD44highCD24− population was not enriched for CSCs demon-
strating that the CD44highCD24− population retains significant
heterogeneity.

Separating cell populations based on protein expression pro-
files of either cell surface markers or ALDH1 requires func-
tional validation of the isolated cells to confirm their capacity as
CSCs. Recently, Pece and colleagues developed a novel reciprocal
approach of using function to isolate CSCs that were then used to
identify new markers. By taking advantage of the stem cell ability
to survive in suspension culture combined with slow prolifera-
tion rate they isolated stem cells from normal human mammary
gland based on retention of a membrane-labeling dye, PKH26
(Pece et al., 2010). Gene expression analysis of the PKH26+ cells
revealed a novel set of stem cell markers that the group then used
to isolate stem cells from both normal breast and tumor samples
(i.e., DNER and DLL1).

Due to the intra- and inter-tumor heterogeneity in cancer, it
is possible that CSCs from different tumors have distinct expres-
sion profiles. Thus, isolating CSCs by function and detailing
their expression profiles may prove extremely valuable where
traditional markers fail.

ORIGINS OF CANCER STEM CELLS

The stem cell characteristics of CSCs draw in to question the
cell type from which they derive. Two potential models of CSC
formation are: (1) the tumor cell of origin had stem cell or pro-
genitor properties, or (2) the tumorigenesis process yields cells
distinct from the cells of origin that are capable of reconstituting
the tumor (Figure 1).

The simple model of hierarchical tissue organization suggests
that as cells differentiate along a particular lineage, they lose the
potential to give rise to multiple cell types and are therefore less
likely to be able to act as CSCs. Normal stem cells already have

FIGURE 1 | Models of CSC formation. In the linear hierarchy model of

CSC formation, the transformation events that drive tumorigenesis occur in

a stem or progenitor cell that then gives rise to more differentiated progeny

as the tumor develops. These differentiated progeny have reduced

tumor-forming potential. In the second model, cancer stem cells evolve,

perhaps via induction of EMT, either as part of disease progression or in

response to selective pressures in the tumor microenvironment.
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many of the properties associated with CSCs. Moreover, the long-
lived nature of stem cells allows more time for multiple genetic
lesions to be acquired. Therefore, it is possible that CSCs originate
from tissue stem cells.

Studies demonstrating an increased risk of breast cancer in
children exposed to radiation suggest that the cells subject to
transformation would be long-lived stem or progenitor cells
(Miller et al., 1989; Modan et al., 1989). Much more recently,
luminal progenitor cells were identified as the likely cell of origin
in BRCA1 driven tumors (Lim et al., 2009; Molyneux et al., 2010;
Proia et al., 2011). Cells displaying the markers of stem cells have
also been identified in early DCIS lesions suggesting that possi-
ble CSC are present at early stages of tumorigenesis (Pece et al.,
2010). If the transformed cell has stem/progenitor properties then
it is understandable that this could give rise to CSCs, as well as the
non-CSCs that make up the majority of the tumor.

The model in which the cancer cell of origin is responsible for
the properties of the CSC would be encouraging when it comes to
designing therapies to tackle the disease. If the tumor behaves in
a rigid linear hierarchy with relatively few stem cells giving rise to
the majority “differentiated” tumor cells then therapies that can
kill CSCs or drive them to differentiate would remove the ability
of the tumor to regenerate following therapy.

However, cancer is a disease that forms over many years, so
even if the original transformation event had occurred in a stem-
like cell, the tumor that presents at the clinic is likely to be a
much more evolved and heterogeneous entity than a linearly-
hierarchical tissue. A linear hierarchy in cancer would also not
explain why recurring tumors are resistant to therapy, as suc-
cessive rounds of tumor growth may be expected to be produce
similarly-sensitive progeny. In this sense, it appears that tumors
have also evolved mechanisms to be self-sustaining even if their
original CSC pool is destroyed, potentially via the generation
CSCs cells from non-stem cells.

FORMATION OF CSCs FROM NON-CSCs

A range of breast cancer cell lines are now known to be com-
posed of a heterogeneous mixture of cells. A proportion of the
cells act as CSCs by being able to give rise to all the cell types
within that line, while the other cells show reduced ability to act
as CSCs. There is also suggestion of heterogeneity within the CSC
populations themselves (Wong et al., 2012). Significantly, several
studies have now demonstrated that cells have the capacity to
interconvert between phenotypes.

Breast cancer cell lines SUM159 and SUM149 sorted into
stem-like, basal and luminal populations demonstrated the ability
to transition between these cell states to maintain the overall het-
erogeneity of the parental line (Gupta et al., 2011). This stochastic
cell state transition enabled purified populations to reconstitute
the proportions of the parental cell line within 11 days of sorting
(Gupta et al., 2011). Piggott and colleagues used the mammo-
sphere assay to demonstrate that MDA-MB-231, BT474, SKBR3,
and MCF7 cells all contained self-renewing mammosphere form-
ing units (MFUs). Interestingly, BT474 cells depleted of MFUs
reacquired these progenitor-like cells following 4 weeks in culture
(Piggott et al., 2011). In vitro, Ca1a, MCF7, Sum159, and MDA-
MB-231 breast cancer lines, sorted CD44+CD24+ non-invasive

cells could give rise to invasive CD44+CD24− cells (and vice
versa), even when initially plated as single cell clones (Meyer et al.,
2009).

The generation of CSCs from non-CSCs has been con-
firmed in vivo using transplantation assays. Clones of non-
invasive CD44+CD24+ sorted cells from Ca1a, ZR75.1 and
MCF7 breast cancer lines transplanted into immunocompro-
mised mice gave rise to molecularly heterogeneous tumors that
exhibited local invasion (Meyer et al., 2009). Moreover, the stem-
like-depleted basal and luminal populations of SUM159 cells
were also able to transition to stem-like cells during tumor
formation in NOD/SCID mice. However, it is interesting that
the non-stem-like SUM159 populations required co-injection
with irradiated parental SUM159 cells for tumor formation to
occur. This co-injection requirement suggests that additional
factors to those in the homogenous luminal or basal pop-
ulations are required for conversion to stem-like phenotypes
(Gupta et al., 2011).

Recent evidence suggests that the ability of the cancer cells to
trans-differentiate is related to the transformation process. Using
an inducible Src oncogene to drive transformation of MCF10A
cells, CSC-like cells were generated during the transformation
process within 16–24 h of Src activation (Iliopoulos et al., 2011).
Furthermore, once generated the relative proportion of CSCs was
maintained over several weeks in culture. Isolated CSCs readily
formed non-CSCs whereas the reciprocal spontaneous conver-
sion did not occur. However, media from CSC was found to
drive non-CSCs to form CSCs and this was dependent of IL-6
(Iliopoulos et al., 2011).

Chaffer and colleagues demonstrated that hTERT-
immortalized HMECs gave rise to a population of floating
cells they term HME-flopcs (Chaffer et al., 2011) CD44low

HME-flopcs were able to spontaneously convert to CD44high

cells that had stem-like properties. Moreover, transformation of
the HME-flopcs with the SV40 and H-ras increased the efficiency
with which the conversion to CD44high cells occurred.

Despite the growing evidence of the ability of non-CSCs to
produce CSCs it is noteworthy that in the parental popula-
tions the proportions of CSCs remains constant over time. Even
when sorted into distinct populations, the sorted cells eventu-
ally recapitulate the proportions of cells originally present in the
parental line. Tumor molecular expression profiles remain con-
stant during disease progression, suggesting a level of stability
within a population of tumor cells (Ma et al., 2003; Weigelt et al.,
2003). Moreover, similar molecular profiles of primary tumor and
metastases suggest ancestors are common rather than genetically
distinct (Sorlie, 2004). This supports a hypothesis that perhaps
paracrine signals mediate a level of homeostatic control over the
proportions of different cell types present within a tumor.

CSC AND EPITHELIAL-TO-MESENCHYMAL TRANSITION

Inter-conversion of CSC and non-CSC (spontaneously or oth-
erwise) means that CSCs do not behave like classical stem cells.
The question remains of how CSCs could arise from non-
CSCs. Epithelial-to-Mesenchymal transition (EMT) is a natu-
ral process that occurs during development and is a method
by which cancer cells metastasize during cancer progression
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(Thiery and Sleeman, 2006). EMT is also thought to be a mecha-
nism by which CSCs form.

Induction of EMT in normal human mammary epithelial
(HMLE) cells by expression of Snail, Twist or treatment with
TGFβ1 caused the majority of cells to adopt the CD44+CD24low

expression profile consistent with CSCs. There was also a sig-
nificant increase in the number of mammosphere forming cells
following EMT (Mani et al., 2008; Morel et al., 2008). In addition
to EMT driving cells to acquire stem cell characteristics, natu-
rally occurring stem cell fractions of normal mouse and human
mammary epithelium cells as well as human neoplastic samples
expressed significant levels of EMT markers (Mani et al., 2008).

The mechanism by which EMT induces CSC formation may
involve the transcription factor FOXC2, which was upregulated
in immortalized normal human mammary epithelial (HMLE)
cells in response to multiple EMT-inducing stimuli (Mani
et al., 2007). The CSC-characteristics acquired through EMT
were attenuated by suppression of FOXC2 expression (Hollier
et al., 2013). Furthermore, FOXC2 was upregulated in CSC-
enriched populations and expression of FOXC2 in V12H-Ras-
transformed HMLE cells was sufficient to drive EMT and increase
their tumor forming and metastatic potential in transplants
(van Vlerken et al., 2013).

The ability of EMT-driving factors to induce CSC formation is
likely to be dependent on the cell type in which EMT occurs. Slug
is a transcription factor that can drive EMT and its expression
is enriched in MaSCs. Exogenous expression of SLUG in luminal
progenitor cells was sufficient to drive them to a more stem-like
phenotype, whereas SLUG expression in differentiated luminal
cells failed to do so (Guo et al., 2012). Interestingly, co-expression
of Sox9 with Slug could induce differentiated luminal cells into
a stem-like state by activating distinct gene sets. Moreover, Snail,
but not Twist could substitute for Slug and cooperate with Sox9 in
driving differentiated luminal cells into stem-like cells. Therefore,
EMT contributes to, but is not sufficient for the non-stem cell
to stem-cell transition and not all EMT-driving factors elicit the
same effect (Guo et al., 2012).

Analysis of non-tumorigenic mammary epithelial cell lines
(MCF12A, MCF10-2A, and MCF10A) and immortalized
Myo1089 cells using EpCAM and CD49f expression levels,
identified heterogeneous cell populations. The EpCAM+CD49f+

had an epithelial morphology with an expression profile char-
acteristic of luminal progenitors, while EpCAM−CD49fmed/low

were fibroblastic in appearance and expressed genes associated
with EMT (Twist1/2 and Slug) (Sarrio et al., 2012). Interestingly,
although the epithelial (EpCAM+) Myo1089 cells gave rise to
mesenchymal-like cells that were more invasive and could form
mammospheres, it was the epithelial cells that had higher ALDH1
activity and could recapitulate the heterogeneous cell populations
seen in the parental line. Therefore, in this instance EMT was
associated with a loss of stem-cell capacity and re-iterates the
importance of determining “stemness” functionally (Sarrio et al.,
2012).

The reprogramming of cancer cells into CSCs by EMT-
associated transcription factors highlights the importance of
understanding how transcription factor networks regulate cell
fate determination in breast cancer (Kalyuga et al., 2012). The

power of transcription factor-mediated cell fate control is most
notably demonstrated by the creation of induced pluripotency
stem (iPS) cells by the introduction of Oct4, Sox2, c-Myc and Klf4
into differentiated adult cells (Takahashi and Yamanaka, 2006).
The same factors that induce pluripotency in normal differenti-
ated cells may also be involved in the formation of CSCs. Non-
tumorigenic MCF10A cells transduced with Oct4, Sox2, c-Myc,
and Klf4 formed iPS-like cells that upon differentiation adopted
a CSC phenotype (Nishi et al., 2013). These induced CSC-like-
10A cells were largely CD44+CD24low, expressed ALDH1 and had
high tumorigenicity in vivo. In metastatic breast cancer cells, Klf-
4 expression increased the proportions of CD44+CD24low and
mammosphere-forming cells (Okuda et al., 2013). Oct4 alone
was able to transform primary HMLE cells into cells capable of
initiating tumors in xenografts and Oct4 is also thought to be
the downstream effector of IL-6 induced CSC formation (Beltran
et al., 2011; Kim et al., 2013).

Transcription factors mediate changes in gene expression, but
the action of transcription factors is also influenced through
epigenetic genome modification. Epigenetic regulation of gene
expression controls cell fate specification by activating or repress-
ing genes associated with lineage commitment. Epigenetic
changes are also associated with cancer progression.

In mammary epithelial cells, repressive and activating histone
methylation patterns are associated with changes in gene expres-
sion during lineage determination (Pal et al., 2013). CSCs isolated
from breast cancer cell lines had elevated levels of the polycomb
group protein, EZH2, which catalyses histone methylation (van
Vlerken et al., 2013). EZH2 knockdown by siRNA moderately
reduced the CSC populations in breast and pancreatic cancer cell
lines, inducing a more differentiated pattern of gene expression.
Moreover, high EZH2 expression correlates with poor prognosis
in breast and prostate cancer (Varambally et al., 2002; Pietersen
et al., 2008).

Interestingly, the methylation patterns in mammary epithe-
lial cells alter during pregnancy and also in ovariectomized
mice, demonstrating that they are subjected to hormonal control.
Furthermore, experiments in isolated epithelial cells suggested
that EZH2 is induced by progesterone in a paracrine fashion (Pal
et al., 2013). Thus, changes in local tumor environment could
alter methylation patterns and facilitate CSC formation in rela-
tively few generations, as it does not require further mutations to
occur.

FACTORS INFLUENCING CSC FORMATION

Selective pressure in a genetically unstable environment can drive
selection for epigenetic or genetic changes that support survival.
Factors that influence this tumor environment include infiltrating
cells, hypoxia and chemotherapy, all of which have been linked to
CSC development.

Co-culture of SUM159 cells with bone marrow-derived mes-
enchymal cells induced an expansion of the ALDH1-expressing
SUM159 population (Liu et al., 2011). This expansion was due
to a chemokine signaling loop between cancer-cell derived IL-6
and CXCL7 produced by ALDH+ mesenchymal cells. Moreover,
co-injection of ALDH+ mesenchymal cells with SUM159 cells
into NOD/SCID mice accelerated tumor growth and increased
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the capacity of the SUM159 cells to form secondary tumors
following serial passage. Intratibial injection of mesechymal
cells demonstrated that they could augment tumor growth
and home to the site of breast tumor xenografts (Liu et al.,
2011).

The immune response in FVB mice to cells derived from
tumors in a Her2/neu transgenic strain caused the outgrowth of
Her2-negative tumors. This antigen loss effect was dependent on
CD8+ T cells. Her2-negative tumor cells had reduced CD24 lev-
els compared with the parental Her2-positive cells and were more
mesenchymal in appearance and expression patterns. Moreover,
these CD24−/low cells were much more tumorigenic than controls
suggesting that the CD8+ T cell-dependent immune response was
inducing EMT in the cancer cells to generate CSCs (Santisteban
et al., 2009).

HYPOXIA

As tumors develop, the requirement for oxygen increases, leading
to regions of hypoxia. Hypoxia causes activation of hypoxia-
inducible factors, HIFs, which enable to cells to adapt to the
low-oxygen environment. Hypoxic culture conditions (1% O2)
induced an increase in the ALDH1+ proportion in breast can-
cer cell lines (Conley et al., 2012). Moreover, CSCs were enriched
in hypoxic regions of tumor xenografts compared with normoxic
regions (Conley et al., 2012). Using cycles of hypoxia and re-
oxygenation to model the tumor microenvironment, Louie and
colleagues enriched for populations of MDA-MB-231 and BCM2
cells that were significantly more tumorigenic than the parental
lines (Louie et al., 2010). The hypoxia-selected populations also
had a greater proportion of CD44+CD24−/low cells. The low
oxygen levels may influence the progenitor-like state of CSCs,
as hypoxia blocked differentiation in MCF10A cells, possibly by
maintaining greater levels of histone acetylation (Vaapil et al.,
2012).

CHEMOTHERAPY

In addition to CSCs forming as a part of tumor progres-
sion, therapeutic intervention may contribute to CSC gene-
sis. Anti-angiogenic agents sunitinib and bevacizumab, which
induce hypoxia in tumors, increased the number of CSCs in
breast cancer xenografts (Conley et al., 2012). The release of
factors by dying tumor cells may also act to augment the
CSC pool. Interleukin-8 (IL-8) levels increased in SUM159
breast cancer cells following treatment with chemotherapeu-
tic docetaxel (Ginestier et al., 2010). Interestingly, IL-8 sig-
naling via its receptor CXCR1 on CSCs can expand CSC
numbers in breast cancer cell lines (Charafe-Jauffret et al.,
2009).

Further to the dying tumor cells releasing CSC-promoting fac-
tors, chemotherapy could alter the cells intrinsic mechanisms
of preventing EMT. ER can directly suppress the EMT-driver
SLUG; therefore anti-estrogen therapies may promote CSC for-
mation by inducing EMT (Ye et al., 2008). Clearly the benefits of
anti-estrogen therapies, such as tamoxifen, in prolonging patient
survival are unarguable, but it is possible that under certain
circumstances, initial anti-estrogen treatment may predispose the
patient to recurrence of the disease.

PATHOLOGICAL SIGNIFICANCE OF BREAST CANCER STEM

CELLS

TUMOR AGGRESSIVENESS

Since the discovery of breast CSCs, they have been touted as
critical targets for the design of future therapeutics. However,
it is important to understand how CSCs influence the pathol-
ogy of breast cancer so that treatments can be targeted
appropriately.

Different subtypes of breast cancer are associated with dif-
ferent prognoses; luminal cancers offer the best chance of long-
term survival and basal, claudin-low and Her2-positive can-
cers offer a much shorter life expectancy. Gene set enrich-
ment analysis demonstrated similarity between the expression
profile of stem cells and basal-breast cancers (Pece et al.,
2010). The proportion of cells expressing stem-cell mark-
ers was approximately 3–4-fold higher in poorly differenti-
ated compared with well-differentiated breast tumors. TAM-
resistant ER-positive breast cancers are more basal-like, show-
ing reduced E-Cadherin expression, increased CD44 and NF-
κB expression along with increased motility (Hiscox et al.,
2009).

A CSC gene signature from comparative analysis of
CD44+CD24− sorted tumor cells and cancer mammospheres
showed that this signature was associated with claudin-low
breast cancers, suggesting that claudin-low tumors are enriched
for CSCs (Creighton et al., 2009). Moreover, the expression
profile of the CSC-regulator, FOXC2 was enriched in claudin-low
tumors and cell lines (Hollier et al., 2013). Her2 expression
has been shown to correlate with ALDH1 expression in human
breast cancer. ALDH1 levels also correlated with poor clinical
outcome and proved to be an independent prognostic marker
(Ginestier et al., 2007; Morimoto et al., 2009). Together, these
studies suggest a link between CSCs and the aggressiveness of
the disease.

In inflammatory breast cancer (IBC), ALDH1 expression cor-
related with histological grade but interestingly not with the
CD44highCD24− phenotype (Ginestier et al., 2007). This may be
due to differences in analyzing CD44 and CD24 expression by
immunohistochemistry rather than FACS or that CD44/CD24
may not be suitable markers of CSCs in IBC. A second study
using IHC to assess prognostic significance of CD44 and CD24
expression in breast cancer also failed to find a correlation
between the CD44highCD24− phenotype and tumor progression,
although there was suggestion of a correlation with bone metasta-
sis (Abraham et al., 2005). These discrepancies between FACS and
IHC studies could be due to the different techniques employed
or other factors, such as the source of the tumor cells being
analyzed.

There is accumulating evidence that CSC are involved in the
metastatic progression of breast cancer. This is particularly sig-
nificant given that the majority of cancer deaths are due to
secondary lesions that have disseminated from the initial tumor.
Immunohistochemistry of breast cancer cells isolated from bone
marrow using the CD44highCD24−/low phenotype suggests that
there may be a much greater proportion of CSCs in metastatic
tumors compared with the primary site (Balic et al., 2006). In IBC
models, CSCs isolated by ALDH activity were shown to mediate
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metastasis in both in vitro and xenograft studies (Ginestier et al.,
2007). Moreover, detection of ALDH+ cells in tumors from IBC
patients correlated with both early onset of metastasis and over-
all decreased survival (Ginestier et al., 2007). CSCs have also been
proposed to alter tissue architecture by driving epithelial remod-
eling. This disruption of normal tissue structure could be another
method by which CSCs contribute to metastasis (Parashurama
et al., 2012).

CANCER RECURRENCE FOLLOWING THERAPY

Resistance of CSCs to chemotherapy/radiotherapy is a pos-
sible mechanism to explain breast cancer recurrence. CSCs
are enriched following neoadjuvant chemotherapy suggest-
ing that CSCs are more resistant to therapy than the bulk
of the tumor (Yu et al., 2007; Li et al., 2008). Treatment
of both SUM159 and SUM149 cells with chemotherapeu-
tics (paclitaxel or 5-fluorouracil) led to enrichment in the
proportion of stem-like cells (Gupta et al., 2011). CSC-
like MCF7 cells were resistant to several commonly used
chemotherapeutics (Adriamycin, Etoposide, 5-Fluorouracil cis-
Platinum, and Methotrexate), although they were more sen-
sitive to Taxol (Creighton et al., 2009; Sajithlal et al.,
2010).

The association between EMT and CSCs is also relevant to
chemo-resistance, as cells undergoing EMT are more resistant
to chemotherapeutics (Li et al., 2009). Cells isolated from Her2-
antigen loss tumors that had undergone EMT had upregulated
expression of protein pumps associated with drug resistance
(BCRP and PGP). Accordingly, these cells were protected from
chemotherapeutics mitoxantrone and etoposide. The mesenchy-
mal tumor cells also had increased levels of DNA repair enzymes
and were resistant to ionizing radiation (Santisteban et al., 2009).

TUMOR MAINTENANCE

CSCs are often referred to as being responsible for “maintain-
ing” the tumor. In some respects, this maintenance role is an
extrapolation of data showing that CSCs can recapitulate tumors
of heterogeneous cell types over several passages in immune-
compromised mice. Few studies have examined whether elim-
ination of CSCs actually causes spontaneous-regression in the
primary setting, which could be expected if the CSCs were main-
taining the tumor. Part of the reason for this, is the lack of models
in which to test the maintenance of tumors by CSCs.

Seminal lineage tracing experiments in both the skin and
intestine demonstrated that during early transformation the
tissues retain a cellular hierarchy akin to the normal tissue
(Driessens et al., 2012; Schepers et al., 2012). Notably, in con-
trast to benign skin tumors, squamous cell carcinomas had
an increased proportion of CSC, which had reduced propen-
sity to differentiate. These studies demonstrate that CSCs exist
early in the tumorigenesis process, but does still not delin-
eate whether these early CSCs are maintaining the tumor. In
a mouse model of glioblastoma, Chen and colleagues demon-
strated the presence of quiescent CSCs that could expand and
re-populate the tumor following chemotherapy with temozxolo-
mide (TMZ). Eradication of these CSCs using a thymidine kinase
transgene and ganciclovir (GCV) significantly improved survival.

Moreover, the tumors in the GCV treated mice had reduced levels
of proliferation and were less invasive suggesting that the CSCs
were in indeed maintaining the tumor progression (Chen et al.,
2012).

THERAPEUTIC TARGETS IN CSCs

The growing evidence that CSCs contribute to cancer progression
and recurrence shows that developing anti-CSC therapies will
likely improve chances of long-term survival of cancer patients.
A proof of principle for targeting CSCs has been demonstrated
in AML where the anti-leukemia drug TDZD-8 selectively killed
leukemia stem cells while not affecting normal hematopoietic
stem and progenitor cells (Guzman et al., 2007).

Many of the pathways currently under investigation as poten-
tial therapeutic targets in CSCs have been shown to regulate nor-
mal stem and progenitor cells, so finding methods to selectively
target the pathways in cancer will be critical. Two developmen-
tal pathways that have received much recent attention as cell fate
regulators in the breast are Notch and Wnt (Gu et al., 2013; Meier-
Abt et al., 2013; Regan Joseph et al., 2013; Šale et al., 2013). It
is therefore not surprising that they may be therapeutic targets
in CSCs. In a model of Notch1-driven mammary tumorigene-
sis, inhibition of Notch signaling induced tumor regression and
reduced tumorsphere formation in vitro (Simmons et al., 2012).
Upregulation of the Notch ligand, Jagged2 in breast cancer cells
and bone marrow derived cells in response to hypoxia led to an
expansion of CSCs (Xing et al., 2011). Notch 4 activity is increased
in breast CSCs and Notch and Wnt signaling were found to
mediate radio-resistance in breast progenitor and CSCs (Phillips
et al., 2006; Woodward et al., 2007; Harrison et al., 2010). The
Wnt co-activator Pygo2 augmented mammosphere formation in
MDA-MB-231 breast cancer cells (Chen et al., 2010). Conversely,
deletion of pygo2 in MMTV-Wnt1 tumor cells reduced both
mammosphere and tumor-forming capacity (Watanabe et al.,
2013).

The potential therapeutic benefit of targeting Wnt-signaling
was demonstrated by the identification of Salinomycin in a
screen for CSC-inhibitors. Salinomycin preferentially eliminated
CSCs by inhibiting Wnt signaling and inducing apoptosis Gupta
et al., 2009; Fuchs et al., 2009; Lu et al., 2011; Tang et al.,
2011. Salinomycin also killed iCSCL-10A cells that were resis-
tant to Taxol and Actinomycin D (Nishi et al., 2013). Another
drug that appears efficacious against CSCs is the anti-diabetic
drug Metformin. Metformin targets CSC and can act synergis-
tically with chemotherapy drugs to reduce CSC numbers and
tumor growth (Hirsch et al., 2009; Vazquez-Martin et al., 2011).
Subsequent work demonstrated that Metformin might act by
inhibiting nuclear translocation of NF-κB and phosphorylation
of STAT3 in CSCs compared with non-CSCs (Hirsch et al.,
2013). Metformin may therefore be a candidate to treat TAM-
resistant ER+ cancers that have been shown to upregulate NF-κB
(Hiscox et al., 2009). Significantly, metformin treatment over-
came Herceptin™ resistance in a Her2-positive xenograft model
(Cufi et al., 2012).

Cell surface receptors make attractive targets for therapeutic
design, as they are accessible to drugs. The growth factor recep-
tor PDGFR-β was shown to lie downstream of FOXC2 in cells
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induced to undergo EMT and both proteins were expressed in
CSC-enriched populations of SUM159 and HMLER cells (Hollier
et al., 2013). The PDGFR-β inhibitor sunitinib reduced tumor
growth and metastasis of FOXC2-expressing tumor cells (Hollier
et al., 2013). Thus, sunitinib may be effective to combat CSC that
arise as a result of EMT. FGF-receptor 2 (FGFR2) was enriched
in CSC isolated from a MMTV-PyMT mouse breast cancer
model (Kim et al., 2013). Moreover, FGFR2-expressing human
tumor cells were more tumorigenic than FGFR2-negative cells in
the xenograft experiments. Treatment with the FGFR inhibitor,
TKI258, reduced the proportion of CSCs in MMTV-PyMT-driven
tumors and delayed tumor growth (Kim et al., 2013).

The enrichment of CSCs that occurs under certain condi-
tions, suggests that CSCs are capable of increasing their num-
bers by symmetric division. Blocking this mechanism of CSC
expansion may slow tumor progression and allow more suc-
cessful elimination of the CSC pool. By restoring p53 function
in Her2 over-expressing cells, asymmetric cell division in the
CSCs was restored leading to reduced tumor formation (Cicalese
et al., 2009). Hedgehog (Hh) signaling via Bmi1 increased the
frequency of mammosphere forming cells and this effect was
reversed using the Hh inihibitor cyclopamine (Liu et al., 2006).
Suppression of cFLIP eliminated CSCs in response to TRAIL,
reducing formation of primary tumors in transplant models and
almost completely preventing metastasis (Piggott et al., 2011).
cFLIP suppression also reduced MFU-enrichment following pas-
sage of mammospheres, suggesting symmetric CSC division was
compromised.

The plasticity of tumor cells is another hurdle that needs
to overcome in order to prevent de novo CSC formation from
non-CSCs. By blocking Activin/Nodal signaling, the ability of
CD44+CD24+ (non-stem) cells to give rise to CD44+CD24low

(CSC) progeny was also blocked (Meyer et al., 2009).
Therapeutic ablation of specific cell populations is likely

to only provide temporary relief from tumor progression.
Moreover, as some therapies appear to support CSC produc-
tion, it will be necessary to tackle cancer in a multi-pronged

approach, targeting both CSC and non-CSCs. The CXCR1
inhibitor repertaxin killed bulk tumor cells by upregulating Fas
expression and also prevented IL-8 signaling through CXCR1
to kill the CSCs (Ginestier et al., 2010). Combining GCV
and TMZ to target both CSCs and non-CSCs significantly
reduced the tumor burden compared with GCV treatment
alone (Chen et al., 2012). Unfortunately, the outgrowth of cells
that had suppressed the TK transgene precluded the authors
from determining if there was a significant benefit to overall
survival.

A problem with current cancer therapies is that they have
been tested, selected and approved based on the ability to reduce
tumor size without testing the effect on CSCs. Therefore, in addi-
tion to developing drugs that target CSCs it will be necessary to
develop new assays focused on being able to detect changes in
CSCs function that alone may not necessarily cause a reduction in
tumor size. The efficacy of CSC-targeted therapeutics could also
be determined by examining cancer recurrence in patients treated
with combined drug regimes.

SUMMARY

There is now little doubt that cancer cells with the properties of
stem cells exist within heterogeneous populations and that these
CSCs have tumor-forming capacity. However, the role that these
cells have in the formation and progression of the tumor in the
primary setting is still unclear and will require suitable models to
be developed for this to be delineated. The mechanisms of CSCs
formation will require particular attention if they are to be suc-
cessfully eliminated from patients. Finally, new assays that can
detect the efficacy of targeting CSCs are essential if CSC-therapies
are to make it to the clinic.
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