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Abstract

Purpose—To investigate the association between a validated, gene-expression-based, 

aggressiveness assay, Oncotype Dx RS, and morphological and texture-based image features 

extracted from magnetic resonance imaging (MRI).

Materials and Methods—This retrospective study received Internal Review Board approval 

and need for informed consent was waived. Between 2006–2012, we identified breast cancer 

patients with: 1) ER+, PR+, and HER2− invasive ductal carcinoma (IDC); 2) preoperative breast 

MRI; and 3) Oncotype Dx RS test results. Extracted features included morphological, histogram, 

and gray-scale correlation matrix (GLCM)-based texture features computed from tumors 

contoured on pre- and three postcontrast MR images. Linear regression analysis was performed to 

investigate the association between Oncotype Dx RS and different clinical, pathologic, and 

imaging features. P < 0.05 was considered statistically significant.

Results—Ninety-five patients with IDC were included with a median Oncotype Dx RS of 16 

(range: 0–45). Using stepwise multiple linear regression modeling, two MR-derived image 

features, kurtosis in the first and third postcontrast images and histologic nuclear grade, were 

found to be significantly correlated with the Oncotype Dx RS with P = 0.0056, 0.0005, and 

0.0105, respectively. The overall model resulted in statistically significant correlation with 

Oncotype Dx RS with an R-squared value of 0.23 (adjusted R-squared = 0.20; P = 0.0002) and a 

Spearman’s rank correlation coefficient of 0.49 (P < 0.0001).

Conclusion—A model for IDC using imaging and pathology information correlates with 

Oncotype Dx RS scores, suggesting that image-based features could also predict the likelihood of 

recurrence and magnitude of chemotherapy benefit.

Breast cancer subtypes are increasingly classified based on tumor genotype, which is often 

predictive of outcome, and molecular characterization is now often used to guide targeted 
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therapy. Luminal A subtype is defined by immunohistochemistry surrogates, including 

positive estrogen receptor (ER+) and/or positive progesterone receptor (PR+), negative 

HER2 receptor (HER2−), and a low Ki67 level. This subtype of ER-positive breast cancer is 

the most common subtype and correlates with the highest probability of long-term disease-

free and overall survival compared to luminal B, HER2-overexpressing, and basal-like 

subtypes.1 However, there is significant intertumoral and intratumoral variability in 

biological aggressiveness within the luminal A subtype, which has motivated a search for 

biomarkers and predictive models to more effectively personalize treatment regimes.2–4

The Oncotype Dx (Genomic Health, Redwood City, CA) breast cancer assay incorporates 

the mRNA expression of 21 genes, resulting in the so-called Recurrence Score (RS), that has 

been shown to be predictive and prognostic in early-stage ER-positive/HER2-negative 

invasive breast cancer.5–12 The American Society of Clinical Oncology (ASCO) 

recommended its clinical use based on data showing that RS correlates with the magnitude 

of chemotherapy benefit as well as the 10-year risk of distant recurrence, both increasing 

with higher RS scores.13 Oncotype Dx RS (hereafter, ODxRS) is used clinically to influence 

decision-making, sometimes preventing unnecessary chemotherapy.5

Correlating imaging phenotype with genomic information (often referred to as 

“radiogenomics”), in order to better understand genetic variability and the ability to predict 

prognosis or response to therapy, is a new field of research.14 The overlap between image-

based breast cancer phenotype features and genomic characteristics is not currently well 

established. Breast magnetic resonance imaging (MRI) is the most sensitive imaging 

modality for tumor characterization and accurate size measurement. Clinical indication 

includes preoperative evaluation to define extent of disease in newly diagnosed breast 

cancer.15,16 Tumors are characterized clinically using the Breast Imaging-Reporting and 

Data System (BI-RADS) Lexicon. However, image features extracted through computer-

based automated image analysis are quantitative and may include characteristics that are 

imperceptible to the eye. Such efforts to discover and use quantitative features are termed 

“radiomics.”

Types of radiomics features that are often extracted include texture-based features (ie, 

characteristics associated with “roughness” or “smoothness” and the like). Previous 

applications of texture analysis for breast cancer have predominantly been for differentiating 

between benign and malignant lesions as well as differentiating between ductal and lobular 

breast cancers.17–20 Sophisticated methods using gray-scale correlation matrix (GLCM) 

textures or variations of the same textures computed from Gabor edge images and temporal 

kinetics,21 as well as fractal-based textures,22 have been employed for classifying malignant 

from benign breast tumors. The purpose of this study was to investigate the association 

between ODxRS and image analysis-based features extracted from MRI scans.

Materials and Methods

Our Institutional Review Board approved this Health Insurance Portability and 

Accountability Act-compliant retrospective study; the need for informed patient consent was 

waived.

Sutton et al. Page 2

J Magn Reson Imaging. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patient Cohort

A retrospective search of our electronic hospital information system, for patients treated 

between 2006 and 2012, was performed to identify patients who met the following inclusion 

criteria: 1) pathologically proven ER-positive, PR-positive, and HER2-negative invasive 

ductal breast carcinoma; 2) preoperative bilateral breast MRI performed prior to definitive 

breast surgery where postbiopsy changes were not substantial; 3) ODxRS is documented; 4) 

no prior history of cancer; 5) no known breast cancer susceptibility gene (BRCA) mutation; 

6) no use of hormonal therapy at time of diagnosis. MRI examinations were ordered for 

either: i) BRCA negative high-risk (>20% lifetime risk) breast cancer screening or ii) 

preoperative evaluation to define the extent of disease in newly diagnosed breast cancer. 

Ninety-five women met the inclusion criteria, with each providing imaging data for a single 

tumor.

MR Image Acquisition

All images were acquired with a 1.5T (n = 47; 49.50%) or 3.0T (n = 48; 50.50%) MRI 

system (Signa or Signa HDX; GE Medical Systems, Waukesha, WI). In all patients, a 

dedicated 8- or 16-channel surface breast coil was used. Sagittal T1-weighted fat-suppressed 

2D multislice acquisitions were acquired before and continuously three times after the 

intravenous administration of 0.1 mmol gadopentetate dimeglumine per kilogram body 

weight (Magnevist; Berlex Laboratories/Bayer Health Care Pharmaceuticals, Montville, NJ) 

at a rate of 2 ml/sec with an automatic injector (Medrad, Pittsburgh, PA) and a 20-second 

scan delay using the following parameters: repetition time (msec)/echo time (msec), 7.4/4.2; 

flip angle, 10°; bandwidth, 32 kHz; field of view, 18–22 cm; acquisition matrix, 256 × 192; 

NEX, 1; slice thickness, 3 mm; gap, 0 mm; temporal resolution, ~90 seconds.

Computer-Based Image Analysis

Figure 1 shows an overview of our approach. As shown, the tumors were identified and 

contoured by the radiologist on a single central slice from the first postcontrast fat-

suppressed T1-weighted MR image sequences. Next, image features were extracted from the 

contoured central tumor single slice on the pre- and three postcontrast sagittal fat-suppressed 

T1-weighted MR sequences. Once all image features were computed for each patient, the 

results were combined with clinical, histologic, and pathologic features and analyzed using 

linear regression to extract the relevant features.

Thus, information is extracted from a single slice of the tumor as contoured on the fat-

suppressed T1-weighted pre- and three postcontrast images.

Two radiologists (E.J.S. with 3 years and E.A.M. with 19 years experience reading breast 

MRI) interpreted the breast MRI data in consensus blinded to all protected health 

information including ODxRS. One radiologist (E.J.S.) contoured the tumor boundary on a 

central slice that was used as the region of interest (ROI) for extracting the various image-

based features. We integrated routines to derive image features including morphological, 

histogram-based first-order, and GLCM-based second-order texture features into our in-

house, open-source software system (Computational Environment for Radiotherapy 

Research, CERR).23
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MORPHOLOGICAL FEATURES—Morphological features capture tumor shape and 

consist of: 1, eccentricity; 2, Euler number; 3, solidity; and 4, extent. Eccentricity describes 

the elongatedness of a shape as a measure of its deviation from a circle. A perfectly round 

tumor will have an eccentricity of 0 while a tumor that is long and thin will have an 

eccentricity of 1.0. The Euler number describes a structure by the number of holes found 

inside the structure. For example, the Euler number captures the presence of necrotic 

regions. Solidity measures the proportion of pixels corresponding to a given structure (ie, 

tumor) that are also enclosed by the largest possible convex hull for that structure; the 

convex hull is the best-fitting polygon that can enclose all the pixels corresponding to the 

given structure (ie, without “dimples”). Solidity measures the degree of concavities in the 

perimeter of the structure and complements the Euler number. Extent is a measure that is 

related to solidity but employs a bounding box instead of a convex hull to derive its 

measurement.

HISTOGRAM-BASED FIRST-ORDER TEXTURE FEATURES—In addition to the 

shape features, we computed the image-based characteristics of the tumors using intensity-

volume histograms. Histograms were computed using the voxel intensities inside the ROI 

from which statistical measures of the shape of histogram were derived and included: 1, 

kurtosis; 2, skewness; 3, variance; 4, standard deviation; 5, minimum; and 6, maximum. In 

the literature, these are also referred to as the first-order textures.

GLCM FEATURES—GLCM-based textures are also frequently referred to as Haralick 

texture features.24 These are so-called second-order texture features that are computed from 

a 2D histogram that summarizes the relative intensities of the pixels for one or more spatial 

offsets (eg, “over one voxel and up one voxel”) measured at specific intensity levels. These 

features capture the relative variation in the intensities thereby, obtaining a more accurate 

model of the texture in a given region. The features computed from the GLCM matrix 

include: 1, energy (or coherence); 2, entropy; 3, contrast; and 4, homogeneity. Energy, 

computed as the average of the gray level co-occurrences captures the extent of similarity of 

voxels in a given region. Entropy, on the other hand, captures the amount of variation in the 

co-occurrence of the different voxels. Correlation captures how the pairs of voxels are 

correlated to other voxel pairs as positive, zero, or negative correlation. In contrast, inertia or 

contrast computes the amount of dissimilarity. The Haralick texture features were computed 

directly from the MR images. The GLCM matrix was computed by discretizing the images 

into 16 intensity bins. For more information about these image features, see our previous 

publication focusing on positron emission tomography (PET) images.24

In summary, our MRI analysis included four morphologic features (eccentricity, Euler 

number, solidity, and extent), which do not change on different sequences. Our MRI 

analysis also included six histogram (kurtosis, skewness, variance, standard deviation, min, 

and max) and four GLCM-based (energy, entropy, contrast, and homogeneity) features that 

were computed for all four MR images, giving a total of 40 different image features. We 

therefore had a total of 44 image features. Six clinical features were also analyzed and 

included: 1, age; 2, menopausal status; 3, histologic grade; 4, nuclear grade; 5, pathologic 

tumor size and 6, axillary lymph node status.

Sutton et al. Page 4

J Magn Reson Imaging. Author manuscript; available in PMC 2016 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Reference Standard

Clinical data collected included age at diagnosis, menopausal status, and family history of 

breast cancer, which was defined as breast cancer in a first- or second-degree relative as well 

as BRCA status. Pathologic data collected included tumor size, histologic grade, nuclear 

grade, and presence of multifocal/multicentric disease. Surgical data collected included 

breast operation, axillary procedure, sentinel lymph node pathology results, and re-excision.

Oncotype Dx RS

Tumor specimens were sent to Genomic Health, after definitive surgery and the breast 

cancer ODxRS score was generated (RS range: 0–100).

Statistical Modeling

Descriptive statistics were used to summarize clinical, imaging, and pathologic parameters. 

Frequencies and corresponding percentages were used for categorical variables and means, 

ranges and standard deviations were used for continuous variables. Age was calculated at 

the time of diagnosis. Clinical and pathological features that were used in the linear 

regression analysis included: age, menopausal status, histologic grade, nuclear grade, 

pathologic tumor size and axillary lymph node status. Linear regression analysis was 

performed to fit ODxRS against predictors, including all clinical, pathological, and imaging 

features. First, stepwise multiple linear regression analysis was used. In this approach, 

forward and backward feature selection was performed, repeatedly adding or removing 

features one at a time until some termination criteria were met with P-value thresholds of 

0.05 and 0.1, respectively, for entering a feature into the model and for removing a feature 

from the model. For comparison, an alternative approach was employed using all features 

with P < 0.05 on univariate linear regression analysis. Spearman’s rank correlation (Rs) test 

was performed to investigate the association between ODxRS and the resulting models. All 

analyses were performed using custom routines written in MatLab (v. 7.14., MathWorks, 

Natick, MA).

Results

Ninety-five patients with luminal A-like (ER+, PR+, HER2−) breast cancer fit the selection 

criteria and were included in the study sample. The mean age was 50.3 years (range: 27.4–

76.1 years); the median ODxRS score was 16 (range: 0–45) (Table 1). In univariate linear 

regression analysis, the only significant associations with ODxRS were seen for energy 

(coherence) in precontrast MRI, kurtosis in the third postcontrast, histologic grade, and the 

nuclear grade, with P-values of 0.0498, 0.0228, 0.0365, and 0.0064, respectively. Figure 2 

depicts the ODxRS association between energy and entropy. These four features were 

further used in multiple linear regression analysis, resulting in a model with R-squared = 

0.195 (adjusted R-squared = 0.152; P = 0.0022), and Rs = 0.437 (P < 0.0001). In this study, 

histologic grade was coded as 1 (well differentiated), 2 (moderately differentiated), and 3 

(poorly differentiated). Age and menopausal status were not statistically significant, with P 

= 0.353 and 0.156, respectively. Using stepwise multiple linear regression analysis, a 

slightly better performance was achieved with R-squared = 0.228 (adjusted R-squared = 

0.198; P = 0.0002) and Rs = 0.485 (P < 0.0001), depicted in Fig. 3, using three statistically 
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significant independent features: nuclear grade and two kurtosis features in the first and third 

postcontrast with type 3 P-values of 0.0105, 0.0056, and 0.0005, respectively, based on the 

F-test. Note that kurtosis in the first postcontrast was not statistically significant in 

univariate analysis, but became significant in stepwise multiple linear regression analysis. 

Table 2 depicts univariate and multivariate P-values. A best-fit linear regression model is:

This equation implies that Fig. 3 shows a fair linear relationship between ODxRS and scores 

predicted by the linear regression model using three predictors. Interestingly, the change in 

kurtosis seems to be most predictive, with increased kurtosis implying a higher risk. High 

kurtosis implies a more “peaked” intensity distribution compared to a Gaussian distribution. 

Roughly speaking, a breast cancer with many voxels that tend to take up contrast at a similar 

intensity level has a higher ODxRS.

Discussion

In this study, we investigated a broad range of quantitative “radiomic” imaging features of 

early stage luminal A-like (ER+, PR+, HER2−) IDC and assessed if there was an association 

with ODxRS. Our results demonstrated that there were two computer-extracted histogram-

based kurtosis image features on the first and third postcontrast images that were 

significantly associated with ODxRS. Roughly, it is the difference in kurtosis following 

contrast that drives the prediction. An increased kurtosis was found to be a statistically 

significant factor correlating with ODxRS. In general terms, this means that tumors with 

many voxels of similar uptake (contributing to a peak in the intensity profile) are likely to be 

more biologically aggressive. This, in turn, implicates vascularity as a key component in 

distinguishing biologically aggressive and nonaggressive tumors. To our knowledge, this is 

one of the first studies to report a quantitative imaging biomarker that is potentially a 

surrogate for a prognostic and predictive genomic-based test. As noted, ODxRS is supported 

by level II evidence and ASCO recommends its use in early ER+, HER2− breast cancers.

Related studies include one by Ashraf et al,25 who reported intrinsic imaging phenotypes in 

56 breast cancer tumors correlated with their ODxRS. Their results demonstrated a moderate 

correlation between DCE MRI features and recurrence score; with four dominant imaging 

phenotypes detected, however, they did not look at kurtosis. Their study included both 

ductal and lobular pathology as well as variable progesterone status without mention of the 

tumor HER2 status. HER2-positive tumors are not recommended to undergo this genetic test 

by ASCO but they often do and are associated with a high Oncotype Dx RS. Our results are 

in line with their study, which demonstrated more rapid contrast enhancement with 

increased recurrence score. Our results are also in line with studies by Pickels et al26 and Yi 

et al,27 wherein increased perfusion for this subtype was associated with decreased disease-

free survival. Mazurowski et al 28 compared different breast cancer subtypes and found that 

luminal B were more likely to have a higher ratio of lesion enhancement to background 

parenchymal enhancement. The steady-state dynamic contrast-enhanced time-signal 
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intensity curves that are used clinically to assist in differentiate benign and malignant lesions 

is a related but different parameter than kurtosis. Future investigations are needed to fully 

explore the relationship between kurtosis and traditional time-signal intensity kinetic 

parameters, such as the rate of washout.29 Clearly, kurtosis measured too early after contrast 

injection is not an optimal predictor. Again, kinetic factors in potentially improving the 

predictive model deserve further consideration.

Computer extracted histogram-based image features have been shown to correlate with 

phenotypic heterogeneity.15,16 We have also demonstrated that there are characteristics that 

are not readily appreciated visually but can be ascertained with other methods of image 

analysis, and that these characteristics correlate with tumor behavior. Breast cancer image 

feature extraction by computational analysis could potentially quantify important patterns 

hidden in images and therefore better characterize tumor, by providing reproducible but 

visually imperceptible data. For example, Ahmed et al30 evaluated the ability of MRI 

textural analysis in predicting breast cancer response to chemotherapy and concluded that 

significant texture parameters and groupings were observed and differed between responders 

and nonresponders. Soares et al22 have used fractal-based methods to extract data to 

characterize breast cancer spatial complexity. Finally, multiparametric MRI, which is 

helpful in distinguishing benign and malignant breast pathology, may also prove helpful in 

generating phenotypic biomarkers.31

In this work, we focused on three different types of image-based features including 

histogram-based first-order textures, GLCM-based second-order textures, and morphology-

based features. Other works have studied the utility of a variety of texture features including 

edge-based features, fractals, and variations of GLCM features.21,22 In this work, we 

restricted the analysis to the three types of features, as these capture both the internal and 

external (shape)-based intensity characteristics of the tumors. The lack of positive predictive 

power for morphological/edge-based features may be due to our limited quantification of the 

tumor surface, given our use of a single central tumor slice. We did not pursue fractal-based 

features because these are closely related to the GLCM features, where multiple regions of 

different radii are used to compute the features. The main difference is that in GLCM, 

different offsets between pixels are used for the computation.

Our results of ODxRS being significantly associated with high nuclear grade are consistent 

with other research. Flanagan et al32 reported in their univariate analysis that ODxRS 

significantly correlated (P < 0.01) with tubule formation, nuclear grade, mitotic count, ER 

score, PR score, and HER2 status. Allison et al33 analyzed 174 breast cancers and Mattes et 

al34 analyzed another 72 breast cancers and concluded that routine pathologic parameters, 

which included tumor grade and PR receptor status, can predict ODxRS in a subset of ER-

positive patients.

The study had several limitations. The major limitation was that we only evaluated tumor 

features from a single representative slice and not full 3D volumetric analysis. Single slice 

analysis may miss important features because of intratumor heterogeneity. This was a 

retrospective analysis of patients who presented over 6 years. There were more patients with 

low-risk ODxRS and no scores above 45. Results of a clinically validated genetic test were 
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correlated with imaging features instead of performing full gene sequencing. The association 

between the MRI features and disease-free survival could not be evaluated due to limited 

follow-up information. To date, no patient has recurred. Although our standard acquisition 

parameters were the same regardless of magnet strength, subtle variation in protocols in the 

1.5T and 3.0T scanners may have affected imaging results. Finally, it is uncertain if this 

MRI-signal based equation is applicable to variations in machines and imaging protocols 

without further testing.

In conclusion, it was possible to leverage quantitative MRI phenotypic image-based 

biomarkers of early-stage luminal A-like breast cancers (ER+/PR+/HER2−) that correlated 

with their ODxRS. IDC computer-derived imaging features correlated with ODxRS, 

suggesting that these are image-based biomarkers that reflect the likelihood of recurrence 

and magnitude of chemotherapy benefit. Further investigation on larger datasets is necessary 

to validate this observation relative to ODxRS and other factors such as BI-RADS terms, 

predicting disease-free and overall survival.

The radiogenomic strategy of correlating imaging features with genetic information is one 

that we believe has a lot of potential for all breast cancer subtypes. Future research will be 

needed on larger datasets to validate this observation and to see if multiparametric imaging 

can increase specificity of image-based phenotypic biomarkers of genetic variability.
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FIGURE 1. 
Overview of our approach for extracting features correlated to ODxRS. As shown, each 

tumor was contoured on a single central slice of the pre- and three postcontrast fat-saturated 

T1 images; the contour was used to compute various image features. Image features were 

then combined with the additional clinical and pathological variables in the statistical 

analysis to extract the most relevant features and to build a predictive model.
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FIGURE 2. 
Graph shows the ODxRS association between (a) Energy (precontrast) and (b) Kurtosis 

(postcontrast).
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FIGURE 3. 
Graph shows correlation between our best-fit linear regression model and Oncotype Dx 

Recurrence Score.
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FIGURE 4. 
Our best-fit linear regression model allows imaging features to differentiate tumors with 

different Oncotype Dx Recurrence Score (ODxRS). (a) Sagittal T1-weighted fat-suppressed 

post-contrast MRI of a invasive ductal nuclear grade 1 carcinoma with an ODxRS of 10 and 

(b) corresponding kurtosis histogram, which demonstrates the frequency of MR intensity. 

(c) Sagittal T1-weighted fat-suppressed postcontrast MRI of an invasive ductal nuclear grade 

2 carcinoma with an ODxRS of 21 and (d) corresponding kurtosis histogram. (e) Sagittal T1-
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weighted fat-suppressed postcontrast MRI of an invasive ductal nuclear grade 3 carcinoma 

with an ODxRS of 43 and (f) corresponding kurtosis histogram.
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TABLE 1

Patient, Luminal A-like (ER+, PR+, and HER2-) Invasive Ductal Carcinoma Tumor and MRI Characteristics

Characteristics Total (n = 95)
n (%)

Mean agea 50.9 (27.4–76.1)

Tumor diameter (cm)b 1.39 (SD 0.59)

Oncotypea 16 (0–45)

Menopausal status

 Pre 56 (58.9%)

 Post 39 (41.1%)

Lymph node status

 Negative 87 (91.6%)

 Positive 8 (8.4%)

MRI

 1.5-T 47 (49.50%)

 3.0-T 48 (50.50%)

Numbers in parentheses represent percent for categorical variables unless otherwise indicated.

a
Numbers in parentheses represent range.

b
Numbers in parentheses represent the standard deviation (SD).
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TABLE 2

P-values for Univariate and Multivariate 44 Feature Analysis

Sequence Feature Univariate analysis Multivariate (stepwise) analysis

P-value P-value

Pre-contrast Energy 0.0498 0.2108

Contrast 0.8754 0.5731

Entropy 0.1988 0.4688

Homogeneity 0.5765 0.6840

Min 0.0670 0.4013

Max 0.7127 0.6378

Standard deviation 0.7413 0.5647

Variance 0.5205 0.6396

Skewness 0.9775 0.4173

Kurtosis 0.3985 0.6078

Postcontrast 1 Energy 0.9935 0.9174

Contrast 0.4788 0.3750

Entropy 0.8149 0.8424

Homogeneity 0.5827 0.6004

Min 0.1754 0.9958

Max 0.9815 0.8323

Standard deviation 0.6339 0.2933

Variance 0.7188 0.9262

Skewness 0.9934 0.7341

Kurtosis 0.5510 0.0056

Postcontrast 2 Energy 0.3218 0.7608

Contrast 0.6605 0.4359

Entropy 0.6018 0.9950

Homogeneity 0.8398 0.7665

Min 0.1248 0.7339

Max 0.9571 0.8278

Standard deviation 0.7614 0.3637

Variance 0.5812 0.8813

Skewness 0.9824 0.9391

Kurtosis 0.1413 0.8997

Postcontrast 3 Energy 0.2089 0.7826

Contrast 0.6860 0.4106

Entropy 0.4385 0.9264

Homogeneity 0.9273 0.7433

Min 0.0727 0.7001

Max 0.9276 0.8404
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Sequence Feature Univariate analysis Multivariate (stepwise) analysis

Standard deviation 0.8256 0.4211

Variance 0.5174 0.7672

Skewness 0.9873 0.7157

Kurtosis 0.0228 0.0005

Morphological features Eccentricity 0.9191 0.5109

Euler Number 1.0000 1.0000

Solidity 0.3065 0.7391

Extent 0.9535 0.9030

Clinical features Volume 0.8681 0.7837

Menopausal status 0.1555 0.2097

Histologic grade 0.0365 0.5821

Nuclear grade 0.0064 0.0105

Axillary nodes 0.7677 0.4520

Age 0.3531 0.2757
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