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Abstract: Mammography is a first-line imaging examination that employs low-dose X-rays to rapidly
screen breast tumors, cysts, and calcifications. This study proposes a two-dimensional (2D) spatial
and one-dimensional (1D) convolutional neural network (CNN) to early detect possible breast lesions
(tumors) to reduce patients’ mortality rates and to develop a classifier for use in mammographic
images on regions of interest where breast lesions (tumors) may likely occur. The 2D spatial fractional-
order convolutional processes are used to strengthen and sharpen the lesions’ features, denoise,
and improve the feature extraction processes. Then, an automatic extraction task is performed using
a specific bounding box to sequentially pick out feature patterns from each mammographic image.
The multi-round 1D kernel convolutional processes can also strengthen and denoise 1D feature signals
and assist in the identification of the differentiation levels of normality and abnormality signals. In the
classification layer, a gray relational analysis-based classifier is used to screen the possible lesions,
including normal (Nor), benign (B), and malignant (M) classes. The classifier development for clinical
applications can reduce classifier’s training time, computational complexity level, computational
time, and achieve a more accurate rate for meeting clinical/medical purpose. Mammographic images
were selected from the mammographic image analysis society image database for experimental
tests on breast lesions screening and K-fold cross-validations were performed. The experimental
results showed promising performance in quantifying the classifier’s outcome for medical purpose
evaluation in terms of recall (%), precision (%), accuracy (%), and F1 score.

Keywords: mammographic image; region of interest (ROI); fractional-order convolutional process;
one-dimensional kernel convolutional process; gray relational analysis (GRA)

1. Introduction

According to the 2021 International Agency for Research on Cancer study report and
the statistics provided by Taiwan’s Ministry of Health and Welfare (MOHW), breast cancer
in women is first place among women worldwide and women in Taiwan [1,2], respectively,
with approximately 2.3 million women diagnosed with breast cancer worldwide and
approximately 14,217 women with breast cancer in Taiwan, which means one woman has
breast cancer every 37 min. Hence, early detection of possible breast lesions can reduce
patients’ mortality rates, which can not only improve survival rates, but also have a more
effective treatment [3]. Routine first-line mammography examination can help to detect
any possible breast lesions on the right or left breast. An automatic screening tool with
digital image processing and artificial intelligence (AI) algorithms will assist clinicians
and radiologists in preliminary diagnosis, will solve the problem of insufficient human
resources, and allows clinicians to focus on follow-up medical strategies. Hence, in this
study, we intend to develop machine-vision-based medical tools, such as machine learning
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(ML)-based and deep learning (DL)-based methods [3–5], for detecting suspicious regions
or any breast lesions in the early stage

Breast abnormalities may appear as different shapes and tissue characteristics in
mammography examination, such as mass (lesion), architectural distortion, calcification,
and asymmetry, which indicate whether a mass is a benign or malignant tumor [6–8].
In clinical image examinations, morphological features indicate important information in
diagnosing breast lesions. The bilateral view is a routine manner for clinical screening
mammography, which can increase accuracy with multi-view projections. For a mass lesion,
if a mass is seen in a single projection, the so-called asymmetry, and then shape, margin,
and density are confirmed to identify the lesion category. Its shape is round and oval masses
for benign categories, and lobular, or irregular shapes for malignant categories. The density
can be high, low, or fat-containing, which is related to the lesion categories, as high density
is for malignant and fat-containing is for lesions that are typically benign, or calcification.
Calcification in mammograms can be diffuse, regional, cluster, linear, or segmental and
has two types: macrocalcification and microcalcification. Breast lesions are heterogeneous
diseases with different characteristic features in both benign and malignant lesions. Hence,
some studies [6,9–12] extract feature patterns with a specific bounding box from suspicious
mammographic images as some templates of feature patterns, including normal (Nor),
benign (B), and malignant (M), as shown in Figure 1. They use morphological features to
identify the normality or abnormality for automatic breast tumor screening.

Figure 1. Templates of feature patterns are extracted from suspicious mammographic images with
a specific bounding box. (a) Template patterns for normal, (b) template patterns for benign (B),
and (c) template patterns for malignant (M).

ML- and DL-based methods, such as image enhancement, image segmentation, feature
extraction, and image classification, have been applied for breast tumor screening to
increase speed in detection tasks and also to decrease humans’ manual errors. Hence,
using AI-based methods can help clinicians or radiologists to easily detect the breast
lesions and to make better diagnostic decisions for treatment plans. Image examinations,
such as mammography, magnetic resonance imaging (MRI), and computed tomography
(CT) image, are widely used to detect the regions of breast lesions and microcalcification
in internal and external right/left breast. MRI is costly, and it requires a contrast agent
to enhance the images to improve the diagnostic results. However, this contrast agent’s
dosage level, such as mild or severe level, may affect the patient [6,13,14]. Additionally,
MRI may be a promising manner in screening younger women with dense breasts at
a higher risk level for developing breast cancer. CT imaging offers clearer and better
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resolution images for hard objects than for softer tissue, and may be an assistive tool
for monitoring tumor spread. However, radiation is a major concern in CT imaging.
X-ray mammography is a first-line imaging examination used to screen the breast lesions
in women who have no symptoms of breast cancer. In mediolateral oblique views of
mammography images, the focal, linear, segmental, regional, and multiple regional mass
distributions indicate the higher probability of malignancy [15]. Hence, morphological
patterns are key features in identifying the malignant and benign masses, as shown in
Figure 1, which refers to the morphological descriptors of the Breast Imaging-Reporting
and Data System (BI-RADS). The seven assessment categories are used to characterize
lesions [11,16,17], and the assessment of BI-RADS categories for mammogram classification
is shown in Table 1.

Table 1. Assessment of BI-RADS categories for mammogram classification [11,16,17].

Category Assessment Follow-Up Risk Factor (%)

0 Inconclusive result Requires additional imaging evaluation -

1 Normal (Negative) No lesion found and requires routine screening 0

2 Benign finding No malignant lesion and requires routine screening 0

3 Probably benign finding Requires short interval or continued screening <2

4 Suspicious finding Requires tissue diagnosis 3–94

5 High probability of malignancy Requires tissue diagnosis ≥95

6 Proven malignancy Requires surgical excision 100

For mammography databases, such as Suspicious Regions on Mammograms from
Palermo Polyclinic (343 images, manually annotated by experts) [18], the Digital Database
of Screening Mammography (DDSM) (2620 studies from hospitals and medical universi-
ties) [19], the Curated Breast Imaging Subset of the Digital Database for Screening Mammog-
raphy (modified and standardized version of DDSM) [20], Image Retrieval in Medical Appli-
cations (11,000 X-ray images, dataset with region of interest (ROI) annotations) [21], and the
Mammographic Image Analysis Society (MIAS) (322 screening mammograms) [22,23],
the clinical information was annotated by expert radiologists, including image size, back-
ground tissue types, class and severity of abnormality (breast lesions), and coordinates of
center of abnormalities. Hence, in an ROI, researchers can easily extract feature patterns
(Figure 1) as training datasets to train the supervised ML- and DL-based classifier for
mass/suspicious lesion segmentation, mass detection/classification, and abnormality de-
tection, such as a support vector machine (SVM), artificial neural network (ANN), k-nearest
neighbor classifier, or deep multilayer convolutional neural network (CNN) [6,24–29]. They
can be carried out on structured data for binary, multiclass, and multi-label classification
applications [30]. The above-mentioned supervised learning methods can be used to train
a classifier model with labeled feature patterns for breast lesion detection. However, tra-
ditional ML-based methods, which consist of an input layer, one or more hidden layers,
and an output layer, lack the feature enhancement and feature extraction functions. High-
dimensional data processing is a major concern. The preprocesses of feature selection and
feature extraction are used to reduce the data dimensionality for overcoming this drawback.
The deep CNN-based methods combine the multiconvolutional pooling layers (>10 layers
in general configuration) and a classification layer to perform the automatic end-to-end
enhancement process, noise filtering, feature extraction, and pattern recognition in this
proposed topic, such as amass classification, lesion detection and localization, and lesion
segmentation/ROI detection, by using fully convolutional network (FCN), Unet CNN,
region-based CNN (R-CNN), faster R-CNN, TTCNN (transferable texture convolutional
neural network), and Grad-CAM (gradient-weighted class activation mapping)-based
CNN [31–38]. The multiconvolutional–pooling processes can extract the desired features
from low-level features to high-level information (sharpening process) for detecting nor-
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mality objects, and then can increase the detection accuracy. However, these configurations
will result in increasing the complexity level and computational time and increases the
data dimensionality and the volume of training datasets for leading to address overfitting
problems during the training of a classifier. Moreover, when classifying the mammography
dataset, maximum pooling (MP) is usually used because of the near background for normal-
ity, and we are interested in the lighter region for abnormality extraction. The MP will select
the brighter pixel values from the image in a specific pooling mask; hence, the dimension of
the feature patterns can be effectively reduced, thereby overcoming the overfitting problems
in training tasks with too much training datasets [39–41]. The ROI is proved using the
Grad-CAM, which also replaces the conventional lighting with a fully linked layer that uses
global average pooling (GAP) [38]. The feature patterns are then obtained by activating the
rectified linear unit (ReLU), utilizing the summation and multiplication of feature patterns,
respectively, using the GAP. [42]. Therefore, the classification accuracy of these multi-
layer structures can be improved for digital image classification. However, the limitations
of the multilayer classifier are determining the number of convolutional–pooling layers,
the number of convolution kernels, and the sizes of convolutional masks for setting the
structure of convolutional–pooling layers. Moreover, too many multiconvolutional–pooling
processes will result in spatial and edge information loss, and have no use for the key
feature extraction.

Hence, we intend to design a 2D spatial and 1D CNN-based classifier to simplify the
tasks of image enhancement, feature extraction, and pattern recognition, comprising a two-
dimensional (2D) spatial convolutional layer, a flattening process layer, one-dimensional
(1D) convolutional layers, a pooling process layer, and a classification layer, which are
integrated into an individual multilayer classifier for breast lesions screening. In the 2D
spatial convolutional layer, fractional-order-based convolutional, Grad-CAM activation
mapping, integral image (II) operations [41–45] can be employed to perform the convo-
lutional processes to detect the desired object’s edge and contour in the specific region
along the horizontal and vertical directions. The different feature patterns can be extracted
through convolutional operations by using different filtering mask weights and mask size
assignments, such as 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and so on. Hence, these extracted
feature patterns can be used to employ studies of mammographic classification and to
identify breast lesions. However, the fractional order-based masks require selecting suitable
fractional order parameters (v ∈ (0, 1)) and sizes of convolutional masks [41,46,47] to extract
different aspects (horizontal, vertical, or diagonal edges) and useful features from the input
images. The II process performs the spatial convolutions by using the summed area table
(SAT) [43–45] to detect the line and diagonal edge features. The II-based convolutional
process does not require the convolutional mask’s parameters and sizes. Therefore, after
the 2D spatial convolutional process, via image enhancement (to adjust the contrast and
maintain the features), the possible lesion can be easily detected and located in a ROI with a
specific bounding box, and the “feature pattern” can be easily picked out from the original
mammographic image. Then, converting a 2D feature pattern into a “1D feature vector”
by the flattening process, the multi-round 1D convolutional processes subsequently en-
hance the incoming feature vector as feature signals, which can also increase the significant
characteristics for further feature extraction and classification applications.

The proposed 1D convolutional operations use the simpler linear weighted mathemat-
ical sums to deal with the incoming subsequent feature signals and can remove unwanted
noises. Additionally, the 1D kernel convolutional process can quantify the difference levels
in feature signals for separating Nor from B and M classes. In real-time application, this
simple architectural can be easy to implement for the intended medical purpose. In the
classification layer, feed the 1D feature pattern into the input layer of gray relation analysis
(GRA)-based classifier [48,49], and the mammographic classification of breast lesions can
be identified, including Nor, B, and M classes. In experimental validations, mammographic
images were collected from the MIAS database [22,23], including training datasets and
testing datasets for training the classifier and verifying the classifier performances in clinical
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applications. With the K-fold cross-validation, the experimental results showed the promis-
ing classifier’s performances for automatic breast lesions screening, with precision (%),
recall (%), accuracy (%), and F1 score indices [39–41].

2. Methodology
2.1. Mammographic Images Collection

We collected the digital mammographic images from the MIAS image database (v1.21,
2015), including the original 322 images (161 pairs, including right and left images) at a
spatial resolution of 50 µm2 pixel edge with a linear response in the optical density range
of 0.0−3.2 at 8 bits/pixel in a portable gray map format [22,23]. Overall image filenames
consisted of three-digit serial numbers, l or r for left and right breast, respectively, and s, m, l,
and x denoted the image sizes. The most common image size was 4320 pixels × 2600 pixels,
which was selected for the proposed study in breast tumor screening. The clinical infor-
mation was confirmed by expert radiologists for biomarkers, such as image size, image
category, background tissue (fatty, fatty glandular, and dense glandular), class of abnor-
mality (calcification, masses, asymmetry, architectural distortion, and Nor), severity of
abnormality (B and M classes), and location of center of abnormality [22,23]. A total of
59 subjects (35 normal subjects and 24 abnormal subjects) with 118 mammographic im-
ages (59 pairs, including right and left images) were selected for experimental verification.
According to the abnormality location, the ROI of each image could be extracted with a
100 × 100 bounding box, around the center, and a total of 500 feature patterns (200 Nors,
150 Bs, and 150 Ms) could be extracted from the 118 images, as seen in the feature templates
in Figure 1, which are available for further training and validating the classifier at learning
and recalling stages.

2.2. Integral Image (II)-Based Convolutional Process

The II-based convolutional process can rapidly evaluate and calculate the summations
in a specific rectangular region (as seen in the summed area table (SAT) [43–45] in Figure 2),
which performs the convolutional process irrespective of the convolutional mask sizes. Its
process facilitates summation of pixels over axis-aligned rectangular regions in constant
time, regardless of the neighborhood size. For a discrete image I at the pixel (x, y), its II,
IntegI (•), is defined as the sum of the pixel values of I(x, y) of the upright rectangle ranging
from the location (0, 0) (top left corner) to the location (x, y) (bottom right corner), as the
expression form [43–45]:

IntegI(x, y) = ∑
x′≤x,y′≤y

I(x′, y′), x′ = 0, 1, 2, . . . , x, y′ = 0, 1, 2, . . . , y (1)

where the summed area is a rectangle region with four array references, and as seen in
the summed area table (SAT) in Figure 2, the 2 × 2 II image can be computed in parallel
as follows:

IntegI(x− 1, y− 1) = I(x− 1, y− 1) (2)

IntegI(x, y− 1) = I(x− 1, y− 1) + I(x, y− 1) (3)

IntegI(x− 1, y) = I(x− 1, y− 1) + I(x− 1, y) (4)

IntegI(x, y) = I(x− 1, y− 1) + I(x, y− 1) + I(x− 1, y) + I(x, y) (5)

where input pixel I(x, y) can be computed in a single pass over the image, as follows:

I(x, y) = IntegI(x, y) + IntegI(x− 1, y− 1)− IntegI(x, y− 1)− IntegI(x− 1, y) (6)



Appl. Sci. 2022, 12, 7516 6 of 23

Figure 2. Summed area table (SAT) to indicate the generating sum of values in a rectangular section
for integral image (II) process at the location (x, y).

Hence, with four values from the SAT, we can simply compute the II’s value by using
Equation (3),

IntegI(x, y) = I(x, y)− IntegI(x− 1, y− 1) + IntegI(x, y− 1) + IntegI(x− 1, y) (7)

where IntegI(x, −1) = IntegI(−1, y) = 0. An II-based convolutional process can rapidly
compute the summations over the image’s subregions, as a linear combination of four
pixels. Hence, for a matrix I of size n × n, each column and each row need (n − 1)
operations of addition in both the column-wise and row-wise prefix sums, which can
reduce the computational processes (takes ≈ 2n (n − 1) additions) and computational
complexity level at the convolutional layer using the SAT.

For example, Figure 3b,c indicate the preliminarily results of 2D spatial convolutional
processes by using the fractional-order-based convolutional and II-based convolutional
operations, respectively. It can be seen that the 2D spatial convolution process can enhance
the edge information while the gray-level values are significantly changed. Their spatial
convolutional processes act as a low-pass frequency filter [50] and then remove the high-
spatial-frequency components, which can enhance the contour of a possible abnormal
object and retain non-characteristic information. Hence, the desired object can be easily
localized within the specific region. Then, the ROI can be identified in a 2D mammographic
image (Figure 3a,c) for further feature extraction in right or left breast, as seen in Figure 3.
Hence, we can locate the possible lesion and then automatically locate the ROI and extract
the feature patterns from an enhanced mammographic image with a n × n bounding box
(n = 100 in this study). The fractional-order-based convolution has promising denoising and
sharpening capabilities; however, its convolutional mask needs to select the appropriate
mask sizes and fractional-order parameters, v ∈ (0, 1). The SAT enables the rapid calculation
of the sum of pixel values (Figure 2) for II-based convolutional processes in arbitrarily sized
and axis-aligned rectangle sections, allowing the implementation of real-time computations
and a reduction in the computational complexity level.
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Figure 3. Two-dimensional spatial convolutional processes by using fractional-order-based convolu-
tional and integral image operations. (a) Original mammographic image; (b) image enhancement
with fractional-order-based spatial convolutional operation; (c) image enhancement with spatial
integral imager-based spatial convolutional operation.

2.3. Feature Extraction with Multi-Round 1D Convolutional Processes and 1D Pooling Process

After image enhancement with the II-based convolutional process, we can extract
the feature patterns from any mammographic image by using a 100 × 100 bounding box,
as seen in the red block in Figure 4. In the feature extraction layer, we first perform the
normalization and flattening processes with a FLAT operator to convert a matrix form
(100 × 100) to a vector form (1 × 10,000), which is presented as follows:

Ixy(p, q) = ROI(IntegI(x, y)), FLATIx = FLAT(
Ixy

255
) (8)

where Ixy(p, q) are the II values within the ROI, p = 1, 2, 3, . . . , n, and q = 1, 2, 3, . . . ,
n (n = 100 in this study); FLAT (•) is the flattening operator; and FLATIx is the 1D data stream
vector as a 1D feature signal. Multi-round 1D convolutional processes are used to deal with
the incoming feature signal by using the convolutional operations, Xc[i] = Xc−1[i] * Hc[j],
and a discrete-time form [39,40,51] of convolutional operation is presented as follows:

Xc[i] =
M−1

∑
j=0

Hc[j]Xc−1[i− j], Hc[j] = exp[
−1
2

(
j− 1

σ
)

2
] (9)

where vector Xc[i] is the feature signal in the cth convolutional operation, index c = 1,
2, . . . , Cth; X0[i] = FLATIx[i], sampling point, i = 1, 2, 3, . . . , N (N = n2); Hc[j] is the discrete
kernel mask with the sliding stride = 1 for feature signal process, which could be used to
deal with cth round convolutional operation and sampling data, j = 0, 1, 2, 3, . . . , Mc − 1,
and index, Mc, is the data length of the 1D kernel mask (Mc = 200 is default). In this study,
we set the two-round 1D convolutional processes (Cth = 2) to deal with the feature signals,
as seen in the flowchart in Figure 5.
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Figure 4. Structure of the proposed two-dimensional spatial and one-dimensional CNN-based classifier.

Figure 5. Image enhancement and feature extraction with the integral image-based convolutional
process ( 1©), normalization and flattening process ( 2©), two-round 1D convolutional processes
( 3© and 4©), and pooling and normalization processes ( 5©).

After 1D convolutional processing, the 1D pooling process (downsampling) and
normalization process can reduce the dimension of feature signals, which is presented
as follows:

x[i] =
1

max(Xc)
POOL(Xc[100i]), i = 1, 2, 3, . . . , n′ (10)

n′ ≈ N + Mc − 2
200

(11)

where operator POOL (•) is the 1D pooling process; vector x[i] is the downsampling 1D
feature signal, which is obtained by using the stride = 100; and operator max (Xc) can find
the maximum value in vector Xc. As shown in Figure 5, the convolutional–pooling layer
performs the normalization and flattening processes ( 2©), two-round 1D convolutional
processes ( 3© and 4©), and 1D pooling and normalization processes ( 5©) to obtain the
1D feature signal and filter the noise, which can obtain the stable feature parameters for
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identifying different levels. Hence, the above-mentioned three processes can be combined
into a feature extraction function for preliminarily separating the normal (Nor) from the
abnormality (B and M classes), as seen in the downsampling 1D feature signals in Figure 6.

Figure 6. Downsampling 1D feature signals for normality (Nor) and abnormality levels (benign (B)
and malignant (M)) as preliminary class identification. (a) Feature signals for normality level; (b) feature
signals for abnormality levels.

2.4. Breast Lesions Screening with a GRA-Based Classifier

As shown in Figure 4, in the classification layer, a GRA-based classifier is a fully
connected multilayer network, consisting of an input layer, GRA-based layer, summation
layer, and output layer. Its function is based on the similarity level to automatically
identify possibilities, including Nor, B, and M classes. Its pattern recognition scheme
uses Gaussian-based gray indicators to separate the normality (Nor) level from the two
abnormality levels, which perform the pattern recognition tasks by using straightforward
mathematical operations without optimization/fine-tuning algorithms, hyperparameter
assignments, and iteration computations [40,48,49]. The Gaussian functions are used to
measure the similarity level between a testing dataset, x0, and training datasets, xk, which
are represented as x0 = [x1(0), x2(0), x3(0), . . . , xi(0), . . . , x100(0)] and xk = [x1(k), x2(k),
x3(k), . . . , xi(k), . . . , x100(k)], k = 1, 2, 3, . . . , K, respectively. The similarity level can be
measured by the Euclidean distance (ED)

ED(k) =

√√√√100

∑
i=1

(∆di(k))
2, di(k) = xi(0)− xi(k), i = 1, 2, 3, . . . , 100 (12)

where parameter, di(k), is the difference between a testing dataset and K training datasets;
K is the number of training datasets. The function of the gray grade, g(k), can be defined
as follows [49,50]:

g(k) = exp(−1
2
(

ED(k)2

σ2 )

2

), k = 1, 2, 3, . . . , K (13)

σ2 = (∆dmax − ∆dmin)
2,

 ∆dmin = min
∀i∀k

(∆di(k))

∆dmax = max
∀i∀k

(∆di(k))
, (∆dmax − ∆dmin) 6= 0 (14)

where σ is the standard deviation which can be automatically determined by the term
“(∆dmax − ∆dmin)”; ∆dmax and ∆dmin are the maximum and minimum difference values,
respectively; and K comparative data are created by training datasets, xk, including (1)
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Nor class, (2) B class, (3) and M class. Then, the GRA-based classifier’s output can be
normalized as follows:

yj =

K
∑

k=1
wkjg(k)

K
∑

k=1
g(k)

=
K

∑
k=1

wkjsj, sj =
g(k)

K
∑

k=1
g(k)

, j = 1, 2, . . . , m (15)

Yj =

{
1, yj ≥ 0.50
0, yj < 0.50

(16)

where parameters, wkj, are the connected weighting values as the desired class referring
to the input feature signal between the GRA-based layer and summation layer, which
can be set by K × 3 (m = 3, three classes in this study) output training data, as encoded
by value “1” or value “0”; the output pattern vector for three classes can be encoded as
[Nor, B, M] = [0/1, 0/1, 0/1] and binary encoding as (1) Class-Nor: [1, 0, 0], (2) Class-B:
[0, 1, 0], and (3) Class-M: [0, 0, 1]. The classifier’s output, Yj, j = 1, 2, 3. can be decided by
the threshold value at “value 0.5” to identify the disease present (for value 1) or disease
absent (for value 0). Hence, we can perform our medical purpose to establish a classifier for
automatic multi-label classification, consisting of a II-based convolutional process in the 1st
convolutional layer for image enhancement; two 1D convolutional processes in the 2nd and
3rd convolutional layers (with discrete Gaussian mask, data length = 200, and stride = 1);
1D pooling layer (stride = 100) for feature extraction; and GRA-based classifier in the
classification layer, as seen in the summary of the proposed model in Table 2. As seen
in Figure 7, the flowchart of the classifier’s testing and validation includes the image
enhancement and noise denoising with II-based spatial convolutional process, feature
pattern extraction, flattening process, two-round 1D convolutional process, 1D pooling
process, breast lesions screening, and keeping its medical purpose in clinical application.

Table 2. Summary of models (Layer Functions, Manners, and Feature Patterns) for the proposed
classifier and traditional CNN-based classifier.

Classifier Layer Function Manner Feature Pattern

Model #1:
2D Spatial and 1D

CNN-based Classifier.
(Proposed Classifier)

1st Convolutional Layer
for Image Enhancement

Integral Image-based
Convolutional Process
(SAT Process [43–45])

2D Image (4320 × 2600)

ROI Extraction ROI Extraction, Normalization,
and Flattening Process

1D Input Feature Signal
(1 × 10,000)

2nd and 3rd
Convolutional Layer for

Feature Extraction

1D Convolutional Process with Discrete
Gaussian Function (Data Length of

Convolution Mask, M = 200, Stride = 1)

X1 (1 × 10,000)

X2 (1 × 10,000)

Pooling Layer for Feature
Parameter Reducement 1D Pooling Processes (Stride = 100) x (1 × 100)

Classification Layer for
Breast Lesions Screening

Multilayer Connected Network:
100 Input Nodes,200 GRA Nodes,

4 Summation Nodes, 3 Output Nodes Input Feature Signal
(1 × 100)

Learning Algorithm:
GRA Algorithm [40,48,49]
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Table 2. Cont.

Classifier Layer Function Manner Feature Pattern

Model #2
Traditional

CNN-based Classifiers

1st Convolutional Layer
for Image Enhancement

Fractional-Order-based
Convolutional Process

(3 × 3 Mask, 2, Stride = 1, Padding = 1)
2D Image (4320 × 2600)

ROI Extraction ROI Extraction 2D Image (100 × 100)

2nd Convolutional Layer
for Feature Extraction

2D Kernel Convolutional Process
(3 × 3 Mask, 16, Stride = 1, Padding = 1) X1 (100 × 100)

2nd Pooling Layer for Feature
Parameter Reducement

Maximum Pooling Process
(2 × 2 Mask, 16, Stride = 1, Padding = 1) x1 (50 × 50)

3rd Convolutional Layer for
Feature Extraction

2D Kernel Convolutional Process
(3 × 3 Mask, 16, Stride = 1, Padding = 1) X2 (50 × 50)

3rd Pooling Layer for Feature
Parameter Reducement

Maximum Pooling Process
(2 × 2 Mask, 16, Stride = 1, Padding = 1) x2 (25 × 25)

Flattening Layer Flattening Process x (1 × 625)

Classification Layer for
Breast Lesions Screening

Back-Propagation Neural Network:
1 Input Layer (625 Nodes), 1st Hidden
Layer (168 Nodes), 2nd Hidden Layer

(64 Nodes), and 1 Output Layer
(3 Nodes)

Input Feature Signal
(1 × 625)

Learning Algorithm:
Gradient Descent Method

(ADAM Algorithm) [52,53]

Figure 7. Flowchart for breast lesions screening and validation in clinical application with 2D spatial
and 1D convolutional neural network-based classifier.

3. Experimental Results and Discussion
3.1. Experimental Setup

This study would compare the proposed classifier with the traditional 2D CNN-
based classifier, including training time, accuracy, and classifier performances. As seen in
Table 2, we also established the two multilayer classifiers by using different numbers of
convolutional–pooling layers, different types of convolutional masks, and different sizes
of convolutional masks. We adopted a 2D spatial convolutional layer, two convolutional–
pooling layers, a flattening layer, and a classification layer [41,52]. Two 3× 3 fractional-order
masks were used to perform the 2D spatial convolutional processes for enhancing the edge
information of the possible breast lesions; the fractional-order parameter, v = 0.30–0.40, pro-
vided promising results for feature enhancement (v = 0.35 was selected in our study [52]).
The number of kernel convolutional masks and maximum pooling (MP) masks was set to
16 in 2nd and 3rd convolutional–pooling layers, respectively. The sizes of kernel convolu-
tional masks and maximum pooling masks were set at 3 × 3 and 2 × 2, respectively. Two
kernel convolutional–pooling processes were used to extract the desired object’s feature



Appl. Sci. 2022, 12, 7516 12 of 23

pattern and also reduced the dimensions of the feature patterns with a MP process for
obtaining abstract features. Each kernel mask moved the number of columns and rows in
steps of 1 (stride = 1) at each convolutional operation. The padding parameter was set to
1 to maintain the feature pattern (padding = 1). Each MP mask moved with a stride of 2
(stride = 2). The MP processes could overcome the overfitting problem for training a multi-
layer classifier. In the classification layer, for a back-propagation neural network (BPNN)
with 1 input layer (625 nodes), 1st hidden layer (168 nodes), 2nd hidden layer (64 nodes),
and 1 output layer (3 nodes), an adaptive moment estimation method (ADAM) or a back-
propagation algorithm was a gradient descent-based optimization algorithm [52,53] to
adjust the BPNN’s connecting weighted parameters which was used to determine the
optimal parameters to raise the classifier’s accuracy.

We selected the ADAM algorithm to train the traditional 2D CNN-based classifier.
In addition, we used a multi-core personal computer (PC) (Intel® Q370, Intel® Core™ i7
8700, DDR4 2400 MHz 8G*3)-based platform to implement two classifiers, as shown in
Table 1, and also used the graphics processing unit (GPU) (NVIDIA® GeForce® RTX™
2080 Ti, 1755 MHz, 11 GB GDDR6) to speed up the CPU execution time for digital image
processing and classification tasks. In the MIAS image database [22,23], we selected the im-
age size of 4320 pixels× 2600 pixels (600 dpi for the vertical and horizontal resolutions, a bit
depth of 24 bits) for breast lesions screening. According to the MIAS database’s biomarkers,
the categories and tumor locations could be identified. A total of 118 mammography
images (right and left breasts, 59 subjects: 35 normal subjects and 24 abnormal subjects),
including 70 normal subjects’ images and 48 abnormal subjects’ images, were obtained
to extract the feature patterns for the training dataset and testing dataset; the training
dataset was used to train the classifier for abnormality detection; and the testing dataset
was used to validate the classifier performance. This study used a K-fold cross-validation
(Kf = 10) to evaluate the classifier’s performances with the four indices, including precision
(%), recall (%), accuracy (%), and F1 score [39–41]. The feasibility study was validated as
described in detail in the subsequent sections.

3.2. Multilayer CNN-Based Classifiers’ Training and Validation

Randomly selecting 80 mammography images (20 normal subjects and 20 abnormal
subjects) from the MIAS image database, 40 tumor-free images and 40 tumor images were
selected to extract the feature patterns for training and testing two classifiers, as shown
in Table 2. All the breast lesions in the mammograms were labeled and agreed upon by
expert radiologists for biomarkers. We extracted the feature patterns from the enrolled
mammography images by using the 2D spatial convolutional process (integral image- and
fractional-order-based convolutional processes), two-round 1D or 2D kernel convolutional
processes, and a pooling process. For each mammography image (right or left hand side),
with a specific bounding box, feature patterns were obtained from the enrolled images; then
a total of 500 feature patterns were used to train and validate the multilayer CNN-based
classifier. The 200 feature patterns (100 Nors, 50 Bs, and 50 Ms) were randomly selected
to train the classifier, and another 150 feature patterns were also randomly selected to
validate the classifier’s performance. In the classification layer, our proposed classifier’s
structure was determined by K paired input–output training patterns (K = 200), with
200 comparative feature signals and 200 desired labeled patterns, including Class-Nor,
Class-B, and Class-M, which were used to establish a GRA-based fully connected network,
with 100 input nodes, 200 GRA nodes, 4 summation nodes, and 3 output nodes (for
three classes). As seen in Table 1, in the 2nd and 3rd convolutional layers, two-round
1D convolutional processes used the discrete Gaussian function (with stride = 1) with
200 data length of convolutional mask to extract and enhance the feature signals (as seen in
Table 2). In the downsampling layer, the dimension of the feature signal was reduced from
1 × 10,000 to 1 × 100 (with stride = 100). The dimension of 1 × 100 pooling feature signal
(as seen in Figure 6) was then fed into the inputs of the GRA-based fully connected network
to perform the classification task. The GRA-based classifier carried out a multilayer network
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with straightforward mathematical operations by using Equations (12) to (16) and dealt
with the incoming feature signals to perform the classification task. Its learning stage did
not require complex iterative computations, such as the forward-pass and back-propagation
algorithm, gradient descent-based algorithm, or swarm optimization algorithm [6,54–56],
to adjust the connecting weighted parameters between the input layer and output layer.

We also established a 2D fractional-order CNN-based classifier, consisting of a 2D
spatial fractional-order convolutional layer, two-round kernel convolutional–maximum
pooling layers, a flattening layer, and a fully connecting classification network, as seen in
the structure in Table 1. In the classification layer, the fully connecting network was
a back-propagation multilayer network, consisting of an input layer (with 625 input
nodes), two hidden layers (with 168 nodes and 64 nodes in the 1st and 2nd hidden layers,
respectively), and an output layer (with 3 output nodes). In the training stage, the gradient
descent-based ADAM algorithm was used to adjust the connecting weighted parameters
between the input layer and the output layer with the forward-pass and back-propagation
processes, which were used to minimize loss function by using iterative computations,
such as the binary cross-entropy function for multi-label classification [49,50]. In this study,
we implemented the 2D fractional-order CNN-based classifier by using the open-source
Tensorflow platform (Version 1.9.0) in the Python programming language [57,58]. For the
training dataset with 500 feature patterns (290 tumor-free patterns and 210 tumor patterns),
Figure 8a,b showed the training history curves for accuracy and loss value for 1000 training
epochs in the training stage, as a blue real-line for the training curve and an orange real-line
for the validation curve. It can be seen that the training history curve reached saturation
over the 400 training epochs in the training stage; thus, a classification accuracy of 97%
was obtained and was guaranteed to gradually reach the convergence condition. Finally,
the results of the training convergence curve converged, and the value of loss function was
0.091, as seen in the training convergence curve in Figure 8b.

Figure 8. Training history curves for 2D fractional-order CNN-based classifier. (a) Training history of
classifier’s accuracy for 1000 training epochs; (b) Training history of loss value for 1000 training epochs.

In the recalling stage, for the 500 feature patterns, the experimental results of the
classifier produced a visual confusion matrix for testing results, with the abnormal pattern
yields TP (true positive) = 203 and FP (false positive) = 7 and the normal pattern yields TN
(true negative) = 282 and FN (false negative) = 8 in Figure 9, which were used to compute
the four evaluation indices of the classifier, including precision (%) = 96.70%, recall (%)
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= 96.20%, accuracy (%) = 97.00%, and F1 score = 0.9640, respectively. Hence, the above
criteria were evaluated to quantify the classifiers’ performance.

Figure 9. Confusion matrix for classifier’s testing results and formulas for the evaluation criteria.

For small-scaled databases, the cross-validation method was used in ML and DL for
improving the model’s classification performances when we did not have enough datasets
to split the training, validation, and testing; through 10-fold (Kf = 10) cross-validation tests,
for each fold test, we randomly selected 200 feature patterns from datasets for training the
both classifiers, and another 200 feature patterns for validating the classifier’s performance.
The experimental results of the 2D fractional-order CNN-based classifier were shown in
Table 3, with an average precision of 95.90% (as the positive predictive value, PPV) and
an average recall of 96.10% for identifying the feature patterns for tumor cases (B and M)
and also accurately identifying the abnormality (TP), respectively; an average accuracy
of 96.00% for correctly identifying the tumor-free feature patterns and tumor feature
patterns; and an average F1 score of 0.9599 for evaluating the classifier’s performance for
accurately separating the normality from abnormality. For each fold test, the classifier’s
computations took an average of 330.0 s of CPU time to complete the tasks, including the
training and testing stages. For the same cross-validation tests with 1D feature signals,
as seen in Figure 10 (100 Nors, 50 Bs and 50 Ms), with the 2D spatial and 1D CNN-based
classifier, the experimental results were shown in Table 4, with an average precision of
96.70% and an average recall of 96.13% for accurately identifying the tumor cases (TPs);
an average accuracy of 96.40% for correctly identifying the normality and abnormality;
and an average F1 score of 0.9641 was also greater than 0.9000, the higher the better,
which indicated the classifier had a great potential prediction capability for quantifying
the classifier model. In addition, the recall (%) as the index of PPV was also greater than
80.00%, which indicated the classifier had a predictive performance for identifying the
abnormality (TP). Its pattern recognition scheme took an average of 0.6025 s of CPU time
to identify the possible breast lesions. Hence, we recommend the use of the 2D spatial
and 1D CNN-based classifier to automatically screen the presence of breast lesions on
mammographic images in clinical applications.
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Table 3. Experimental results for 2D fractional-order CNN-based classifier with the 10-fold cross-
validation test.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 97.00
(TP: 97, FP: 3)

96.04
(TP: 97, FN: 4) 96.50 0.9652

2 96.00
(TP: 96, FP: 4)

95.04
(TP: 96, FN: 5) 95.50 0.9552

3 95.00
(TP: 95, FP: 5)

96.94
(TP: 95, FN: 3) 96.00 0.9596

4 95.00
(TP: 95, FP: 5)

95.96
(TP: 95, FN: 4) 95.50 0.9548

5 95.00
(TP: 95, FP: 5)

95.00
(TP: 95, FN: 5) 95.00 0.9500

6 96.00
(TP: 96, FP: 4)

96.00
(TP: 96, FN: 4) 96.00 0.9600

7 96.00
(TP: 96, FP: 4)

96.00
(TP: 96, FN: 4) 96.00 0.9600

8 96.00
(TP: 96, FP: 4)

96.97
(TP: 96, FN: 3) 96.50 0.9648

9 96.00
(TP: 96, FP: 4)

96.00
(TP: 96, FN: 4) 96.00 0.9600

10 97.00
(TP: 97, FP: 3)

97.00
(TP: 97, FN: 3) 97.00 0.9700

Average 95.90 96.10 96.00 0.9599

Figure 10. Feature signals for tumor-free and tumor cases. (a) Tumor-free cases (100 Nors); (b) Tumor
cases (50 Bs and 50 Ms).

Table 4. Experimental results for 2D spatial and 1D CNN-based classifier with the 10-fold cross-
validation test.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

1 97.00
(TP: 97, FP: 3)

96.04
(TP: 96, FN: 4) 96.50 0.9652

2 95.00
(TP: 95, FP: 5)

95.00
(TP: 95, FN: 5) 95.00 0.9500

3 97.00
(TP: 97, FP: 3)

97.00
(TP: 97, FN: 3) 97.00 0.9700
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Table 4. Cont.

Test Fold Precision (%) Recall (%) Accuracy (%) F1 Score

4 97.00
(TP: 97, FP: 3)

95.10
(TP: 97, FN: 5) 96.00 0.9604

5 97.00
(TP: 97, FP: 3)

96.04
(TP: 97, FN: 4) 96.50 0.9652

6 96.00
(TP: 96, FP: 4)

97.96
(TP: 96, FN: 2) 97.00 0.9697

7 97.00
(TP: 97, FP: 3)

96.04
(TP: 96, FN: 4) 96.50 0.9652

8 97.00
(TP: 97, FP: 3)

95.10
(TP: 97, FN: 5) 96.00 0.9604

9 97.00
(TP: 97, FP: 3)

96.04
(TP: 96, FN: 4) 96.50 0.9652

10 97.00
(TP: 97, FP: 3)

97.00
(TP: 97, FN: 3) 97.00 0.9700

Average 96.70 96.13 96.40 0.9641

3.3. Discussion

We developed the 2D spatial and 1D CNN-based classifier with mammographic
image classification for screening the disease present in normality (Nor) or abnormality
(B and M classes). For the MIAS image database [22,23], with the 10-fold cross-validation
tests, as seen in Table 4, the experimental results indicated an average precision of 96.70%,
average recall of 96.13%, average accuracy of 96.40%, and average F1 score of 0.9641 to
quantify the classification performance for identifying the breast lesions. The performance
of the proposed classifier was superior to that of the traditional 2D CNN-based classifier in
design cycle, screening accuracy, parameters assignment (including convolutional masks
and BPNN’s network parameters), parameters adjustment, computational complexity level
(iteration computations), and computational time. The BPNN’s optimal parameters re-
quired determination by the ADAM algorithm in the training stage, and were updated by
adjusting the network parameter, decay parameter, learning rate, and attenuation rate to
minimize the error rate. Additionally, the classification methods, ML- and DL-based meth-
ods, were both used to carry out different classifier models for clinical/medical purposes,
including breast density estimation, mass detection/mass segmentation, mammogram clas-
sification/breast lesions screening, and automated breast cancer detection [24–29,37,38,59–61],
as seen in Table 5. ML was based on low-level image features, such as shapes, texture, and lo-
cal key-point features [24,25,27,59,61], and the supervised ML-based models, such as SVM,
ANN, and clustering methods [24,25,59], were used to establish various computer-aided
vision classifiers. With the MIAS database, SVM and ANN methods had accuracy rates of
94% and 97.08% for mammogram classification and mass detection, respectively [24,25].
Clustering methods, such as K-means, fuzzy C-means, and GA-based feature selection algo-
rithms [27,61], had accuracy rates of 91.18%, 94.12%, and 84.5% for mass segmentation and
mammogram classification, respectively. However, the SVM and ANN required the manual
labeled classes and the selected feature patterns to train the classifier, which also required
the ongoing human participation and expert intervention to feed new training datasets
and continuously model the purposed tasks. Hence, its model needed more datasets to
feed the classifier and to confirm the accurate classification or correct response through the
designers. In clinical application, over time, its model was able to handle the new dataset
to retrain the classifier, resulting in inefficiencies to keep the classifier’s performance, and it
was not easy to make classifier adjustments on real-time application. Clustering methods
(CM) [27,61] were unsupervised learning to help the classifier’s complex tasks to deal with
large, highly flexible, and unpredicated/unlabeled datasets. However, the CM had no
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critical standard to evaluate the value of its results or understand whether the classifier’s
findings were accurate or useful.

Table 5. Comparison of the cardiomegaly level screening methods.

Literature Image Database Method Clinical/Medical Purpose

[24]
MIAS Image Database [22,23]
(322 Mammographic Images,

161 Subjects)
SVM Mammogram Classification

Accuracy: 94%

[25]
MIAS Image Database [22,23]
(322 Mammographic Images,

161 Subjects)
ANN Mass Detection

Recognition Rate: 97.08%

[27]
MIAS Image Database [22,23]
(322 Mammographic Images,

161 Subjects)

Clustering Method:
K-Means and Fuzzy C-Means

Mass Segmentation
K-Means: 91.18%

Fuzzy C-Means: 94.12%

[59]

IRMA Database [21]
(11,000 X-ray images)
DDSM Database [19]

(2620 Enrolled Subjects)

SVM
Abnormality Detection

IRMA: Sensitivity: 99%; Specificity: 99%
DDSM: Sensitivity: 97%; Specificity: 96%

[60]
E-Da Hospital Image Database
(5733 Mammographic Images,

1490 Subjects)
DNN-based Classifier

BI-RADS Classification (8 Classes)
Sensitivity: 95.31%; Specificity: 99.15%;

Accuracy: 94.22%

[61] DDSM Database [19]
(500 Images)

GA (Genetic
Algorithm)-based

Feature Selection Algorithm

BI-RADS 2–5 Classification (4 Classes)
Accuracy: 84.5%; Positive Predictive Value:

84.4%; Negative Predictive Value: 94.8%;
Matthews Correlation Coefficient: 79.3%

[37] DDSM [19,62], INbreast [63],
and MIAS [22,23] Database TTCNN

Breast Cancer Diagnosis and Classification
(1) For DDSM: Sensitivity: 99.19%; Specificity:

98.96%; Accuracy: 99.08%
(2) For INbreast: Sensitivity: 97.68%; Specificity:

95.99%; Accuracy: 96.82%
(3) For MIAS: Sensitivity: 96.11%; Specificity:

97.03%; Accuracy: 96.57%

[38]

Collected by Department of
Breast and Endocrine Surgery
of Hallym University Sacred

Heart Hospital [38]
(1501 subjects,

2007–2015 years)

DenseNet-169,
EfficientNet-B5

Automated Breast Cancer Detection
(1) DenseNet-169: AUC = 0.952 ± 0.005;

Mean Sensitivity: 87.0%; Mean Specificity:
88.4%; Mean Accuracy: 88.1%

(2) EfficientNet-B5: AUC = 0.954 ± 0.020; Mean
Sensitivity: 88.3%; Mean Specificity:

87.9%; Mean Accuracy: 87.9%

[26]

Private Hospital Image
Database [26]

(Mediolateral Oblique View:
1208 Images; Craniocaudal

View: 1208 Images)

FCN Model

Breast Density Estimation
Pearson’s Rho Values: Mediolateral Oblique

View: 0.81; Craniocaudal View: 0.79
DDSM: Dice Similarity Coefficient: 0.915 ± 0.031

[28] DDSM Database [19]
(2620 Enrolled Subjects) Attention Dense—Unet Model

Mass Segmentation
Sensitivity: 77.89%; Specificity: 84.69%;

Accuracy: 78.38%

[29] CBIS-DDSM Database [20] Dense—Unet Model
Calcification Detection

Sensitivity: 91.22%; Specificity: 92.01%;
Accuracy: 91.47%; F1 Score: 0.9219

Proposed
Method

MIAS Image Database [22,23]
(322 Mammographic Images,

161 Subjects)

2D Spatial Fractional-Order
Convolutional Process +

Two-round 1D Convolutional
Processes + GRA-based Fully

Connected Network

Breast Lesions Screening
(Normal, B, and M Classes)

Precision: 96.70%; Recall: 96.13%;
Accuracy: 96.40%; F1 Score: 0.9641
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In contrast to the ML-based methods, the DL-based methods, such as TTCNN, Grad-
CAM CNN, DNN (deep neural network), FCN (fully convolutional network), attention
dense-Unet, and dense-Unet models [26–29,37,38,60], had more complex schemes to set
up the classifiers with minimal expert interventions, which used the large volumes of un-
structured datasets to train a classifier for classification or detection purposes. For example,
TTCNN [37] comprised two convolutional layers (with 5 × 5 kernel mask size, 16 and
32 kernel masks) and followed by the MP layers (with 2× 2 mask size, 16 and 32 MP masks),
the 3rd convolutional layer (with 3× 3 kernel mask size, 64 kernel masks), and the fully con-
nected layer (classification layer). With the DDSM [19,62], INbreast [63], and MIAS [22,23]
databases, the TTCNN had accuracy rates of 99.08%, 96.82%, and 96.57% for breast cancer
diagnosis and classification, respectively. The Grad-CAM-based CNN, including DenseNet-
169 and EfficientNet-B5 [38], could detect malignant lesions in both craniocaudal and
mediolateral oblique view images, which highlighted ROI with the red color-coded areas
to indicate the positive region for identified suspicious lesions. This visualization manner
could locate and identify the abnormalities from mammograms in case of mass or calcifica-
tion. DenseNet-169 and EfficientNet-B5 had mean accuracy rates of 88.1% and 87.9% for
automated breast cancer detection, respectively. Thus, these multiconvolutional–pooling
layers were used to select the 2D features for improved image contrast (contrast adjustment),
which limited the size of output patterns, and refined the classifier’s recognition ability.
However, the model’s purpose and performance were required to continuously maintain
the available training dataset, and the excessive multiconvolutional–pooling processes
would decrease the position, orientation, and spatial relationships of the desired object.

ML-based methods could be rapidly established but might be limited in their results
for their applications; and DL-based methods required more time to set up the model but
could rapidly produce results and had promising classification accuracy with the multicon-
volutional processes. In addition, their models required the resource of GPU hardware to
perform the multiconvolutional–pooling processes and the classifier’s training tasks.

Therefore, we integrated the 2D spatial and 1D CNN-based classifier to simplify the
2D multiconvolutional processes and computational complexity levels. In the classifica-
tion layer, the GRA-based classifier had straightforward mathematic operations, without
optimization/fine-tuning algorithms and iteration computations, to perform the training
and pattern recognition tasks. Some advantages of the proposed classifier are shown below:

• The possible breast lesions’ spatial and edge information could be enhanced by the
II-based spatial convolutional process in the first convolutional layer, which helped to
easily locate ROI and extract feature patterns from the original mammographic image;

• The suitable two-round 1D convolutional processes could quantify the different levels,
which helped to preliminary separate the Nor from the B and M classes;

• The dimension of feature signals could be reduced by the 1D pooling process, which
helped to overcome the classifier’s overfitting problems in the training stage;

• The straightforward mathematic operations performed the training and pattern recog-
nition tasks;

• The optimal parameters that were updated in the training stage did not require
convergence condition assignment and parameters adjustment;

• The determination network parameters did not require complex iteration computa-
tions and optimization algorithms.

• The classification accuracy could be obtained in less computation time and was feasible
to replace manual screening with specific expertise and experience.

4. Conclusions

Routine imaging examinations, such as mammographic image and breast ultrasound
imaging, can be used to early detect breast lesions for increased survival rates and then
can help save lives. Mammography and breast ultrasound are both first-line manners
for performing clinical examinations. However, breast ultrasound imaging has a poor
screening capacity for small calcifications detection (as the earliest signs of breast cancer)
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and is required to combine with diagnostic mammography to evaluate the suspected breast
lesions and changes in breast tissues. A breast ultrasound is an assistive tool for screening
breast cancer and offers a visual guide for performing a biopsy. For a follow-up screening,
with low-dose X-rays to view the breast tissue, where an abnormal screening mammogram
is obtained, the clinicians or radiologists can capture more images to inspect suspicious
lesions, such as calcifications or small tumors, as the earliest signs of breast cancer. Hence,
based on mammographic image classification, the proposed 2D spatial and 1D CNN-based
classifier could be directly used to screen breast lesions in clinical applications. In contrast
to the ML- and DL-based methods [24–29,37,38,59–61], the proposed multilayer classifier
had some advantages: (1) spatial convolutional process for enhancing the breast lesions’
features; (2) two-round 1D convolutional processes for identifying the differences between
normal and B/M classes; and (3) straightforward mathematic operations for performing the
training and screening tasks. Through 10-fold cross-validation tests, we obtained promising
results for screening breast lesions, with a high classifier mean F1 score (0.9641), precision
(96.70%), and recall (96.13%) for separating the Nor from the B and M classes.

However, with the mammographic images, women had background tissue type
(especially in Asians), such as higher breast density, which might affect the classification
accuracy in mammographic images [38]. As lesions might be shadowed by dense tissues,
such as dense breast or intermediate mixed-type breast density, AI-based methods might
not identifyaccurately at the early stage, thus increasing patients’ risk of developing breast
cancer. The proposed screening model has overcome limitations, such as parameters
assignment, parameters adjustment, iteration computation, and optimization algorithm
requirements. Its training scheme has an adaptive capability to retrain the classifier with
new image datasets in less computation time, such as clinical images, the DDSM database,
or the INbreast database. Hence, new/special mammographic images were continuously
considered for addition to the training datasets, which could rapidly retrain the classifier
and maintain its intended medical purpose. Its pattern recognition scheme could be
carried out as a computer-aided decision-making tool or a software in a medical device
(SaMD) tool [64,65]. Therefore, we suggest the proposed automatic screening model
could replace the traditional CNN methods for specific tasks requiring expertise and
experience in medical image examinations, such as diagnostic mammogram, CT, and MRI,
which will help to reduce the burden and to focus on follow-up decision making and
medical strategies.
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Abbreviations
CNN Convolutional Neural Network
2D Two-Dimensional
1D One-Dimensional
ROI Region of Interest
Nor Normal
B Benign
M Malignant
GRA Gray Relational Analysis
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
MRI Magnetic Resonance Imaging
CT Computed Tomography
BI-RADS Breast Imaging-Reporting and Data System
DDSM Digital Database of Screening Mammography
MIAS Mammographic Image Analysis Society
SVM Support Vector Machine
ANN Artificial Neural Network
FCN Fully Convolutional Network
R-CNN Region-based CNN
TTCNN Transferable Texture Convolutional Neural Network
Grad-CAM Gradient-Weighted Class Activation Mapping
GAP Global Average Pooling
DNN Deep Neural Network
CM Clustering Method
II Integral Image
SAT Summed Area Table
MP Maximum Pooling
BPNN Back-Propagation Neural Network
ADAM Adaptive Moment Estimation Method
GPU Graphics Processing Unit
TP True Positive
FP False Positive
TN True Negative
FN False Negative
PPV Positive Predictive Value
SaMD Software in a Medical Device
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