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ABSTRACT Breast cancer is known to be common in many developed countries. It is reported as the most 

common type of cancer in the US, affecting one in eight women. In Korea, thyroid cancer is the most common 

type of cancer, followed by breast cancer in women. Considering this, early detection and accurate diagnosis 

of breast cancer are crucial for reducing the associated death rate. Recently, cancer diagnosis systems using 

medical images have attracted significant attention. Medical imaging methods, such as computed tomography 

and magnetic resonance imaging, can reveal the overall shape, heterogeneity, and growth speed of carcinoma 

and are, thus, more commonly employed for diagnoses. Medical imaging has gained popularity since a recent 

study identified that it could reflect the gene phenotype of a patient. However, an aided diagnosis system 

based on medical images requires high-specification equipment to analyze high-resolution data. Therefore, 

this paper proposes an edge extraction algorithm and a modified convolutional recurrent neural network 

(CRNN) model to accurately assess breast cancer based on medical imaging. The proposed algorithm extracts 

line-segment information from a breast mass image. The extracted line segments were classified into 16 types. 

Each type was uniquely labeled and compressed. The image compressed in this process was used as the input 

for the modified CRNN model. Traditional deep learning models were used to evaluate the performance of 

the proposed algorithm. The results show that the proposed model had the highest accuracy and lowest loss 

(99.75% and 0.0257, respectively). 

INDEX TERMS Computer Aided Diagnosis System, Line Feature Analysis, CRNN, Breast Cancer, Deep 

Learning 

I. INTRODUCTION 

Cancer is one of the most dangerous diseases affecting 

humankind. It indicates a condition of the body in which the 

proliferation and inhibition control of cells, the smallest unit 

of the human body, works abnormally, destroying normal 

tissues. A lump of cell tissues with this characteristic is called 

a tumor. Cancer is classified into various types based on the 

location of the tumor, such as pancreatic cancer, renal cancer, 

and liver cancer. The danger signals of each of these are varied. 

The number of cancer cases has increased from 207,980 in 

2010 to 229,180 in 2016, and the death rate has exhibited an 

increasing trend [1], [2]. Among various types of cancers, 

breast cancer is known to occur in numerous developed 

countries. Breast cancer is common in the United States with 

one in eight women having the disease. In Korea, breast cancer 

is the second most common cancer affecting women, with 

thyroid cancer being the most common [3]. This study focuses 

on breast cancer among many different types of cancers. 

Globally, approximately 627,000 women die of breast cancer, 

accounting for approximately 15% of all cancer deaths [4], [5]. 

At puberty, the main structure of a woman’s breast is 
developed. In adulthood, environmental pollution and 

incorrect dietary habits increase the probability of breast 

cancer incidence. Thus, the number of breast cancer cases is 

expected to increase to approximately 19,300,000 by 2025 [6], 

[7]. It is reported that when breast cancer is diagnosed early, 

its prognosis is good, and the survival rate increases 

significantly [8]. In recent years, computer-aided diagnosis 

(CAD) systems have been actively researched to enable fast 
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diagnosis and feature detection [9]-[10][11][12]. Machine 

learning-based methods have been proposed to expedite 

diagnosis and reduce the probability of misdiagnosis by 

medical doctors. 

Schutze et al. [13] found that perfect decision-making 

through artificial intelligence is difficult, but it effectively 

helps make decisions in daily human work. Mayro et al. [14] 

performed disease detection by maximizing information, such 

as in digital fundus images and ocular coherence tomography, 

using multilayer neural networks modeling the mammalian 

visual cortex based on a convolutional neural network (CNN). 

Ferrari et al. [15] identified complete response (CR) and 

nonresponders (NR) using high-resolution magnetic 

resonance (MR) images. After removing the unnecessary 

regions from the MR images using histograms and identifying 

the muscle region of interest (ROI), they classified patients 

with locally advanced rectal cancer (LARC) based on the 

receiver operating characteristic (ROC). Park et al. [16] 

presented a method of utilizing CNN-based organ-attention 

networks and statistical fusion technology for abdominal 

computed tomography (CT) images. Owing to the high 

resolution required for medical images they focus on the 

specific ROI, and performance is maximized by removing 

unnecessary areas. As the CNN-based image classification 

model is used, direction, contour, and spatial information are 

collected through a convolution operation in the ROI region 

and then used for prediction and diagnosis. 

We propose an algorithm devised in this process. We also 

remove as many unnecessary areas of prediction and diagnosis 

as possible and reduce the dimension of the input. This process 

reduces the computation of the model and fixes its input 

dimension. In this process, we classify points, lines, and planes, 

which are the basic elements that make up an image, into types, 

and then count and reduce them. This was devised from the 

CNN model, an image classification neural model, in which 

the convolution layer extracts contours, directions, and spatial 

information about the input through parallel arithmetic of 

various kernels with the input images. When reducing the 

input dimension, we reduce the convolution layer used in the 

neural model using points, lines, and planes that constitute the 

image further to simplify this process. This reduces the 

number of parameters used in the neural model. The 160 × 160 

input data used in this study were pre-processed and reduced 

to a size of 16 × 32. Thus, the data used are reduced to 

approximately one-fifth of their size. A preprocessing 

algorithm and a learning model are proposed to prevent the 

reduced data from negatively influencing the classification 

accuracy. This model can show accuracy similar to or higher 

than that of existing neural models even at lower specifications, 

and reduce the computational cost by reducing the amount of 

computation of the neural models. 

The remainder of this paper is organized as follows. Chapter 

2 presents relevant work on breast cancer diagnosis. Chapter 

3 introduces the extended line-segment feature analysis (eLFA) 

algorithm for pre-processing ultrasonic breast images and 

presents the convolutional recurrent neural network (CRNN)-

based deep learning model for breast cancer diagnosis. 

Chapter 4 presents a comparison of the performance of the 

proposed algorithm and the representative image classification 

algorithms based on deep learning. Finally, chapter 5 

concludes this study. 

II. RELATED RESEARCH 

A. A REVIEW OF EXISTING TECHNIQUES 

Machine learning and deep learning technologies are gaining 

popularity in cancer diagnosis research. Typical machine 

learning techniques include k-nearest neighbor (kNN), 

decision tree, artificial neural network (ANN), support 

vector machine (SVM), discriminant analysis, and logistic 

regression analysis [17]-[18][19][20]. The kNN technique 

classifies the new data through majority voting from the top 

k data that are most similar. It is highly accurate but incurs a 

high computation cost. The decision tree technique classifies 

data based on certain decision rules. It is easy to understand 

but yields different outcomes depending on the variable 

selected for branch splitting. The ANN technique classifies 

data to simulate the decision-making process of the human 

brain. Overfitting and local optimization are some of the 

limitations of this technique. The SVM classifies new data 

by predicting the hyperplane that maximizes the margin by 

learning the data. Compared to ANN, SVM exhibits lower 

overfitting and greater prediction accuracy. However, the 

results cannot be explained easily. The discriminant analysis 

determines a group of objects using the discriminant function. 

It is an effective technique that assumes that independent 

variables follow a multivariate normal distribution. Logistic 

regression analysis is applied when the dependent variable is 

categorical. It is utilized as an alternative to discriminant 

analysis and requires a specific assumption. No machine 

learning technique delivers excellent performance in every 

situation.  

An ANN-based deep neural network delivers excellent 

performance in diverse fields [21]. Deep learning repeatedly 

executes the nonlinear conversion of input data to extract 

simple as well as structurally complicated features [22]-

[23][24]. It has been proven in diverse fields that the analysis 

is significantly improved when these extracted features are 

used as inputs in a machine learning model. Particularly, the 

technique has actively been researched to diagnose and 

classify cancer to directly learn the main features of images 

from several ultrasonic images without additional 

information from experts, maximizing identification with 

minimal expert judgment. Among deep learning techniques, 

image classification and detection based on CNNs have often 

been applied in medical diagnosis [25], [26]. 

The CNN extracts features from input images and assigns 

weights to multiple hidden layers using convolution features. 

As shown in Fig. 1, a traditional CNN repeatedly applies 

convolutions and feature sampling to draw the final result 
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values [27], [28]. Various forms of traditional CNNs, such 

as AlexNet [29] and ZFNet [30], have been developed with 

a varied number of convolution layers and kernel sizes based 

on the number of channels. Structural performance 

improvement from an objective and accurate analysis of 

complicated medical images yields better results. However, 

this method has certain limitations. While image analysis 

using CNN-based deep learning is a model-based fast-

learning and high-accuracy technique, it requires a large 

amount of labeled data for classification [31]. Additionally, 

it is difficult to maintain spatial and structural consistency in 

image segmentation results. This technical disadvantage 

results in an unclear image edge and the segmentation of 

unknown small regions. 
 

 

Figure 1. Traditional CNN Structure 

 

The recurrent neural network (RNN) has been used to 

solve these technical problems. Unlike the CNN, in which 

the features extracted in each layer are used independently, 

the RNN shares these features through their connected layers 

such that the final output is influenced by the output of the 

previous layers. In the RNN, the layers serve as a type of 

memory [32], [33]. There is no significant difference in 

performance between the outcomes of the RNN and CNN-

based deep learning [34]. However, RNN-based deep 

learning exhibits the largest difference compared to the 

traditional technique in terms of the extraction of the optic 

cup or proximal pulmonary veins [34]. 

This study pre-processes data to overcome the structural 

weakness of the CNN, which extracts edge and direction 

information through convolution and classifies the data in an 

ANN structure. The line segments of the input images are set 

in advance to reduce their influence on the number of 

convolution layers and the kernel size of the process. The 

proposed algorithm extracts line segment information from 

the images through edge detection and classifies them 

according to their types. Finally, it calculates the cumulative 

aggregate for each type of line segment to highly concentrate 

the images; i.e., the line segment information, drawn from 

the convolution layers, is set in advance and is used as the 

input. Thus, the number of convolution layers is reduced and 

setting the kernel size in the structure becomes meaningless. 

This study modifies a traditional CRNN model to 

accommodate such data learning. 

B. COMPUTER-AIDED DIAGNOSIS (CAD) SYSTEMS 
BASED ON ARTIFICIAL INTELLIGENCE 

Breast cancer is initially diagnosed through mammography. 

Breast ultrasound is performed when abnormal signs are 

found on the mammogram. Breast ultrasound imaging is 

used as a powerful source of data for breast cancer diagnosis 

as it can identify lesions that were not identified by 

mammography. Additionally, ultrasound images of the 

breast can effectively distinguish malignant tumors from 

benign tumors [35]. However, while ultrasound images 

generally show high-resolution images, the performance of 

the diagnosis may be reduced due to speckle noise and 

artifacts generated in the images. Based on these images, the 

ROI is identified, and feature extraction and classification 

are performed to identify whether the tissue is benign or 

malignant. This method is used as the isolation of the ROI 

removes the noise in the image to a great extent, and the 

amount of computation is reduced as unnecessary areas are 

removed. Diagnosis methods for identifying breast tumor 

characteristics based on AI can be categorized as the method 

using machine learning such as SVM and kNN, and the 

method using a CNN-based model. A mixed diagnostic 

method is also proposed. Yang et al. [36] divided the breast 

ultrasound image into several pieces, extracted the gray level 

co-occurrence matrix (GLCM) texture features as a ranklet 

image, and transmitted it to a SVM, showing an area under 

curve (AUC) of 0.918. Ding et al. [37] selected a breast 

tumor, extracted the shape of the lesion by applying a 

roughly segmented ROI and classified it using SVM. Ding et 

al. [38] proposed a locally weighted citation-kNN that 

assigns different weights to different distance vectors 

according to the musk benchmark dataset and the breast 

ultrasound image, and showed an AUC of 0.967. Tanaka et 

al. [39] selected a lesion, cut one image into three patches, 

and transferred them to AlexNet and VGG16 models. They 

classified the type of tumor based on the mean of the data 

calculated from each model. Their study showed an AUC of 

0.909. Zhou et al. [40] used a 6-layer CNN model to classify 

malignant and benign lesions after lesion selection and 

shear-wave elastography (SWE) conversion through ROI in 

the breast ultrasound images and showed an AUC of 0.958. 

As shown above, studies have determined whether the tissue 

considered is malignant or benign based on the shape of the 

breast tumor. They do so based on the features of the tumors, 

as benign tumors have an almost smooth oval shape, and 

malignant tumors have an irregular surface due to necrosis 

and destruction of other tissues. The proposed algorithm also 

converts the shape of the tumor, identified using these 

features into line segment information, such as curves and 

straight lines, reducing the information on the original image 

data to use as input data for the model. As the input data has 

line segment information, a benign tumor, composed of an 

ellipse, will have a high aggregate value of the curve type, 

and a malignant will have a high aggregate value of a linear 

type, such as vertical, horizontal, and others. The generated 

data are used as inputs for the modified CRNN model to 

classify the tumor characteristics. 
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III. eLFA-CRNN MODEL TO CLASSIFY A BREAST MASS 

The proposed eLFA-CRNN model analyzes the line 

segments of the mass in the ultrasonic breast image to assess 

whether the breast mass is benign or malignant. Thus, it is 

called line feature analysis (LFA). The initial LFA considers 

the positive range of all the line segments [41]. The eLFA 

widens its expression, considering a negative range as well. 

The letter “e” in eLFA indicates the extension of the initial 
version of the LFA. The proposed eLFA algorithm executes 

the edge detection algorithm on the input image to identify 

the types of lines that make up the object. The data calculated 

using the edge detection algorithm are binary, and the line 

types identified are divided into 16 types through 

convolution with predefined filters. The classified line-type 

data are generated as learning data in a 16 × 32 feature map 

(called an eLFA map). The eLFA-CRNN model is designed 

and applied for the classification of breast cancer to learn the 

eLFA map. The following sections show the detailed 

processing of the eLFA algorithm. 

A. THE EDGE DETECTION PROCESS OF eLFA-CRNN 
FOR THE EXTRACTION OF LINE SEGMENT 
INFORMATION 

This section introduces the edge detection algorithm that 

converts an ultrasound breast image into line-segment 

information. Fig. 2 presents the breast image obtained by 

ultrasonography. 

 

(a) 

  

(b) 

  
Figure 2. Mass of ultrasonic breast image and its edge. (a) Malignant 
image; (b) Benign image. 

 

Fig. 2 illustrates a part of the real ultrasonic breast image 

presented by Mendeley [42]. Fig. 2(a) shows a malignant 

mass, and 2(b) shows a benign mass. The edge detection 

results for malignant and benign lumps are presented on the 

right side of Fig. 2. As shown, the noise from the ultrasonic 

breast image is removed using edge detection. Fig.3 shows 

the flow of the edge detection algorithm used in the process. 

The algorithm detects an edge in six steps. All the areas of 

the ultrasonic breast image are scanned through three filters, 

which sets the areas as presented in (1). 

 𝐏o = [x(𝑖 + 𝑟, 𝑗 + 𝑠); (𝑟, 𝑠) ∈ 𝐴], (𝑖, 𝑗) ∈ ℤ2
 𝐏h = [x(𝑖 + 1 + 𝑟, 𝑗 + 𝑠); (𝑟, 𝑠) ∈ 𝐴], (𝑖 + 1, 𝑗) ∈ ℤ2

 𝐏v = [x(𝑖 + 𝑟, 𝑗 + 1 + 𝑠); (𝑟, 𝑠) ∈ 𝐴], (𝑖, 𝑗 + 1) ∈ ℤ2 (1) 

 
Figure 3. Edge detection process through ultrasonic breast image 

 

Window 𝐴 is a two-dimensional array and is set to one. 𝐴 

scans an area, one pixel in width and length, and moves 

based on 𝐏o. In Equation (1), the size of 𝐴 is set to 3 × 3, 𝑖 
and 𝑗 are the values from the image size, and, 𝑟 and 𝑠 are the 

values for the size of window 𝐴. Fig. 3(a) shows the process 

of calculating the median values for 𝐏o , 𝐏h , and 𝐏v , 

separated given by (1), and 3(b) crosses each median value 

calculated using 3(a) to calculate the difference. 

 𝐃𝑛oh = |𝑚𝑒𝑑𝐌𝑛o 𝐏𝑛o(𝑖, 𝑗) − 𝑚𝑒𝑑𝐌𝑛h 𝐏𝑛h(𝑖, 𝑗)| , 𝐃𝑛ov = |𝑚𝑒𝑑𝐌𝑛o 𝐏𝑛o(𝑖, 𝑗) − 𝑚𝑒𝑑𝐌𝑛v 𝐏𝑛v(𝑖, 𝑗)| ; (𝑖, 𝑗) ∈ ℤ2, 𝑛 ∈ ℤ 
(2) 

 

In Equation (2), 𝑚𝑒𝑑 is the median. Equation (2) defines 

a two-dimensional median filter with a filter window 𝐌𝑛o, 𝐌𝑛h, 𝐌𝑛v  on a picture {𝐏𝑛o(𝑖, 𝑗), (𝑖, 𝑗) ∈ ℤ2} , {𝐏𝑛h(𝑖, 𝑗), (𝑖, 𝑗) ∈ ℤ2} , {𝐏𝑛v(𝑖, 𝑗), (𝑖, 𝑗) ∈ ℤ2} . 𝑛  is defined as 𝑛 ∈ ℤ . Equation (2) 

calculates the difference between pixel values by calculating 

the median value for 𝐏o , 𝐏h , and 𝐏v  and executing the 

subtraction operation by crossing the calculated median 

value with, 𝐏o , 𝐏h  and 𝐏o , 𝐏v  (its absolute value). 𝐃oh  and 𝐃ov are the values calculated through this process. Equation 

(2) calculates the median values of the separated pixels and 

finds the difference based on 𝐏o . Fig. 3(c) shows the 

calculation of the mean value of 𝐃oh and 𝐃ov. The calculated 

values are used in Figs. 3(d) and 3(e). In Fig. 3(d), the 

difference values and their means are calculated and 

recorded. Fig. 3(e) shows a feature map in which the 

difference values calculated in Fig. 3(c) are set as the status 

values. 

Fig. 4 presents the feature map in which the mean value 

((𝐃oh + 𝐃ov)/2), calculated in Fig. 3(c), is set as a status 

value at the edge. As shown in Fig. 4(b), the intermediate 

features, drawn through the three filters, are found to present 

the overall edge of the image. Based on the feature map, a 

detailed edge is detected using the mean of the difference 

values calculated in Fig. 3(d). The mean was used as a 

threshold value. Fig. 4(b) shows the detailed edge 

information calculated, and Fig. 4(c) presents the result of 

the edge detection algorithm. The LFA-based data 

compression was executed using edge data. Unlike a general 

edge detection algorithm, the proposed algorithm calculates 

and immediately reflects the threshold value, which is 
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required in the detection process, so that it does not need to 

be set separately. While a general edge detection algorithm 

uses a predefined filter, the proposed algorithm utilizes the 

information drawn by scanning an input image as a filter; that 

is, the edge detection algorithm uses the scanned area of an 

input image as a filter. It can detect an edge using the 

threshold value calculated in the process without having to 

set the threshold value separately. 

 

 

(a) 

 

(b) 

 

(c) (d) 
Figure 4. Feature map generated in edge detection process. (a) Input 

image; (b) Feature map consisting of mean values ((𝐃oh + 𝐃ov)/2); (c) 
Result data; (d) Image divided into 16 pieces. 

B. eLFA MAP GENERATION THROUGH THE EDGE 
INFORMATION BASED LINE SEGMENT 
CLASSIFICATION 

In this paper, an edge of the ultrasonic breast image was 

detected using the process described in section 3A. A series 

of patterns were applied to the detected edge information to 

classify the line segments into 16 types. Fig. 5 presents the 

pattern-application process. 

 

 
Figure 5. eLFA map generation process. (a) Map generation step; (b) 
The step for learning the generated map. 

 

As shown in Fig. 5(a), three steps are required to generate 

an eLFA map. Step 1 is to divide the edge image extracted 

by the process in section 3A into 16 pieces. The second step 

is to apply the convolution to each divided piece using a filter. 

The final step is to analyze the parameters of the feature map 

extracted from the filter, collect the same parameters, and 

create the final feature map. The feature map drawn in the 

process is called the eLFA map. It is used as an input in the 

learning step shown in Fig. 5(b). The traditional CRNN 

model was modified to enable learning of the eLFA map. 

 Step 1. Divide an edge image: In this step, the edge 

image was divided into 16 pieces to present a 2D view of the 

eLFA map when it was generated. The 16 pieces were 

converted into one-dimensional arrays, each of which was 

stacked one layer over the other. Finally, a 2D array was 

generated. 

Equation (3) represents the methodology of dividing an 

edge image into 16 pieces. In (3), 𝐄 is the edge image, 𝐷 is 

the size of the divided area, set to 40 in this paper. 𝐀𝑛,𝑚 is a 

divided image, and 𝑀 , and 𝑁  are coordinate values that 

range from 0 to 3 in this study. In this process, after an edge 

image is divided, a parallel calculation can be executed in the 

next steps. Finally, the divided pieces are converted into one-

dimensional arrays, each of which is stacked one layer over 

the other. Additionally, the size of the 16 pieces was reduced 

by max-pooling to lower operations, i.e., when an input 

image has a size of 160 × 160, it has sixteen 40 × 40 pieces 

after it is divided. Using the max-pooling function, the image 

is finally expressed as sixteen 20 × 20 pieces. 

 Step 2. Apply pattern rule to divided image: The edge 

data processed in the previous step are divided into 16 pieces. 

In this step, the 16 data points are scanned using the filter 𝐅 

and then convolved. Through the operation, the visual data 

(line segment image) are converted into integer data.  

 

𝐀𝑛,𝑚 = [ a0,0 a0,1a1,0 a1,1 ⋯ a0,19a1,19⋮ ⋱ ⋮a19,0 a1,19 ⋯ a19,19], 𝐅 = [1 24 8] 
𝐎𝑛,𝑚 = 𝐀𝑛,𝑚⨂𝐅; (0 ≤ 𝑛 ≤ 𝑁 and 0 ≤ 𝑚 ≤ 𝑀) 

(4) 

 

Equation (4) illustrates the process of applying filter 𝐅 to 

all the divided pieces of the image and executing the 

convolution (⨂). In (4), 𝐀𝑛,𝑚 indicates one of the pieces of 

the image, and 𝑛, 𝑚 is the index of divided pieces. The filter 

 

𝐄 = [ a0,0 a0,1a1,0 a1,1 ⋯ a0,158 a0,159a1,158 a1,159⋮ ⋱ ⋮a159,0 a159,1 ⋯ a159,158 a159,159] = [  
 𝐀1,1 𝐀1,2𝐀2,1 𝐀2,2 𝐀1,3 𝐀1,4𝐀2,3 𝐀2,4𝐀3,1 𝐀3,2𝐀4,1 𝐀4,2 𝐀3,3 𝐀3,4𝐀4,3 𝐀4,4]  

 
 

where, 𝐀𝑛,𝑚 = [ a0+𝐷∗𝑛,0+𝐷∗𝑚 a0+𝐷∗𝑛,1+𝐷∗𝑚a1+𝐷∗𝑛,0+𝐷∗𝑚 a1+𝐷∗𝑛,1+𝐷∗𝑚 ⋯ a0+𝐷∗𝑛,38+𝐷∗𝑚 a0+𝐷∗𝑛,39+𝐷∗𝑚a1+𝐷∗𝑛,38+𝐷∗𝑚 a1+𝐷∗𝑛,39+𝐷∗𝑚⋮ ⋱ ⋮a39+𝐷∗𝑛,0+𝐷∗𝑚 a39+𝐷∗𝑛,1+𝑚∗𝐷 ⋯ a39+𝐷∗𝑛,38+𝐷∗𝑚 a39+𝐷∗𝑛,39+𝐷∗𝑚] ;
𝑤ℎ𝑖𝑙𝑒(0 ≤ 𝑛 ≤ 𝑁 𝑎𝑛𝑑 0 ≤ 𝑚 ≤ 𝑀)  

(3) 
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𝐅 has 1, 2, 4, and 8 parameters. 𝐎𝑛,𝑚 represents the feature 

map drawn by the ⨂ of the input and the filter and has 16 

data points. 𝐀  is binarized (0: background area, 1: line 

segment area) by the edge detection algorithm. When the 

binary data and filter 𝐅 are convolved, the result is the same 

as when a binary number is converted into a decimal number 

in engineering. During the conversion, visual data can be 

expressed in a decimal form. For example, if 𝐀  has the 

parameters [[1, 0], [1, 1]], the internal parameters of 𝐀 are 

changed into [[1, 0], [4, 8]] using 𝐅, and the changed results 

are added to generate “13.” If this process is applied, the 
calculated value depends on the state of the internal 

parameters. The calculated values are equal only in the same 

state. The line segments are classified using the process 

illustrated in Table 1, according to the states of the internal 

parameters of 𝐀 . “Summing Data” indicates the value 

calculated through the convolution of each state and the filter 𝐅. 

 

Algorithm 1: Compress Data through Pattern 

Input: [x1, x2, …, xn] 

def Compress Data through Pattern 

Y=array(16, 32){0, } 

for xi in [x1, x2, …, xn] do 

for w from 0 to W do 

for h from 0 to H do 

Y[xi[w, h]+16]+=1 //  

Output: Y 

 

 Step 3. Compress data through pattern: In the edge, 

images scanned with an area of 2 × 2, the dots and lines 

(vertical, horizontal, curved, and diagonal) were changed 

into a pattern of numbers based on steps 1 and 2. Using the 

changed values, the number of equal patterns was counted, 

i.e., based on the feature map drawn through convolution, the 

number of line segments was counted according to their 

types (the same number). In this case, the negative sign (-) is 

used to widen the expression of the data. The sum of the 

scanned parameters is classified into even and odd numbers. 

Here, the odd number is multiplied by -1. The cumulative 

aggregate for 1, 2, 4, 7, 11, 13, or 14 becomes a negative 

value. The data drawn in the process have16 one-

dimensional arrays with 32 elements because the image is 

divided into 16 pieces, each of which is converted into a 1D 

array. The 16 × 32 2D array is expressed in Algorithm 1 by 

stacking up the 16 arrays one layer over the other. The 

generated 16 × 32 2D array is the eLFA map used as an input 

for the learning model. 

C. CRNN MODEL DESIGN FOR LEARNING eLFA MAP 

The eLFA map drawn from one ultrasonic breast image was 

used as an input for the eLFA-CRNN model. The model, 

designed to learn an eLFA map, comprises 8 layers, 

including the input and output layers, as shown in Table 2. 

 
TABLE II 

STRUCTURE OF ELFA-CRNN. 

Layer No. Layer Name 

1 Input Layer (16×32) 

2 Convolution (64, 16×32, std=(1, 32), pad=”same”, act=”relu”) 
3 BatchNormalization 

4 Reshape (2, 512) 

5 Bidirectional-GRU (64) 

6 Bidirectional- GRU (32) 

7 Dropout (0.2) 

8 Output Layer (act=”sigmoid”) 
 

The traditional CRNN consists of seven convolution 

layers. As input data are used sequentially in each layer, the 

filters of the layers gradually strengthen the weak wedge and 

direction information and deliver it to the RNN structure. By 

contrast, the proposed eLFA-CRNN model pre-processes the 

edge information using the eLFA algorithm, such that it is 

meaningless to use multiple convolution layers. A highly 

concentrated eLFA map can negatively influence the 

classification as it is too small. 

Thus, this study attempted to express an eLFA map in 

diverse ways through one convolution layer that extracts 

edge and direction information by controlling the filter 

parameters. By equating the size of a filter to that of the 

eLFA map, an output, similar to that of the eLFA map, can 

be obtained. In this study, a convolution layer was used to 

convert the form of expression, rather than extract edge and 

direction information. Thus, layer-2 had the same filter size 

as the input data, as shown in Table 2, and 64 different forms 

of expression were generated. The feature map drawn in 

layer-2 prevents overfitting through layers 3 and 7. The 

TABLE I 

TYPE AND SUM OF LINES ACCORDING TO SCAN AREA 

Line Type Filter Response Coefficient Summing Data Line Type Filter Response Coefficient Summing Data 

Non-Activity [[0,0],[0,0]] 0 Point [[0,0],[0,1]] 8 

Point [[1,0],[0,0]] 1 Verticality [[1,0],[0,1]] 9 

Point [[0,1],[0,0]] 2 Diagonal [[0,1],[0,1]] 10 

Horizontality [[1,1],[0,0]] 3 Curve [[1,1],[0,1]] 11 

Point [[0,0],[1,0]] 4 Horizontality [[0,0],[1,1]] 12 

Diagonal [[1,0],[1,0]] 5 Curve [[1,0],[1,1]] 13 

Verticality [[0,1],[1,0]] 6 Curve [[0,1],[1,1]] 14 

Curve [[1,1],[1,0]] 7 Activity(Side) [[1,1],[1,1]] 15 
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feature map drawn in layer-3 is realigned so that its size 

changes to 512 and then goes to a recurrent layer. Layers 5 

and 6 are recurrent layers that use a gated recurrent units 

(GRU) cell type.  

The recurrent structure sequentially receives a variety of 

feature maps, and their common areas are analyzed. The 

difference between the previous and current inputs is 

classified more clearly. Layer-5 has 64 units, and layer-6 has 

32. The final result is drawn in layer-7 after the recurrent 

layers. The learning model is used to determine whether a 

mass observed in an ultrasonic breast image is “benign” or 
“malignant.” The traditional CRNN, AlexNet, and VGG (S, 
M, F) models were compared with the proposed model to 

evaluate its performance. 

IV. Performance Evaluation 

The performance of the proposed algorithm was evaluated in 

the following hardware environment: Windows 10 64-bit 

O/S, Intel Core i7-6700 CPU, 16 GB RAM, and NVIDIA 

GeForce GTX 1060 6G. Keras 2.3.1, Tensorflow-gpu 2.0.0, 

Numpy 1.18.1, OpenCV-python 4.2, and scikit-image 0.16.2 

were the software used for the evaluation. The actual 

ultrasonic breast image database offered by Mendeley was 

used as the dataset. The database had 250 datasets, 100 of 

which were “benign” data and 150 were “malignant.” Two 

tests were conducted. 

The accuracies of the edge detection algorithms were 

measured in the first test. The proposed algorithm was 

compared with well-known edge detection algorithms, 

including the Canny, HOG, Sobel mask, and Laplacian 

algorithms. In the second test, the performance of the 

proposed eLFA-CRNN learning model was evaluated by 

comparing it with the CRNN, AlexNet, and VGG (S, M, F) 

learning models. 

A. ACCURACY CHANGE OF eLFA-CRNN MODEL 
ACCORDING TO EDGE DETECTION ALGORITHM 

This section presents the performance evaluation test for the 

eLFA-based edge detection algorithm by comparing it with 

the aforementioned well-known edge detection algorithms. 

Fig. 6 illustrates the results of each algorithm. 

Fig. 6 presents the edge information of the ultrasonic 

breast image drawn using edge detection algorithms. Various 

parameters were applied in the tests for the conventional 

edge detection algorithms, and the parameter values 

producing the highest accuracy were set. 

Fig. 7 shows the results of applying the proposed edge-

detection algorithm, and four others, to the eLFA-CRNN 

model. Line segment information was extracted using each 

algorithm. In the eLFA process, the extracted line segments 

were classified, and a 2D array-based eLFA map was 

generated, which was learned by the eLFA-CRNN model 

designed in this study. In the tests, 80% of the database was 

set as learning data and 20% as test data. The classification 

condition was set as the ratio of the “benign” data to the 

“malignant” data because a simple ratio can increase the 

weight of one class over the other. Fig. 7(a) presents the 

measurement results of accuracy, and Fig. 7(b) presents the 

loss of each algorithm. The proposed eLFA, Canny, and 

Sobel-mask algorithms had the highest accuracy of 98%, and 

the Laplacian and HOG algorithms had accuracies of 94% 

and 60%, respectively. As the proposed eLFA algorithm 

generates a new feature map using line segments, it seems to 

be closely related to the edge detection results. The algorithm 

presented in Fig. 7(a) seems to be most similar to the edge 

information of the original image in Fig. 6, i.e., when an edge 

detection algorithm produces results that are similar to the 

original data, the line segment aggregate-based learning 

model (eLFA-CRNN model), proposed in this study, shows 

high accuracy. While the Sobel mask and Canny algorithms 

recorded a loss of 0.114 and 0.108, respectively, the eLFA 

algorithm recorded the lowest loss of 0.071. 

 

 Benign Malignant 

Original 

  

Canny 

  

HOG 

  

Sobel mask 

  

Laplacian 

  

eLFA 

  
Figure 6. Comparison of edge information on ultrasonic breast image 
generated by different edge detection algorithms. 
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(a) 

(b) 
Figure 7. Accuracy measurement results for edge detection algorithms. 
(a) Accuracy; (b) Loss. 
 

Upon testing the combinations of various parameters, the 

four well-known edge detection algorithms set a parameter 

with the highest value. As mentioned earlier, the eLFA 

algorithm proposed in this study does not require any 

parameter value to be set separately as it calculates the 

threshold values internally by edge detection. As a result of 

the accuracy measure in each edge detection algorithm, the 

eLFA, Canny, and Sobel-mask algorithms showed the 

highest accuracy of 98%. Among the algorithms, eLFA 

produced the lowest loss, of 0.071. Thus, the proposed eLFA 

algorithm shows the best performance in edge detection. 

B. PERFORMANCE EVALUATION FOR eLFA-CRNN 
MODEL 

This section describes the test conducted to evaluate the 

performance of the proposed eLFA-CRNN model. 

Additionally, the VGG-S, VGG-M, VGG-F, AlexNet, and 

CRNN models were used for comparison. A small amount 

of data (250 datasets) was used for the test and. Therefore, to 

increase reliability, several training-to-test data ratios were 

selected. 

 
TABLE III 

NUMBER OF DATASETS TO BE USED IN THE EXPERIMENT. 

Alias of experiment Number of images(learning/test) 

#1 201/ 49 

#2 190/ 60 

#3 170/ 80 

#4 150/100 

(a) 

(b) 

(c) 

(d) 
Figure 8. Accuracy measurement results according to the experimental 
environment. 
 

As shown in Table 3, four training and test data ratios were 

selected. The accuracy and loss of each model were 

calculated using each ratio. Fig. 8 presents the measured 

accuracy of the models using the selected ratios. 

In Fig. 8 (a), a training subset of 201 data points and a test 

subset of 49 data points were used. Consequently, the 

amount of training data was approximately four times larger 

than the amount of test data. In this case, the eLFA-CRNN, 

VGG-M, and CRNN models demonstrated the highest 

accuracy of 100%, followed by the VGG-S (98%), AlexNet 

(59%), and VGG-F (41%) models. The accuracy was 

compared by gradually reducing the training data, as shown 
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in Figs. 8(b)–(d) to examine the learning ability of the 

proposed eLFA-CRNN model. Fig. 8(b) shows the accuracy 

of the models when the amount of training data was about 

three times larger than that of the test data. The proposed 

eLFA-CRNN and VGG-S models also had the highest 

accuracy of 100% for this data split, followed by the CRNN 

(95%), VGG-M (83%), VGG-F (60%), and AlexNet (60%) 

models. Comparing the performance using data splits #1 and 

#2, it is observed that the performance of the VGG-S model 

improved. By contrast, the performance of the VGG-M and 

CRNN models reduced by 16.67% and 5%, respectively. 

Notably, the accuracy of the proposed eLFA-CRNN model 

for both data splits was 100%. Fig. 8(c) presents the accuracy 

when the training to test data ratio was 2:1. 

The proposed eLFA-CRNN, VGG-M, and CRNN models 

produced accuracies of 100%, followed by the VGG-S 

(64%), and VGG-F and AlexNet (60%) models. For data 

splits #1 and #3, the eLFA-CRNN, VGG-M, and CRNN 

models showed high performance. Fig. 8(d) illustrates the 

accuracy in the case with 150 and 100 training and test data, 

respectively. In this case, the proposed eLFA-CRNN model 

had the highest accuracy (99%), followed by the VGG-S and 

VGG-M (97%), CRNN (96%), AlexNet (60%), and VGG-F 

(40%) models. The proposed eLFA-CRNN model produced 

an accuracy of 100% for data splits #1 to #3 and showed a 

lower performance of 99% for data split #4. 

 
TABLE IV 

LOSS DATA MEASURED IN EACH EXPERIMENT. 

 #1 #2 #3 #4 mean 

eLFA-CRNN 0.0097 0.0091 0.0212 0.0621 0.0257 

VGG-S 0.0801 0.0003 0.5917 0.1230 0.1988 

VGG-M 0.0000 0.7912 0.0001 0.0848 0.2190 

VGG-F 0.6931 6.5572 6.4472 0.6931 3.5977 

AlexNet 0.6504 0.6484 0.6641 0.6614 0.6561 

CRNN 0.0009 0.3155 0.0122 0.0530 0.0956 

 

Table 4 shows the loss data measured for each data split. 

As presented in Table 4 and Fig. 8, it was confirmed that the 

proposed eLFA-CRNN model had little performance 

degradation compared to the comparative model even if the 

data amount was changed. Additionally, with the loss of 

0,0257 on average, the data for the eLFA-CRNN model was 

low. Thus, the proposed model supports effective 

classification in an environment with a small amount of 

training data. Fig. 9 illustrates the average accuracy and ROC 

curve for each test. Fig. 9(a) shows the mean accuracy 

calculated for each model. As shown in Fig. 9(a) and Table 

4, the eLFA-CRNN model yielded the best performance with 

a loss data and accuracy of 0.0257 and 99.75%, respectively. 

Fig. 9(b) presents the ROC curve for each test. As shown in 

(a) 

(b) 

Figure 9. Mean results for each Experiment and ROC curve. 
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the figure, the proposed eLFA-CRNN model demonstrates 

better performance than the other models evaluated. 

In this paper, we proposed an eLFA algorithm to reduce 

the dimension of the input based on the type of line segment. 

When identifying the type of tissue using the breast 

ultrasound image, the proposed algorithm reduced the 

computation using a more reduced layer than the existing 

CNN-based neural models and showed the same accuracy as 

the existing model. The similarity in the experimental result 

can be attributed to the strong feature classification 

performed. 

Generally, if the dimension reduction technology is 

preceded, it degrades performance. However, when breast 

ultrasound images are used to identify tissue types, the shape 

of the lesion greatly influences on the identification of tumor 

type. When these trait data are processed with the proposed 

algorithm, the line segment for the shape is converted into 

aggregate data. When considering the converted data, the 

aggregate values for the curved and diagonal types of the 

oval shape increase significantly, and the other types show 

low aggregate values. This can be a great advantage in 

identifying tissue types. In objects with different shapes, the 

expression of aggregate values varies greatly based on their 

type. In these cases, strong characteristic information about 

the shape can be contained in the model, i.e., the segmental 

characteristic of the object can be emphasized when reducing 

the object’s dimension, which can be effectively executed 
without losing the characteristics. Additionally, this process 

can reduce the computation required for the existing neural 

model. 

 
TABLE V 

COMPARISON OF THE NUMBER OF PARAMETERS USED AND THE EXECUTION 

TIME OF EXISTING MODELS AND THE PROPOSED MODEL. (T-P: NUMBER OF 

PARAMETERS USED, TA-P: NUMBER OF TRAINABLE PARAMETERS USED, 

NTA-P: NUMBER OF NON-TRAINABLE PARAMETERS USED, RT: EXECUTION 

TIME) 

 T-P TA-P NTA-P  RT 

VGG-S 56,867,266 56,867,266 0 16s 

VGG-M 75,741,634 75,741,634 0 17s 

VGG-F 75,539,842 75,539,842 0 21s 

AlexNet 18,252,130 18,252,130 0 8s 

CRNN 7,821,058 7,819,010 2048 11m 24s 

eLFA 285,698 285,570 128 5s 

 

Table 5 compares the number of parameters and execution 

time used by each model shown in the experiment. The 

proposed model shows a difference of 163.96 times that of 

the average value of the T-P used by the existing models. 

Additionally, when comparing the RT of the proposed model 

with the model that does not use the cyclic layer, there is no 

significant difference. The time is 45.6 times faster than the 

CRNN model using the cyclic layer. Generally, models with 

a cyclic layer cannot perform parallel processing, showing a 

relatively slower execution time than a CNN-based model. 

However, while the proposed model uses a cyclic layer, it 

can achieve faster speeds than the existing CNN-based 

model by reducing the number of internal calculations. If the 

parallel processing of the cyclic layer is performed in the 

future, the processing speed is expected to be faster than that 

of the present model. Additionally, it is expected to be 

applicable to embedded systems because of the 

simplification of the input data and the lighter weight of the 

learning model. 

V. Conclusions 

This study proposes an eLFA algorithm and applies it to a 

CRNN based learning model to classify a breast mass among 

masses of various other organs. The proposed eLFA 

algorithm was used to detect the edges of a breast mass. 

Unlike other algorithms, the proposed algorithm does not 

require a separate set of parameters and instead calculates a 

threshold value automatically to detect detailed line 

segments efficiently. The line segment information in such a 

process is classified into 16 types, including vertical, 

horizontal, curved, and diagonal. The data calculated by the 

edge detection algorithm are binarized and reshaped into a 

2D array with elements 0 or 1 when scanned with the 2 × 2 

area. The array then undergoes convolution using the filter 

[[1, 2], [4, 8]]. The convoluted area is replaced by the filter’s 
parameter value corresponding to the parameter one position 

within the scanned area. The sum of the replaced areas is 

unique and is used to determine the type of line segment. By 

adding the numerical patterns cumulatively, a compressed 

2D array can be generated that is used as an input for the 

eLFA-CRNN model, a modified CRNN model. The 

proposed model comprises a convolution layer and two 

bidirectional GRU layers. Moreover, using batch-

normalization and dropout, it is possible to prevent 

overfitting during the learning process. 

Two tests were conducted to evaluate the performance of 

the proposed algorithm. In the first test, the proposed eLFA 

algorithm was compared with the canny, HOG, Sobel mask, 

and Laplacian algorithms, which are generally well-known 

edge detection algorithms. In comparison, the proposed 

eLFA, canny, and Sobel algorithms delivered the highest 

accuracy of 98%. Furthermore, among these algorithms, the 

eLFA algorithm had the lowest loss of 0.0714. In the second 

test, the proposed eLFA-CRNN model was compared with 

the traditional CRNN, AlexNet, and VGG (S, M, F) models. 

The eLFA-CRHH model had the highest accuracy of 99.75% 

and the lowest loss of 0.0257. In other words, the proposed 

algorithm and learning model exhibited superior 

performance compared with other algorithms and models in 

terms of accuracy and data loss. 

Furthermore, the proposed model exhibited a minor 

decline in performance and achieved effective classification 

in a setting with a small amount of learning data. Therefore, 

it is expected that the proposed model will be applicable as 

an effective diagnostic method in hard-to-collect data cases, 

as in the case of rare diseases or for diseases lacking 
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sufficient information. In future studies, the model will be 

improved to detect a breast tumor rather than solely classify 

breast masses. Additionally, a comprehensive diagnostic 

system is planned using medical data that employs shape 

analysis, such as in cases related to skin ailments and 

vascular disease data. 
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