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Contemplative practices, such as meditation and yoga, are increasingly popular among

the general public and as topics of research. Beneficial effects associated with these

practices have been found on physical health, mental health and cognitive performance.

However, studies and theories that clarify the underlying mechanisms are lacking or

scarce. This theoretical review aims to address and compensate this scarcity. We will

show that various contemplative activities have in common that breathing is regulated

or attentively guided. This respiratory discipline in turn could parsimoniously explain the

physical and mental benefits of contemplative activities through changes in autonomic

balance. We propose a neurophysiological model that explains how these specific

respiration styles could operate, by phasically and tonically stimulating the vagal nerve:

respiratory vagal nerve stimulation (rVNS). The vagal nerve, as a proponent of the

parasympathetic nervous system (PNS), is the prime candidate in explaining the effects

of contemplative practices on health, mental health and cognition. We will discuss

implications and limitations of our model.

Keywords: meditation, mind-body exercises, mindfulness, respiration, vagus nerve, heart rate variability,

cognition, stress

INTRODUCTION

The past 50 years have shown an increasing interest in eastern contemplative traditions in
Europe and North-America. These traditions include meditation styles and mindfulness, as well
as mind-body exercises like tai chi chuan (TCC) and yoga. What most of these practices have
in common is not only their origin in eastern philosophy and religion, but also the goal to
enhance individual physical and mental health. Scientific research has followed the popularity
of contemplative activities (ContActs). Figure 1 shows that the cumulative number of relevant
publications since 1945 follows a quadratic pattern, with total number of publications within a
decade increasing from 2,412 between 1997–2006 to 12,395 between 2007–2016 (Web of Science,
February 2018). The number of clinical trials on meditation, mindfulness, yoga, TCC or qi gong
each year alone increased from a little under 20 in the year 2000 to about 250 in 2014, citations in
the same timeframe going up from 20 in 2000 to 7,112 in 2014 (Web of Science, February 2018).

Abbreviations: CAN, Central Autonomic Network; ContAct, Contemplative Activity, such as meditation, mindfulness
and yoga.; FA, Focused Attention meditation; OM, Open Monitoring meditation; PNS, Parasympathetic Nervous System;
rVNS, respiratory Vagal Nerve Stimulation; SNS, Sympathetic Nervous System; TCC, Tai Chi Chuan; VN, Vagus Nerve.
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Gerritsen and Band Breathing in Contemplative Practice

FIGURE 1 | Cumulative number of scientific publications on contemplative

activity (ContAct), from the 1945–1996 bracket to 2017 per individual year.

Obtained from Web of Science in January 2018 using the search terms:

“mindfulness” OR “meditation” OR “yoga” OR “tai chi.”

The current article reviews scientific insights in potential
health benefits. In particular, we investigate the role of
particular breathing techniques (low respiration rate, long
exhalations) integral to contemplative activities and show that
these techniques are prime candidates in explaining the benefits
of ContActs for health and mental health. Furthermore, we
provide mechanisms and a neurophysiological model that can
explain how respiratory patterns produce these effects; through
vagal nerve stimulation.

Studies on contemplative practices have reported a plethora
of positive effects on health, mental health and cognition
(for reviews, see Shapiro et al., 2003; Grossman et al.,
2004; Ospina et al., 2007; Wahbeh et al., 2008; Büssing
et al., 2012; Lee and Ernst, 2012; Forbes et al., 2013).
However, not much literature has been devoted to revealing
the mechanism underlying reported benefits. The current
article is intended to fill this gap. Hereby, we hope to
give extra incentive for research on the mechanisms of
ContAct action and inform traditional practices, thereby giving
opportunity to innovate styles with new exercises and targeted
interventions.

CONTEMPLATIVE TRADITIONS

For the purpose of this article we define contemplative
activities as activities that involve conscious and attentive
exercise aimed at changing one’s mental state, contemplation
in meaning comparable to ‘‘praying’’ and ‘‘meditating.’’
We have deliberately not chosen the concept mindfulness
because it is associated with particular practices, instructions
and states, as we will discuss later. Despite the similarities
between ContActs reflected in the definition, a few
differences among ContActs are worth explaining here,
because they are also used to position interventions in
research.

The most common, the most referenced, the most studied
and largest subgroup of ContActs ismeditation. Most meditation
traditions come from east and south Asia and are originally
Buddhist or Hindu in nature. Zen Buddhist meditation
(originating in China from a marriage of Buddhism and
Taoism), loving-kindness meditation (Tibet), vipassana (India)
and transcendental meditation (India) are popular styles. Yet
there are also European and Middle-Eastern forms such
as acem from Norway, Christian monastic traditions (Egan,
1991; Studzinski, 2009) and Sufi Islamic meditation: muraqaba
and whirling (Cakmak et al., 2011, 2017; Nizamie et al.,
2013).

In an attempt to classify meditation traditions according to
their differentiated instructions, a distinction has been proposed
between two types: focused attention meditation (FA) and open

monitoring meditation (OM, Lutz et al., 2008; Lippelt et al.,
2014). FA instructions emphasize attention to a particular focus,
almost always the breath, along with means how to handle
distractions and refocus attention. Zen meditation is commonly
seen as an archetypical form of FA. OM stresses the spreading
of attention on multiple endogenic and exogenic stimuli, having
fleeting awareness of multiple sensory modalities, emotions and
thought. Vipassana is popularly regarded as an exemplar of this
style. There is no strict separation between the two types in zen
and vipassana, and most traditions blend one style into the other.
Overall, OM is frequently seen as a more advanced level exercise
than FA, and is thus practiced more by experts as compared to
novices.

In a further categorization attempt by Lutz and colleagues
(Dahl et al., 2015; for another three-dimensional classification,
see Lutz et al., 2015), more meditation styles are classified
based on their most emphasized and practiced techniques.
The resulting framework has three meditation families: the
attentional, the constructive and the deconstructive. Both FA
and OM styles belong to the attentional family. The constructive
meditations are aimed at improving the well-being of oneself
and others, exemplified by compassion and loving-kindness
mediation. The deconstructive practices focus on breaking habits
of perception, affect, thought and behavior: most mindfulness

meditation falls in this category. Note however, that the term
mindfulness has been used in a different meaning as well. It refers
not only to a category of meditative practice; it can also refer
to a mental state, or even the ultimate enlightenment goal of
these practices. As a mental state, mindfulness refers to a state
of meta-awareness, in which the practitioner observes emerging
feelings and thoughts without judgment (non-judgmentality).
The state of mindfulness can actually be the target of both FA
and OM exercises.

Another subgroup within ContAct, here referred to as
mind-body exercises, is more multi-modal. It involves both
meditation and physical exercise; such as stances, positions,
complex movements and muscle relaxation techniques.
Common traditions are the many styles of Indian yoga and
Chinese styles like TCC and qi gong. Origins of these styles
differ, but most also have religious or mystical roots like
meditation traditions, even when developed as a martial art (e.g.,
Taoism in TCC).
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THE POSITIVE EFFECTS OF ConTact

Research has found a vast array of beneficial effects in the
three domains of physical health, mental health and cognitive
performance.

Physical Health

Cardiopulmonary Effects
Multiple reviews on different ContActs report a decrease in
cardiometabolic risk factors and an increase in cardiopulmonary

health and fitness, according to a meta-analysis this is most
consistently reflected in lowered heart rate, blood pressure
and blood lipid profile across practices (Ospina et al., 2007).
Reviews on separate practices confirm this for meditation styles
such as mindfulness meditation and transcendental meditation
(Grossman et al., 2004; Walton et al., 2004), as well as the
mind-body exercises yoga (Büssing et al., 2012; Posadzki et al.,
2014) and TCC (Jahnke et al., 2010; Lan et al., 2013), where
one meta-analysis indicates increased erobic capacity as well
(Taylor-Piliae and Froelicher, 2004). However, Cochrane reviews
on transcendental meditation, TCC and qi gong state that even
though there is suggestion to their positive effect, definitive
conclusions on their efficacy cannot be drawn because of a lack
of high-quality long-term trials (Hartley et al., 2014a,b, 2015).

Anti-Inflammation
ContAct reviews also report immunological improvements;
most studies find functional anti-inflammatory effects, where
meta-analyses indicate that the most commonly reported
decreases of pro-inflammatory markers are in C-reactive protein
and pro-inflammatory cytokines, such as tumor necrosis factor-a
(Morgan et al., 2014; Bower and Irwin, 2016). Again, this
enhancement can be seen with different ContActs: loving-
kindness meditation (Hofmann et al., 2011), yoga (Black et al.,
2013) and TCC (Jahnke et al., 2010; Lan et al., 2013).

Physical Function
Like other physical exercises, mind-body exercises improve
general physical function, most notably bone density, balance,
strength and flexibility (Jahnke et al., 2010; Büssing et al., 2012).
Mindfulness-based stress reduction, yoga and TCC seem to
ameliorate (chronic) pain conditions, as indicated by pain scales
in conditions such as: migraine, fibromyalgia and osteoarthritis
(Grossman et al., 2004; Wahbeh et al., 2008; Büssing et al., 2012).
As mindfulness-based stress reduction also includes yoga-like
exercises, these results can be reserved to mind-body exercises
and might best be interpreted as coming from the physical
exercise part of these programs, as exercise-induced analgesia is
well-established (Koltyn et al., 2014) and is even comparable to
medication in chronic pain conditions according to a review of
multiple Cochrane reviews (Geneen et al., 2017).

Mental Health

Stress Relief
Reviewed ContActs decrease stress and negative affect, and in
parallel increase well-being and self-efficacy, as indicated by stress
and (trait) anxiety rating scales and quality of life questionnaires

(Grossman et al., 2004; Kirkwood et al., 2005; Jahnke et al., 2010;
Wang et al., 2010a; Keng et al., 2011; Eberth and Sedlmeier, 2012).
Furthermore, a recent meta-analysis that collapsed studies using
different meditation interventions, such as FA and OM, showed
that they reduce multiple physiological stress markers across
styles: heart rate, blood pressure, cortisol levels and inflammatory
bodies (Pascoe et al., 2017).

Stress-Related Psychopathology
ContActs, and notably mindfulness-based cognitive therapy,
reduce symptoms in affective psychopathology (Chiesa and
Serretti, 2011; Kuyken et al., 2015). Most reviews and
meta-analyses report decrease in symptoms of depression,
anxiety disorders and post-traumatic stress disorder, asmeasured
by structured clinical interview and common clinical scales, such
as the Beck Depression Inventory (Klainin-Yobas et al., 2012;
Balasubramaniam et al., 2013; Chi et al., 2013; Cramer et al., 2013;
Kim et al., 2013; Wang et al., 2013).

Cognitive Performance

Cognitive Control
Some studies show that ContActs enhance executive functioning
and working memory or act as a buffer against age-related
decline of executive functions and working memory: this applies
to mindfulness meditation (Zeidan et al., 2010; Gard et al.,
2013), yoga (Gothe and Mcauley, 2015; Luu and Hall, 2016)
and TCC (Wu et al., 2013; Wayne et al., 2014; Zheng et al.,
2015). Most of the reported evidence for ContActs boosting
executive functioning comes from cognitive inhibition tasks,
such as the Stroop and flanker tasks, whereas the support for
working memory improvement comes from span and n-back
tasks. Furthermore, cognitive control states can be acutely
affected through very short ContAct interventions (Colzato
et al., 2012, 2015a,b; Gothe et al., 2013), although these effects
are typically smaller and less robust than following prolonged
ContAct practice.

Attentional Control
ContActs also seem to have specific effects on attentional

control and have been reported for FA and OM (Shapiro
et al., 2003; van Vugt and Slagter, 2014; Colzato et al., 2015a),
mindfulness meditation (Chiesa and Serretti, 2010; Eberth and
Sedlmeier, 2012) and yoga (Gothe andMcauley, 2015), with most
studies reporting enhancement effects on attentional network
task components and the attentional blink. These effects are
differentiable according to specific practices and can be in
opposite directions (Slagter et al., 2011; Hommel and Colzato,
2017). For example, practices high in FA are associated with
better sustained attention, and those emphasizing OM support
flexibility in allocation of attentional resources (Lutz et al., 2009;
van Vugt and Slagter, 2014; Colzato et al., 2015a). Jha et al.
(2007) used the attentional network test (Fan et al., 2005) to
compare FA with OM in terms of attentional subcomponents
as distinguished by Posner and Petersen (1990). Jha et al.
(2007) showed that FA has its effects on the alerting component
(detecting a stimulus) and OM on the orienting component
(allocating attentional resources). Surprisingly, they found no
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differences on performance monitoring. Andreu et al. (2017),
however, did find acutely enhanced performance monitoring
by meditation. In people diagnosed with attention deficit
hyperactivity disorder, meditation and mind-body exercises
actually enhanced attentional functioning (Rubia, 2009; Mitchell
et al., 2015; Herbert and Esparham, 2017), although an earlier
Cochrane review was unable to draw conclusions due to a lack of
clinical trials (Krisanaprakornkit et al., 2010).

Global Cognition and Creativity
Attention and control are not the only psychological outcome
variables of ContAct research. Shapiro et al. (2003) observed
enhanced creativity through transcendental meditation, while
the meta-analysis of Ospina et al. (2007) indicated increased
verbal creativity as the most reliable cognitive outcome of diverse
ContActs. However, these acute effects can be in different and
even opposing directions, as shown by a study on convergent
and divergent thinking that used short FA and OM interventions
(Colzato et al., 2012). There is also evidence that global cognitive
functioning, as measured by the mini-mental state examination
or activities of daily living questionnaire is positively influenced
by ContAct in aging populations with mild cognitive impairment
or dementia. Studied ContActs include mindfulness meditation
(Eberth and Sedlmeier, 2012) and yoga and TCC (Wu et al.,
2013), as evidenced by a Cochrane review (Forbes et al., 2013).

EFFECTIVE FACTORS IN ConTActs

As a first step towards explaining the highly overlapping effects
of diverse ContActs on physical, mental and cognitive health,
a straightforward approach is to analyze what they have in
common. Three of the common factors we distinguish were also
proposed by Hölzel et al. (2011b) for mindfulness mediation,
but we formulate them in terms of activities rather than goals
and propose three additional factors: attention training, affect
training, metacognitive adjustment, body awareness training,
physical exercise and the central addition: breathing techniques.
The first three can be seen as forms of mental training and the
last three asmore embodied cognitive exercises.Wewill cover the
first five factors and other proposed models before we introduce
the breathing exercises.

Attention Training
The focus of attention in ContAct practices can involve many
sensory or cognitive modalities; any of the external senses,
the body, the breath, thoughts or feelings. Although explicit
attentional training might be absent from some mind-body
exercises, many ContActs are aimed at sustaining attention,
handling distraction and refocusing or shifting and spreading
of attention. These attentional techniques can explain the
frequently reported effects on attention and perhaps some in
the cognitive control domain. However, as stated earlier, these
effects can be differentiated and in opposite directions according
to specific instructions, showing increased sustained attention
and decreased attentional flexibility by one manipulation (FA),
and showing opposed functional differences by another (OM).
Attention training in ContAct might thus be better described

as resulting in a shift towards either more or less (attentional)
control than as a unidirectional change. Both directions of
change can be adaptive to the practitioner’s intention because
such metacontrol shifts result in either more persistence or more
flexibility in thought (Hommel, 2015; Hommel andWiers, 2017).
A limitation to the effective strength of attention training is
that transfer of effects to other contexts and untrained skills
is known to be rather limited (Seitz and Watanabe, 2005;
Green and Bavelier, 2012; Keshavan et al., 2014; Simons et al.,
2016).

Affect Training
Exercises we define as affect training are aimed at removing
or transforming negative emotions or moods. These start with
becoming aware and paying attention to negative feelings or
thoughts. This is comparable to exposure therapy (Hölzel et al.,
2011b). Subsequent instructions serve to modify the mental state.
By decentering the meditator attempts to distance the self from
the (negative) thought or feeling, trying to observe it as just
a fleeting and subjective sensation, instead of a feeling that is
taken personal, in effect trying to detach the observer from the
observed (Bernstein et al., 2015). Associated with decentering
is the attempt to treat thoughts and feelings as not necessarily
representing an objective reality. This is known as dereification.
Finally, the detachment that results from decentering and
dereification helps the meditator to avoid judgment about
invasive and recurring thoughts, feelings or external events, such
as surrounding noise. This non-judgmentality is also explicitly
instructed. Taking these three mental exercises together, it is easy
to maintain that they can help to reappraise negative feelings
(Hölzel et al., 2011b). Therefore, affect training, as comprising
both exposure and reappraisal, could explain findings in the area
of mental health, and possibly by extension, through (chronic)
stress reduction: immune function and cardiovascular health.

Metacognitive Adjustment
Both the decentering and dereification techniques belong to
the domain of meta-awareness and metacognition: being aware
of awareness, thinking about thinking (Flavell, 1976). By
metacognitive adjustment practitioners try to change the way
they process information. Many thoughts and perceptions follow
a default processing route, resulting in a default interpretation
and categorization of what is perceived. ContActs that involve
thought monitoring try to identify and deconstruct fixed thought
pattern, thereby deviating from this default processing route.
This effect may transfer to daily life in the form of a tolerance
for ambiguity and an increase in mental flexibility. As such,
some forms of ContAct can be seen as executive function
training, possibly transferring to situations where overruling
pre-potent responses, ignoring irrelevant information, switching
between tasks and rules, or keeping working memory up to
date is relevant. Therefore, metacognitive strategies can explain
beneficial effects of ContAct in the cognitive control domain.
However, even apparently very similar cognitive training or
gaming paradigms show very little transfer of training attentional
control or working memory (Green and Bavelier, 2012; Melby-
Lervåg and Hulme, 2013).
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Body Awareness Training
Exercises instructing for attention to different parts of the body,
mostly to the skin and muscles, but also the viscera, make up the
body awareness training factor. These could be mistaken as being
part of the attention training factor. However, body perception
is also uniquely central in affective processing and the sense of
self (Damasio, 2003; Ochsner et al., 2004; Araujo et al., 2013).
Some researchers even theorize that body awareness is central
in the cultivation of empathy (Grossman, 2014). This makes us
treat body awareness as a factor on its own. Kerr and colleagues
(Kerr et al., 2008, 2011, 2013; Kemp and Quintana, 2013) have
shown that interoception can be enhanced in practitioners of
mindfulness meditation and TCC: tactile acuity goes up, and
activity in related somatosensory and visceral cortical areas (S1,
insula, anterior cingulate cortex (ACC)) shows a pattern of
increased attention to specific body parts on instruction and
filtering of irrelevant somatosensory information. They state
that metacognition and cognitive enhancement starts in the
body: somatosensory exercises are in their view early versions
of the techniques involved in attention, meta-awareness and
metacognition. This being the case, body awareness could be
involved in producing effects on emotional and cognitive levels.

Physical Exercise
One could argue that physical exercise is the most likely candidate
for broad enhancement. Many studies provide evidence that
physical exercise of different kinds (erobic, endurance, strength)
is a strong cognitive control enhancer, resulting in better
cognitive and response inhibition, and lower dual-task costs,
though reviews on working memory performance are mixed
(Colcombe and Kramer, 2003; Smith et al., 2011; Roig et al.,
2013; Voelcker-Rehage and Niemann, 2013; Voss et al., 2013;
Berryman et al., 2014; Wong et al., 2015). Exercise is also
generally accepted as a cardiovascular health booster (Di
Francescomarino et al., 2009; Heran et al., 2011; Korsager
Larsen and Matchkov, 2016). However, the evidence for the
supposed therapeutic effect of physical exercise on depression,
anxiety and other stress-related conditions has been sparse, as
indicated by a Cochrane review (Mead et al., 2009), despite
high expectations and invested resources (Salmon, 2001). Most
importantly, only a small minority of the reported ContActs
provide any erobic or endurance exercise quality: the mind-body
exercises, and perhaps to a smaller degree the mindfulness-based
clinical programs (i.e., mindfulness-based stress reduction). This
seems to rule it out as the prime candidate.

Theories and Models of ContAct Efficacy
There is a large gap between the amount of research done
on ContAct and the number and amount of detail of models
proposed to explain the benefits (Schmalzl et al., 2015). (Neuro)
cognitive models that have been put forward so far attribute
the benefits of meditation to top-down factors such as attention
and metacognition. For example, Vago and Silbersweig (2012)
emphasized the role of the self in the effectiveness of mindfulness
meditation, whereas Sperduti et al. (2012) highlighted the role of
executive functions in all branches of meditation.

Models that describe the benefits of mind-body exercises
(Wayne and Kaptchuk, 2008; Gard et al., 2014; Clark et al.,
2015) incorporate movement, mindfulness and attention. One
refers to TCC as ‘‘meditative movement,’’ clearly naming the
two aspects of physical and mental training (Larkey et al., 2009).
However, despite labeling movement as a functional component,
none of these models handle physical exercise as a full factor on
its own. In the component ‘‘movement,’’ exercise is reduced to
motor coordination and skill learning, or the training of physical
strength. Even though TCC is classified as mildly erobic (Chang
et al., 2010), the benefits of its erobic aspect are neglected. This
is peculiar in light of the extensive support for the contribution
of erobic exercise to physical health, mental health and cognitive
performance.

Breathing Techniques
Two of the mind-body models also incorporate a factor that
has been conspicuously absent from other models: breathing
techniques (Wayne and Kaptchuk, 2008; Gard et al., 2014). In
both of these accounts, one on yoga and the other on TCC,
the breathing type described as effective is slow, deep and
diaphragmatic.

Effects of Respiration in Theory and Research
The breathing techniques used in ContAct include, but are
not restricted to, slowing down respiration cycles, shifting
to longer exhalations compared to inhalations, shifting the
main locus of respiration from the thorax to the abdomen
(diaphragmatic breathing), or paying attention to ‘‘natural’’
breathing. Especially slow and deep breathing with emphasis
on long exhalation is dominant across traditions, including zen
and vipassana—though there are a few practices stimulating
faster respiration patterns (i.e., the yoga technique ‘‘breath of
fire’’). In the physically active mind-body exercises respiration
can be synchronized with movement techniques; moving with
the breath. For example, in some TCC styles moving towards
the body is performed on inhale and moving outward on exhale.
Note that in yoga, qi gong and TCC moving is performed slowly,
and thus so is the breathing cycle.

Although the word breathing is frequently mentioned in the
scientific literature on ContAct, this is almost exclusively done
in a purely descriptive and not an explanatory fashion. Indeed,
research on breathing as a ContAct mechanism is sparse, though
there are concrete physiological grounds to look at breathing as
an effective factor (Brown and Gerbarg, 2005). As far as we know
there are only a few articles looking at respiration in the context
of ContActs directly, varying wildly in aims and measures.
Danucalov et al. (2008) found increases in metabolism and
oxygen uptake during yogic breathing exercises (pranayamas)
in experts, as compared to rest and meditation conditions in
a within-subjects design. The breathing exercises used included
holding the breath and extending exhalation. A similar slow
breathing pranayama was used by Pramanik et al. (2009)
showing reduced blood pressure and heart rate at post-measure.
Brown and Gerbarg (2009) reviewed their own studies on the
psychophysiological effects of various breathing techniques used
in Sudarshan Kriya Yoga and reported a general tendency
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among the breathing exercises towards relaxation: activating
the parasympathetic nervous system (PNS) and deactivating the
sympathetic nervous system (SNS). Cysarz and Büssing (2005)
observed increased cardiorespiratory synchronization with a
slow breathing zen meditation intervention in naïve subjects.
Though there is clearly a lack of studies on breathing in ContAct
practice, fundamental neurophysiological studies on respiration
mechanics and styles do abound.

In several studies respiration types have been manipulated in
an attempt to influence autonomic nervous system functioning.
A study of the effect of diaphragmatic relative to normal
breathing on metabolism among male cyclists, before and after a
meal found reductions in heart rate and glycemia, and increases
in insulin (Martarelli et al., 2011). Bernardi et al. (2001) induced
hypoxia in participants and found that slow breathing exercises
not only increased blood oxygenation, but also down-regulated
SNS activity. Similar results are reported by Critchley et al.
(2015) study on hypoxia. Many other studies show that slow
and diaphragmatic breathing increases PNS activity, as measured
by blood pressure, heart rate or heart rate variability (HRV;
Hirsch and Bishop, 1981; Lee et al., 2003; Pal et al., 2004; Lehrer
and Gevirtz, 2014; Van Diest et al., 2014; Mortola et al., 2015;
Perciavalle et al., 2017; Tavares et al., 2017; for some conflicting
results see and Montgomery, 1994; Conrad et al., 2007). In sum,
experimental slowing of respiration seems to shift the balance
between SNS and PNS activity towards the latter. Next, in light
of these findings, we will look at the part of the nervous system
responsible for such a shift: the vagus nerve (VN) and measures
of its tone (i.e., HRV).

THE VAGUS NERVE AND HEART RATE
VARIABILITY

Vagus Nerve
The autonomic nervous system (Langley, 1903) is a dual-system
divided in the SNS and PNS with mutual inhibitory connections,
though the dual innervation can also work complementary in
organs such as the heart (Jänig et al., 1983; McCorry, 2007).
The SNS is responsible for the fight/flight mode of organisms.
It raises heart rate, blood pressure and indirectly respiration
rate. It dampens currently irrelevant homeostatic processes, but
stimulates immediate availability of energy. The PNS acts as an
opposing force. It is the rest/digest system of the organism. It
lowers heart rate, respiration rate and increases digestion. The
VN is the main affector and effector of the PNS.

The VN is a cranial nerve complex with widespread afferents
and efferents on glands and visceral organs (Berthoud and
Neuhuber, 2000), consists of approximately 20% efferent and
80% afferent fibers (Agostoni et al., 1957) and has many
independently operating functions (Chang et al., 2015). Overall
it is well-suited for relaying relaxation from the central nervous
system (CNS) to the body and checking the arousal and
homeostatic state of the viscera. VN activity is modulated by
respiration. It is suppressed during inhalation and facilitated
during exhalation and slow respiration cycles (Chang et al.,
2015). Efferent and afferent VN functions overlap with the

functional effects associated with ContAct practice. Therefore,
the breathing exercise component of ContAct is a prime
candidate mechanism behind the beneficial effects found on
mental and physical health.

Cardiopulmonary Control
Efferent VN fibers innervate the heart and the lungs. The
pulmonary efferents regulate airway size and thus volume, they
lower respiration rate and indirectly endocrine secretion (Yuan
and Silberstein, 2016a). Exhalation is under direct control of VN
(Chang et al., 2015), whereas VN activity is attenuated during
inhalation (Eckberg and Eckberg, 1982; Canning, 2006). The
vagal cardiac outputs to the sinoatrial node causes slowing of
heart rate, whereas SNS innervation is responsible for heart rate
increase. The SNS cardiac effector is under tonic inhibition of
VN, indicating indirect control on heart rate increase (Olshansky
et al., 2008).

Anti-Inflammation
There is evidence that VN also influences physical health
by suppressing inflammation. An anti-inflammatory reflex,
known as the cholinergic anti-inflammatory pathway has
been put forward from findings in animal studies on rats
(Tracey, 2002, 2007; Pavlov and Tracey, 2015). This response
is thought to inhibit a cascade of inflammatory activity and
is triggered by vagal afferents monitoring immune status.
However, an alternative sympathetic anti-inflammatory reflex
has been proposed, explaining conflicting results in rat studies:
the splanchnic anti-inflammatory pathway, where VN plays an
afferent role at most (Bratton et al., 2012; Martelli et al., 2014a,c,
2016). A complete discussion of these competing pathways lies
outside the scope of this review. Suffice it to say that the VN
seems to be involved in anti-inflammation in humans: studies
using VN stimulation paradigms report anti-inflammatory
effects as well (Browning et al., 2017; Johnson andWilson, 2018).
Furthermore, after vagotomy inflammatory activity goes up. This
resembles the earlier mentioned tonic inhibition on heart rate
(Borovikova et al., 2000). This merits the proposition that VN
mediates effects of ContAct on immunological health, specifically
anti-inflammatory, and potentially those on auto-immune
diseases.

System State Monitoring
VN afferents reach the medulla from the heart, airways, liver and
gastrointestinal track. It monitors cardiorespiratory, endocrinal
and immune parameters (Berthoud and Neuhuber, 2000).
Mechanoreceptors in the airways signal on airway size and thus
on respiration cycle and style (Undem and Carr, 2001; Canning,
2006). VN afferents on the adrenal glands relay information
on the release of stress hormones, such as epinephrine and the
glucocorticoids (Coupland et al., 1989; Niijima, 1992; Kessler
et al., 2012). The afferent branch of the VN constantly send up
homeostatic parameters to the CNS, monitoring the state of the
visceral system. This branch has been characterized as the ‘‘great
wandering protector’’ (Andrews and Lawes, 1992).

Clearly, these functions all move the system towards the
rest/digest mode of operation and away from fight-or-flight. Not
only does VN control heart rate and slow deep breathing, slow
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respiration rates with extended exhalation could also activate
the PNS by VN afferent function in the airways. This is a
form of respiratory biofeedback. Slow breathing techniques
with long exhalation will signal a state of relaxation by VN,
resulting in more VN activity and further relaxation. Though
VN involvement can explain effects on health and mental health,
the link with cognition is less clear. One of the links between
respiration and cognition is HRV.

HRV

Vagal Tone
HRV, the fluctuations in beat-to-beat intervals of the heart,
has been related to VN and some measures are believed to
reflect ‘‘vagal tone.’’ As only the VN cardiac output and not the
sympathetic innervation would be able to produce rapid changes
in heart rate. HRV is used as an indicator for individual physical
conditioning, general health, reactivity to and recovery from high
stress levels. Higher HRV is related to lower stress levels, better
health and disease outcomes (Thayer et al., 2012). A frequently
used HRV metric to assess vagal tone is the respiratory sinus
arrhythmia, by some maintained to be the best reflection of vagal
tone (Porges, 2001, 2007). This refers to the acceleration of heart
rate during inhalation and deceleration during exhalation.

HRV can either be obtained in the time or the frequency
domain (Task Force, 1996; for a recent review of HRV methods
see: Laborde et al., 2017). High frequency HRV (HF), also
referred to as respiratory sinus arrhythmia, is seen as a measure
of vagal tone, whereas low frequency HRV (LF) is thought
to represent sympathetic activity. The ratio between the two
(LF/HF) represents autonomic balance, where a smaller number
indicates vagal dominance. However, studies have shown that
vagal activity is also reflected in LF and furthermore that LF
does not reflect the SNS (Martelli et al., 2014b), making the ratio
unusable as an indicator of autonomic balance. Currently, most
studies confirm that specific measures in the time domain (e.g.,
root mean square of successive differences, peak-valley method)
best reflect vagal tone (Penttilä et al., 2001), though some
studies state that HRV, notably respiratory sinus arrhythmia,
is not a reliable indicator of vagal tone at all (Grossman and
Taylor, 2007). Individual HRV varies widely through time and
during various activities, such as physical exercise (Hottenrott
et al., 2006). Three types of measurements in time can be
defined: resting or baseline HRV, reactivity HRV and recovery
HRV (Laborde et al., 2017). Resting HRV is obtained with the
participant sitting down, not performing any specific activity and
can be seen as an individual’s baseline level. Reactivity HRV is
obtained during an activity or intervention, such as a cognitive
task or a breathing exercise. This short-term HRV tends to drop
during a cognitive challenge (Wood et al., 2002). Recovery HRV
refers to the return to baseline afterwards. In this article, when
we mention HRV we refer to resting state HRV measures that
best reflect vagal tone (HF and aforementioned time-domain
measures), unless stated otherwise. Changes in these measures
thus reflect changes in tonic vagal tone. An exception consists of
most of the reported studies on respiration patterns: in this case
the HRV concerns reactive HRV and in some cases recovery, and
thus phasic changes in vagal tone.

As stated earlier, HRV is regarded as an indicator of physical,
but also cognitive health. Indeed, there is a concrete link
between HRV and cognition, first sketched in the neurovisceral
integration model of Thayer and Lane (2000).

HRV and Cognition
The neurovisceral integration model (Thayer and Lane, 2000;
Thayer, 2007; Thayer et al., 2009) posits bi-directional cortical
influences on autonomic functioning and integrates CNS and
autonomic functioning. It builds on the work of Benarroch
(1993, 1997) on the Central Autonomic Network (CAN), a
network of brain areas for goal-directed behavior involved
in modulating the viscera. These areas are mostly limbic
and include the insula, ACC, amygdala and hippocampus.
The neurovisceral integration model extends this to prefrontal
structures (orbitofrontal, medial and lateral PFC). These regions
are able to influence HRV and initiate endocrine responses
through the VN. But the integration of CNS and autonomic
nervous system also works bottom-up: projections from VN
afferent medular termini reach limbic and cortical regions,
affecting cognitive control. This framework provides a basis for
a connection between executive functions on the one hand, and
body relaxation on the other. Indeed, studies by Thayer and
others show evidence of a positive association between HRV
and PFC activity and subsequent improvements in executive
functions, notably cognitive inhibition. PFC seems to exert tonic
inhibition on heart rate (and the amygdala), and greater activity
of the PFC is associated with higher HRV (Lane et al., 2001,
2009). Hansen et al. (2003, 2004) provided further evidence of
this relation in individual differences studies: higher HRV is
associated with better executive functions and working memory
performance. In the view of Thayer and colleagues, HRV
can be seen as a peripheral index of the adaptability of the
nervous system and thus the organism. HRV increases with
goal-directed behavior and emotion regulation, and reduced
HRV is indicative of cognitive stress. Clearly, the CAN and these
experimental findings give grounds for explaining executive
function enhancement following ContActs as originating from
VN, through upward projections producing functional and
structural changes in the executive network.

In a recent update of the neurovisceral integration model
(Smith et al., 2017), which adopts a hierarchical network
architecture, the relative weight of top-down and bottom-up
influences can be adjusted. This leaves room for learning or the
training of autonomic responses. For example, a non-adaptive
dysfunctional stress response can be modulated or go extinct
by the reappraisal of threat (top-down) or exposure to the
stressor (bottom-up). This means that stress levels could be
downregulated by lower level state feedback that is associated
with unthreatening situations. In our account these are the
pulmonary parameters: low respiration rate and long exhalation.

Vagal Nerve Stimulation
The many functions of VN have led researchers and clinicians to
develop electrical or behavioral intervention techniques for VN
stimulation (VNS). These techniques are promising for clinical
application and for improving cognitive performance. At the
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same time, the pattern of results observed following VNS mirror
those obtained by ContAct, making VN involvement likely, and
thus breathing exercises a promising candidate for stimulation.

Electrical VNS
Electrical VNS (Henry, 2002; Groves and Brown, 2005; Yuan and
Silberstein, 2016b) was originally used to treat epilepsy. However,
because it also increased the mood of stimulated patients it found
its way as an approved therapy for depression (Johnson and
Wilson, 2018), especially treatment resistant depression (Müller
et al., 2018). It is also used to treat cardiovascular disease (Das,
2011; Johnson and Wilson, 2018) and as mentioned earlier,
VNS has also shown acute anti-inflammatory effects (Browning
et al., 2017; Johnson and Wilson, 2018), possibly through the
anti-inflammatory pathway (Borovikova et al., 2000; Yuan and
Silberstein, 2016c).

VNS is also applied to respiratory conditions. A study
on guinea pigs has shown that strength of stimulation
makes a difference: high voltage produces the predicted VN
effects bronchoconstriction, reduced heart rate and blood
pressure, while low voltage only produces the pulmonary effects
(Hoffmann et al., 2012). Studies in humans, in contrast, show that
VNS can actually produce airway relaxation in asthma patients
during acute episodes, as indicated by an increase in forced
expiratory volume (Miner et al., 2012; Steyn et al., 2013). In other
words: stimulating afferent branches of VN during exacerbations
(shortness of breath) produces longer exhalations and therefore
slowing of respiration rate.

VNS has been shown to affect cognitive functioning, for
example memory consolidation and recognition (Clark et al.,
1999; Ghacibeh et al., 2006; Vonck et al., 2014). Effects
found on mood and memory can be interpreted through
the vagal projections into the central autonomous network.
It is also supposed that by vagal projections to the locus
ceruleus, norepinephrine levels are influenced in midbrain
and forebrain structures. This proposition is paradoxical as
norepinephrine increase is more associated with sympathetic
than with parasympathetic activity, and indeed evidence for
norepinephrine release by VNS is mixed (Ventura-Bort et al.,
2018). We propose that VNS actually increases PNS activity and
that norepinephrine projections play a minor role, as shown by
recent neuroimaging studies (Frangos et al., 2015). Clearly, VNS
not only shows effects on well-documented afferent and efferent
functions of VN, but also fits with the neurovisceral and CAN
account of cortical VN projections.

Transcutaneous VNS
Transcutaneous VNS (tVNS) is a new non-invasive tool that
is used to electrically excite the auricular or cervical branches
(afferent) through electrodes placed on the ear or neck. Though
this line of research is in its infancy, preliminary results also show
an association between tVNS and VN-related afferent functions
and projections. Shiozawa et al. (2014) concluded from a review
of neuropsychiatric studies that tVNS can reduce symptoms of
depression. Furthermore, a recent study has shown that (cervical)
tVNS indeed shifts autonomic balance from the SNS to the PNS
in tinnitus patients, as indicated by the increase of multiple vagal

tone HRVmeasures (Ylikoski et al., 2017). Neuroimaging studies
have also shown that cortical and sub-cortical regions identified
in CAN are activated during both cervical and auricular tVNS
(Dietrich et al., 2008; Frangos et al., 2015).

Few studies have been conducted using tVNS to influence
cognitive behavioral performance. However, two studies have
shown phasic changes in associative memory (Jacobs et al., 2015)
and in response selection (Steenbergen et al., 2015) following
tVNS. Interestingly, tVNS also causes effects that would be
expected if VN efferent function would be modulated, by
increases in vagal tone. Multiple studies and reviews show an
increase of PNS activity, and some also show a decrease of
SNS activity (Popov et al., 2013; Clancy et al., 2014; Murray
et al., 2016; Zhou et al., 2016). Furthermore, tVNS is also
associated with anti-inflammatory effects (Wang et al., 2014,
2015). These results overlap strongly with those obtained in
ContAct studies.

Behavioral VNS
There are also behavioral forms of VNS (vagal maneuvers),
which are supposed to stimulate VN bilaterally. The Valsalva
technique; pinching the nose closed and then trying to exhale
through the nose, is best known for returning normal pressure
to the inner-ear cavities when changing altitudes (Arnold, 1999).
It is initiated by flexing the abdominal muscles and extending
exhalation (in clinical or laboratory setting by blowing into a
balloon), showing a strong similarity with breathing techniques
in ContAct. Even further, extending, slowing and holding
respiration are all considered vagal maneuvers on their own,
stimulating the VN. All of these vagal maneuvers have been
shown to slow heart rate (bradycardia). We propose that the
breathing exercises of ContAct might be seen as a form of
behavioral VNS.

Overviewing the functions and applications of VN, one can
see its potential as a mediator between respiratory patterns
employed in ContActs and the reported effects on health, mental
health and cognition. This will be further outlined in our
model.

THE RESPIRATORY VAGAL STIMULATION
MODEL OF CONTEMPLATIVE ACTIVITY

The model, as depicted in Figures 2A–D, has a number of
assumptions, inductions and predictions. These can be roughly
divided into: (a) ContAct breathing; (b) respiratory stimulation;
and (c) long-term effects. This will be followed by a definition of
terms and measures.

ContAct Breathing
ContActs are multi-modal interventions that can incorporate
many different techniques and instructions. However, one of the
most prominent and common ContAct techniques is respiratory
regulation, in other words: breathing exercises. These breathing
exercises have in common the instructions to focus on and
slow down respiration, and/or extend exhalation. In Figure 2

this is represented by the node ‘‘breathing regulation’’ inhibiting
the nodes for respiration rate and inhalation/exhalation ratio,
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FIGURE 2 | Panel (A) represents an overview of the respiratory vagal nerve stimulation (rVNS) model of ContAct. See the text body for more details. There are two

pathways through which respiration style stimulates VN: direct and indirect (biofeedback through afferent projections), shown in (B,C) respectively. (D) The tonic

changes in the networks and the long-term effects. Color coding: red = VN, blue = other anatomy, purple = physiology, green = function, dark blue = direct route,

orange = indirect route. Arrow-ends represent role: triangle = activating or increasing, circle = deactivating or decreasing, bladed = structural increase,

ellipsis = structural decrease, diamond = afferent. Numbers on lines represent the temporal sequence during stimulation and the thickness of lines the phasic relative

synaptic weight of the connection as a result. The dashed line represents the hypothetical afferent pathway of the thoracic/abdominal ratio to VN. RR, respiration

rate; I/E, inhalation/exhalation ratio; T/A, thoracic/abdominal respiration ratio; HR, heart rate; HRV, heart rate variability; INF, inflammation state; SNS, sympathetic

nervous system; HPA, hypothalamic pituitary adrenal axis; CAN, central autonomous network; DMN, default mode network.

in other words: these exercises lower respiration rate and
ratio. However, even exercises where the breath is just an
attentional focus will lead to non-volitional adjustments of
respiration. Practitioners just being aware of their breath enter
slower and deeper respiration cycles. This can be caused by
individuals’ previous experience with slow and deep breathing
techniques, whose respiratory patterns will be automatically
superimposed on current respiration. Another way is through
the commonly slow pace of guided meditation instructions
themselves: practitioners will sync their respiration to this
rhythm. As focusing supposedly also leads to respiratory
adjustments, similar to the breathing exercises, this is fit in
the model overview (Figure 2A) by the node ‘‘breathing focus’’
showing a dashed line towards the node ‘‘breathing regulation.’’
Frequently adopting these respiration patterns (slowed and with
longer exhalations) can explain a significant part of the efficacy
foundwithin ContAct practice. Though the ContActs are diverse,
they have shown a similar pattern of beneficial effects on
health, mental health and cognition: mostly in stress-related
conditions and performance. This pattern can be explained by
these controlled breathing exercises.

Respiratory Stimulation
The main mediator of controlled breathing exercises on the
described health, mental health and cognitive effects is VN.
We posit that specific respiration patterns serve as respiratory

VNS (rVNS). The styles of respiration providing rVNS are
controlled breathing techniques that slow and deepen respiration
and extend expiration (Garcia et al., 2013), and possibly
those that put emphasis on relatively stronger diaphragmatic
breathing. Note that rVNS is bilateral stimulation by nature, as
opposed to unilateral electrical stimulation of VNS and tVNS. In
Figure 2 this is represented by the nodes respiration ratio and
inhalation/exhalation ratio inhibiting VN. As such, rVNS is one
of the main mechanisms of ContAct efficacy. rVNS can have
two routes: direct and indirect. Figure 2B represents the direct
stimulation and Figure 2C the indirect pathway of rVNS, which
is temporally ordered by connection numbering.

Direct Route
As can be seen in the dark blue path in Figure 2B, adopting
a low respiration rate and small inhalation/exhalation ratio can
directly stimulate VN, top-down from the executive network,
by its own efferents (connections 2). This phasic increase in
vagal activity increases reactive HRV, lowers heart rate and
blood pressure (also by cardiorespiratory coupling), inhibits
the SNS and indirectly the hypothalamic pituitary adrenal
axis, and potentially activates an anti-inflammatory pathway
(connections 3), resulting in a decrease of acute stress levels
(connections 4). Critically, we also posit that VN activation
statically increases cognitive control through CAN projections
(connections 5).
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Indirect Route
Indirectly, afferent VN pathways constantly signal respiratory
patterns upwards, in this case characterizing a state of relaxation
and low-threat. As a result, efferent VN activation further
increases vagal tone and produces associated physiological
consequences (e.g., lowering heart rate, blood pressure,
increasing HRV); a loop of relaxation ensues. In Figure 2C

this route is represented by orange diamond arrows (afferent)
that signal on respiratory patterns, possibly including the
ratio of thoracic and abdominal expansion (connections 1),
and the cardiac patterns influenced by the direct route
(connections 2). This relaxed body state goes up from VN
to the limbic system (connections 3), that in turn re-activates
VN (connections 4), increasing its excitatory weight on
cardiac and inflammatory patterns of physiological acute stress
(connections 5 and 6) and statically enhances cognitive control
(connections 7). The indirect route can be seen as a form
of biofeedback and is responsible for long-term changes in
vagal tone. In this the respiratory patterns play a key role:
a recent study using electroneurogram to map respiratory
pattern signaling of the left VN, showed a near perfect overlap
between this mapping and actual respiratory cycles (Sevcencu
et al., 2018). Note that the left afferent VN is the locus of
(t)VNS.

Diaphragmatic breathing might provide rVNS independent
of respiration rate and inhalation/exhalation ratio, represented
by the dashed inhibitory path of the thoracic-abdominal ratio
to VN in Figure 2C. When oxygen demand is high during
exercise or stress, SNS becomes active, and thoracic respiration
goes up, and abdominal muscles are actively inhibited (Secher
and Amann, 2012). When oxygen demand is low, in times of rest
and digest, the vagal dominant state, the ratio shifts more towards
abdominal respiration. The abdominal-thoracic respiration ratio
of the rest-and-digest mode of the PNS should thus be similar
to the ratio during ContAct practice. rVNS produces a wide
range of effects in health, mental health and cognitive flexibility
of the practicing individual, in the short as well as the long-
term.

Long-Term Effects of Respiratory
Stimulation

Stress Reduction and Anti-Inflammation
Though rVNS produces a phasic change in PNS activity during
and right after practice, in the long term it also results in
a tonic shift in autonomic balance, shown in Figure 2D.
As PNS activity goes up, SNS activity goes down. This shift
is known as vagal dominance. In vagal dominance chronic
stress and stress-related conditions are attenuated. Relaxation
or rest and digest behavior increases. VN is responsible for
the physiological effects of the red arrows in Figure 2D: heart
rate, blood pressure and inflammatory response go down,
whereas HRV goes up, which in turn also affects (chronic)
stress. This works directly through tonal activity of the PNS,
but also indirectly through inhibition of the SNS by VN.
Specifically, reduction of the (chronic) stress response has
positive effects on cardiovascular health and on stress-related

psychopathology, shown by the stress node inhibiting the health
and negative affect nodes, but also the general cognition node.
Furthermore, vagal dominance also leads to better immune
functioning and attenuation of inflammatory conditions. As
can be seen in Figure 2D: VN inhibits the inflammation
node, which inhibits the health node. These structural and
tonic physiological changes in the networks are represented
by bladed (activation) and elliptic arrows (inhibition) in
Figure 2D.

Cognitive Performance
rVNS increases vagal dominance in both resting state and in
active states demanding behavioral and cognitive flexibility.
The CAN (Benarroch, 1993) is a CNS network that receives
its projections from VN and overlaps with the executive
functioning network. The executive functioning network is not
only dependent on autonomic balance for proper functioning,
but can also be functionally and structurally changed by CAN
activity. Enhancement of executive functions in ContAct practice
results from rVNS of CAN, by structurally changing and
activating the hubs of the executive functioning network and
increasing their connectivity. In Figure 2D this is represented by
the bladed red arrow path going up fromVN to the limbic system
to the executive network and then to the executive function node.
Likewise, we hypothesize that default mode network (DMN,
Raichle et al., 2001) hubs and internal functional connectivity are
decreased, while DMN connectivity with the executive network
is increased. The role of the DMN can be visualized as being
inhibited by vagal projections and having a two-way inhibitory
pathway with the executive network, as represented in Figure 2.
These pathways are activated both phasically (Figures 2B,C) and
tonically (Figure 2D).

Terms and Measures
1. Different forms of volitional control of respiration are defined

as controlled breathing techniques. For this definition to be
valid it should be possible for humans to put respiration under
volitional control, overriding central pattern generated drive,
and this has indeed proven possible for the diaphragm (Kolár
et al., 2009).

2. Vagal tone is a construct relating to intra-individual tonal
levels of PNS activity. Vagal tone can indirectly be indexed
using HRV, notably respiratory sinus arrhythmia.

3. Vagal dominance refers to a relatively higher activity of
PNS over SNS. Vagal dominance (PNS hyperactivity and
SNS hypoactivity) should be observable in physiological
measures of PNS (i.e., HRV) and SNS (i.e., pre-ejection
period, skin conductance, cortisol) activity. Vagal dominance
can be increased both in acute and chronic time settings
(Porges, 2001, 2007). However, in this work it is defined as
a macro-state of autonomic balance, spanning minutes and
hours, not a micro-state, changing millisecond to millisecond,
for example: in heart node activation.

4. HRV is also a suitable inverse measure of acute and chronic
(psychological) stress (Porges, 1992, 1995). HRV can be
used as an indirect indicator of intra-individual and possibly
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inter-individual differences in executive functions (Thayer
et al., 2009).

5. As rVNS is a form of VNS, results obtained from studies using
other modes of VNS should resemble those from ContAct
studies in similar conditions, although not necessarily with
perfect overlap.

6. The stress release refers to stress responses over larger scales of
time; not the acute adaptive arousal employed in challenging
situations, but the perseverative and chronic kind; in other
words: the default stress response (Brosschot, 2017).

rVNS: Evidence and Possible Mechanisms
What evidence is there for respiration as a mode of VNS?
In our model there are two ways respiration can stimulate
VN: directly and indirectly. In the direct route, slow breathing
and extended exhalation are caused by vagal activity. This
follows from the previously mentioned role of VN in respiratory
affective and effective processing (slowing and exhalation).
Controlled breathing in this form thus uses the vagal nerve
as effector and increases its activity volitionally, if only
momentarily. The indirect route involves stimulation through
biofeedback and follows from physiological feedback theory:
by adopting physiological body patterns associated with
relaxation and low threat situations (i.e., slow breathing)
vagal afferents project this state to the CNS, which interprets
this as a reflection of the current contextual threat level,
and proceeds by further adopting a rest-and-digest state top-
down, again through VN. The indirect route is responsible
for more long-term tonic changes of vagal tone. By either
route, breathing styles with low respiration rate and low
inhalation/exhalation ratio should show increases in vagal
tone, though in slightly different timeframes (Keyl et al.,
2001).

Evidence
Most experimental studies show higher HRV following breathing
instructions, consistent with the involvement of rVNS. In
particular, there is ample evidence that slow and deep breathing
increase HRV indices of vagal tone (Hirsch and Bishop, 1981;
Pal et al., 2004; Larsen et al., 2010; Lehrer and Gevirtz, 2014;
Critchley et al., 2015; Mortola et al., 2015; Tavares et al.,
2017) and lowers stress markers such as: heart rate, blood
pressure and salivary cortisol (Lee et al., 2003; Pramanik
et al., 2009; Perciavalle et al., 2017). Van Diest et al. (2014)
looked specifically at the effects of different inhalation/exhalation
ratio at either slow or normal respiration rate on different
HRV measures (peak-valley, HF): higher HRV (both measures)
was reported in the slow respiration condition, but only
for extended exhalation, inhalation/exhalation ratio: 0.24, and
not for extended inhalation, inhalation/exhalation ratio: 2.33.
Though normal ratios were not included, this study most clearly
shows the stimulating effects of the specific respiration styles
on VN. For another example of extended exhalation, albeit
with a completely different aim and context: a study on native
American flute playing showed significant increases in HRV
during playing, contrary to what one would expect during
exerting activity (Miller and Goss, 2014). It needs no mention

that playing any piping instrument involves extreme extended
exhalation.

As far as we know, few studies report a decrease in HRV
after controlled breathing, and these are primarily found outside
the domain of ContActs. Sasaki and Maruyama (2014) gave
instructions to participants to ‘‘control breathing,’’ without
emphasizing a particular style (rate or ratio), and compared that
to spontaneous breathing. This resulted in lower HRV, which
may be the result of an increase in mental effort, stress, and
thus SNS activity. Indeed, earlier reports also show a decrease
of HRV when breathing is only ‘‘controlled’’ (Bernardi et al.,
2000) as compared to directed in a specific direction. Note
here the apparent contradiction with our own view that paying
attention to the breath would result in lower respiration rate
and possibly smaller inhalation/exhalation ratios: instructing to
‘‘control’’ vs. ‘‘focus on’’ seems to have opposing results on
autonomic balance.

As we are reviewing breathing techniques that are practiced
in ContActs, studies that look into autonomic functioning
through ContActs employing these kinds of techniques should
report increased vagal tone. Indeed, HRV increases in almost
all forms of ContAct, consistent with the rVNS hypothesis.
Different forms of meditation (e.g., body scan, FA, OM acem,
zen) and mind-body exercises such as yoga, all show increases
in vagal tone HRV in healthy participants (Ditto et al., 2006;
Phongsuphap et al., 2008; Wu and Lo, 2008; Tang et al., 2009;
Markil et al., 2012; Melville et al., 2012; Nesvold et al., 2012;
Telles et al., 2013). One exception is a study that involved
the earlier mentioned ‘‘breath of fire’’ (Peng et al., 2004) that
showed a decrease in HF, LF and LF/HF ratio. This is not
surprising and consistent with our biofeedback perspective, as
breath of fire is strictly speaking controlled hyperventilation and
would thus rather result in SNS activation and PNS inhibition.
Though ContActs by great majority do not employ this particular
rare technique, this nonetheless stresses the importance of
mapping actual practiced techniques in every ContAct to their
outcomes. From these abundant, though correlational, findings
on respiration and vagal tone we conclude that a form of
rVNS plays a role in ContAct efficacy. However, less clear
is what the exact physiological mechanisms of stimulation
might be.

Possible Mechanisms
The first possible physiological mechanism for these respiratory
patterns to stimulate VN (as biofeedback) is by way of the
baroreceptor reflex (Vaschillo et al., 2002; Lehrer et al., 2003).
This reflex is responsible for regulating blood pressure and is
triggered by stretch-activated mechanoreceptors (baroreceptors)
in blood vessels, which leads to activation of the vagal branch of
the heart node, that reduces heart rate and subsequently blood
pressure. The threshold for triggering this reflex (cardiovagal
baroreflex sensitivity) can be lowered by a respiration rate
around 0.1 Hz or about 6 breaths per minute. Interestingly,
this is exactly the same respiration rate that is reported in
respiration studies as having the highest increase of HRV.
Lowering the sensitivity results in more frequent reflexes, lower
heart rate, and increased vagal tone (Song and Lehrer, 2003;
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Lin et al., 2012; Wang et al., 2010b; Lehrer and Gevirtz,
2014; though see Tzeng et al., 2009; for an exception). This
mechanism is a faster indirect route between respiration rate
and heart rate, as mediated by VN, than the biofeedback route
through VN afferent subcortical projections signaling broad
relaxation.

The second possible feedback mechanism is even more
direct and comes from the lungs themselves: the pulmonary
mechanoreceptors. These VN afferents directly relay tidal
volume upstream and are responsible for initiating particular
physiological responses, notably the Hering-Breuer reflex
(Breuer, 1868; Hering, 1868). The reflex is triggered by significant
lung volume increase (e.g., during inhalation) and inhibits the
central inflation drive, resulting in extended exhalation and
slower respiration. In this way, when a practitioner starts a
breathing exercise with a deep breath (a long inhalation), this
immediately triggers the reflex, resulting both in activation of
VN as well as the initiation of respiration styles that further
relay relaxation. Furthermore, the dominant and supported view
is that the mechanoreceptors, together with central pattern
generated drive, are also responsible for respiratory sinus
arrhythmia (Taha et al., 1995; Eckberg, 2003; Mortola et al.,
2015).

The slowest of the indirect routes: biofeedback, where low
respiration rate and small inhalation/exhalation ratio signal
a resting state to the CNS is consistent with the James-
Lange physiological feedback hypothesis of emotion and similar
accounts (Levenson, 1994; Critchley and Garfinkel, 2015). The
theory, independently proposed by William James and Carl
Lange, maintains that the identification and experience of
an emotion follows from peripheral physiological responses
(e.g., arousal), instead of the other way around. The kind
of emotion experienced depends on the interpretation of the
physiological state and the appraisal of the context in which it
is triggered. So, the physiological stress response precedes the
subjective emotional experience of fear or sadness. Following
this argument, bottom-up changes to dysfunctional emotional
states can be produced by changing the physiological state
of the body; in other words: relaxing the body relaxes the
mind.

In sum, there is evidence that particular breathing exercises
(with low respiration rate, small inhalation/exhalation ratio)
are capable of stimulating the vagal nerve (rVNS), though the
exact mechanisms of stimulation are proposed, not proven
(i.e., baroreflex). The next question is how prolonged increase
in vagal tone results in the beneficial effects found on health
and mental health. Vagal dominance is contingent on consistent
physiological relaxation. It therefore produces (chronic) stress
release, and thereby prevents or ameliorates stress-related
pathology and etiology.

Relaxation vs. Stress: Health and Mental
Health Outcomes
Although SNS and PNS can be simultaneously active in a
particular domain, they mostly operate as opposing forces
(Berntson and Cacioppo, 1999; Freeman, 2006). SNS activity

goes together with PNS inactivity and vice versa. Therefore,
PNS hyperactivity (as indicated by HRV) also reflects SNS
hypoactivity: vagal dominance. Plainly stated: relaxation means
absence of stress. If ContActs work through relaxation by
respiratory stimulation of the PNS, then stress should go down.
This explains the observation that syndromes relieved after
ContAct practice are often those associated with stress and SNS
dominance.

The role of (chronic) stressors on the development of
cardiovascular disease, through the cardiovascular response
(Obrist, 1981) of the SNS causing atherosclerosis and
hypertension, is well documented (Allen and Patterson,
1995; Rozanski et al., 1999; Thayer et al., 2010). That stress
influences immune function is also well-known. Initially and
acutely, stress suppresses immune function, but chronically
it exacerbates immune response (Sapolsky et al., 2000;
Haroon et al., 2011; Ménard et al., 2017). Additionally,
stress seems to worsen auto-immune disease (Elenkov and
Chrousos, 2002). Furthermore, there are indications that
the two systems are related in their morbidity by SNS-PNS
imbalance: recovery of both cardiovascular and immunological
markers is impaired after stressors, when baseline vagal
tone is low (Weber et al., 2010). Also noteworthy is the
existence of an inverse relationship between HRV and both
inflammation and the risk of cardiovascular disease (Haensel
et al., 2008). Bringing these findings together, HRV seems
suitable as a multi-index of health: of physiological stress
(Porges, 1995), as a measure of cardiovascular risk (Thayer
et al., 2010) and of immunomodulation (Thayer and Sternberg,
2010).

In the mental health domain, mood disorders such as
depression are widely recognized as being stress-related. They
are often accompanied or triggered by acute or chronic life event
stressors in the prodromal phase (Gold and Chrousos, 2002;
Duman and Monteggia, 2006; Orosz et al., 2017). Depression
has also shown a relation with the other stress-related diseases:
there is a link of depression with occurrence of cardiovascular
disease (Hare et al., 2014) and with the likelihood of having an
overreacting immune system (Dantzer et al., 2008; Miller et al.,
2009; Felger and Lotrich, 2013). All in all, these systems and
their pathologies seem to be interrelated, wherein the common
denominator is autonomic balance.

A healthy autonomic balance is vagally dominated and
comes about by stress relief produced by PNS activation
and SNS deactivation. If this is the way the aforementioned
pathologies are positively affected, then there should be a
clear negative relationship between vagal tone and the risk
factors and symptoms of these conditions. Indeed, HRV shows
a negative correlation with cardiovascular disease in children
and adults (Tully et al., 2013; Oliveira et al., 2017) and even
directly predicts hypertension (Schroeder et al., 2003). It has
an inverse relationship with inflammation (Lampert et al.,
2008; Kemp and Quintana, 2013), inflammation in depression
(Carney et al., 2007), depressive symptoms in children and
adults (Sgoifo et al., 2015; Koenig et al., 2016), perseverative
cognition (Ottaviani et al., 2016), bipolar disorder symptomology
(Faurholt-Jepsen et al., 2017), general anxiety and disorders
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(Cohen and Benjamin, 2006; Tully et al., 2013; Chalmers et al.,
2014) and has recently even shown a negative correlation
with schizophrenia (Clamor et al., 2016). Though schizophrenia
is not considered a stress-related disorder, the role of HRV
in schizophrenia is intriguing considering the interplay of
dysfunctional emotional regulation and executive functions in its
symptomology.

Stress has a negative association with executive or PFC
function. Chronic stress has a degenerative effect on PFC
structure and functioning (Arnsten, 2009, 2015; McEwen and
Morrison, 2013) and seems to adversely affect its plasticity
(McEwen et al., 2012). A study by Zhang et al. (2014), that
builds on the correlational work of Nagai and others (Nagai
et al., 2004, see Critchley and Garfinkel, 2015, for a review)
shows a causal involvement of ventromedial PFC in physiological
arousal: when ventromedial PFC activity goes up, electrodermal
activity (skin conductance level) goes down. In other words:
prefrontal structures suppress stress. A conclusive review by
the international behavioral neuroscience meeting (Radley et al.,
2015) stated the negative effects of stress on the plasticity of
the limbic network (amygdala, hippocampus and PFC) and its
pivotal role in the etiology of aforementioned (mental) health
conditions.

In sum, (chronic) stress is a significant negative mediator in
all of the domains that benefit from ContAct. It is here proposed
that these beneficial effects occur by (chronic) stress relief as a
result of vagal dominance by rVNS. In other words: breathing
exercises produce stress relief (Lee et al., 2003; Pramanik et al.,
2009; Perciavalle et al., 2017). We have also already indicated
that chronic and high levels of stress are negatively related to
executive functions and PFC functioning. Next, we will show
that there is also a positive relation between vagal tone, CAN
areas and the executive functioning network, as predicted by
the neurovisceral integration model, and between changes in
CAN and ContAct practice as predicted by the rVNS model of
ContAct.

CAN: Regulated Emotion and Enhanced
Cognition
The link from VN to PFC (Ter Horst and Postema, 1997; Wager
et al., 2009a,b) is a critical element of the CAN in mediating
rVNS effects of ContAct onto executive functions. Likewise,
projections into limbic parts of the CAN allow ContAct to
enhance positive affect via rVNS. If these projections are actually
used, vagal tone should have a positive correlation: (i) with
executive functions or PFC activation and (ii) with emotional
control or medial PFC activation. See Thayer and Lane (2000)
for the CAN network as adapted in the original neurovisceral
integration model.

HRV, Cognitive Control and PFC
There indeed is an association between HRV and executive
functions, as first shown by Thayer and Fischer (2009), especially
in emotional control: HRV predicts inhibition of attention
to emotional stimuli (Park et al., 2012, 2013), it shows a
positive relation to attentional control and negative relation
to risk aversion in anxiety (Ramírez et al., 2015), predicts

attentional lapses (Williams et al., 2016), and it is involved
in cognitive inhibition, proactive cognitive control (Capuana
et al., 2012, 2014) and emotional inhibition of conditioned
fear (Wendt et al., 2015). A recent meta-analysis also supports
a relationship between HRV and cognitive control: executive
functioning, pooled across the subdivisions of Miyake et al.
(2000), showed a positive average association with HRV level,
though the authors note a strong publication bias (Zahn et al.,
2016). The effects can especially be observed in cognitively
demanding settings. A brain imaging study shows that functional
connectivity of the amygdala and medial PFC are associated with
higher HRV in both younger and older people (Sakaki et al.,
2016).

The link between HRV and the PFC seems to be very direct:
they share a common genetic background (Thayer et al., 2009)
and HRV and executive functions show a similar ontogenetic
developmental trajectory; going up until early adulthood and
going down again with advancing age (Umetani et al., 1998;
Zelazo et al., 2004). This is expected if VN and PFC form
a single system: CAN. Another clue to the involvement of
VN in executive functions comes from the work of van der
Molen (2000) into the development of inhibitory control. During
successful cognitive inhibition of action representations, heart
rate deceleration can be observed, after which heart rate goes up
again (Schel et al., 2013). As we have seen, heart rate slowing is
under direct control of VN, indicating vagal dominance during
employment of cognitive control.

Changes in CAN Regions Through ContAct
As we hypothesize that in ContAct rVNS is responsible
for the emotional and cognitive enhancement by changes in
CAN, studies looking at functional and structural changes
in the brain in practitioners should show these changes
along this whole network—in the limbic system and executive
functioning network; in the levels of the updated neurovisceral
integration model (see Smith et al., 2017). Studies on ContAct
practice have shown this for the limbic part of CAN. For
example, a decrease in volume and activity has been observed
in the amygdala (Hölzel et al., 2010; Tang et al., 2015)
and in the hippocampus (Luders et al., 2009, 2012c) in
practitioners of different styles of meditation (both FA and
OM). Insular cortex and posterior cingulate also increase in
activity and volume in the same populations (Lazar et al.,
2005; Hölzel et al., 2011a,b; Kirk et al., 2011; Luders et al.,
2012b; Tang et al., 2015). The practice of yoga shows the
same pattern (Froeliger et al., 2012; Desai et al., 2015),
while a TCC study shows the most significant morphological
changes in the insula and dorsolateral PFC (Wei et al.,
2013).

The ACC is a limbic structure, but is also part of executive
functioning network and active in cognitive control, and is
central in CAN. Notably its dorsal part has been implicated
in autonomic control, as it modulates cardiovascular stress
responses (Critchley et al., 2003). Following the previous
argument, ACC should also be implicated in imaging studies
of ContAct efficacy, and indeed, functional and structural
enhancement in ACC has been reported in meditation styles
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and in mind-body exercises (Cahn and Polich, 2006; Tang
et al., 2009, 2010, 2015; Hölzel et al., 2011b; Xue et al.,
2011; Wei et al., 2013). The frontal end stations of CAN also
show predicted structural changes: PFC gray matter density is
increased by diverse meditation styles and mind-body exercises
(Lazar et al., 2005; Luders et al., 2009, 2012a; Lutz et al.,
2015; Hölzel et al., 2011a; Froeliger et al., 2012; Tang et al.,
2015; Wei et al., 2013; Yin et al., 2014; Desai et al., 2015).
In sum, there is a large overlap between the brain regions
changed by ContAct—amygdala, hippocampus, insula, ACC and
multiple areas of the PFC—and those identified in CAN. Note,
however, that these areas have been implicated in behavioral
studies with very diverse tasks and contexts—not only in
ContAct.

Default Mode and Executive Network Plasticity by

VNS
In general, brain connectivity seems to increase by ContAct
practice across multiple projections, commissures and
associatedsociative networks, as shown by several diffusion
tensor imaging studies (Luders et al., 2011, 2012b). Meditation
practice (and trait mindfulness) is associated with greater
connectivity between the executive, DMN and salience networks
specifically (Brewer et al., 2011; Hasenkamp and Barsalou,
2012; Doll et al., 2015). Notably the DMN is implicated in
neuroimaging studies among ContAct practitioners. DMN is
active when external stimulation and work demand is low.
Its main hubs are medial PFC, posterior cingulate cortex
and parahippocampal region (Raichle et al., 2001); the last
of which is believed to operate as the hub between DMN
and limbic areas (Ward et al., 2014). The role of DMN
in cognitive control can be seen as opposing that of the
executive network; lapses of attentional control (i.e., mind
wandering) are contingent on DMN activity over executive
network activity (Gratton et al., 2018), in this way DMN can
be viewed as a ‘‘task-negative’’ network (Fox et al., 2005).
Studies on changes in connectivity by ContAct experience
show deactivation of DMN hubs (i.e., posterior cingulate
and medial PFC) and decreased functional connectivity
between these hubs. At the same time the functional
connectivity between the DMN and executive networks
goes up (Brewer et al., 2011; Hasenkamp and Barsalou, 2012).
This mirrors what is consistently found in imaging studies
that apply VNS to individuals with (treatment-resistant)
depression.

Depression is associated with a disrupted DMN, particularly:
hyperactivity and hyper-connectivity among DMN hubs, as
well as hyper-connectivity between DMN and limbic system,
and hypo-connectivity between DMN and executive network
(Drevets et al., 2008; Gong and He, 2015; Kaiser et al.,
2015). Clinical trials employing chronic VNS in patients with
depression show a normalization of this etiology, obtaining
results very similar to ContAct practice. One study on patients
with depression not responding to regular treatment showed
increased metabolism in the DMN hub ventromedial PFC
(Pardo et al., 2008). While a similar study reported decreased
activity (regional cerebral blood flow) in another DMN

hub (posterior cingulate) and in the limbic system (insula),
concurrently increasing activity in dorsolateral PFC of the
executive network (Kosel et al., 2011). Another imaging study
(on epilepsy), reports a decrease in regional cerebral blood
flow in the DMN hub parahippocampus, as well as in the
hippocampus and the thalamus by chronic VNS (Van Laere et al.,
2002).

The few tVNS studies so far show a similar pattern as those
obtained with VNS. One study of major depression reports
that tVNS decreases the resting-state functional connectivity
between main DMN hubs and parahippocampus—the DMN
hub that connects to the limbic system—and anterior insula
(Fang et al., 2016). Contrarily, it increases the resting-
state functional connectivity of DMN with the precuneus
and orbitofrontal cortex (executive network). In addition, all
these connectomic changes were associated with reductions
in depression severity. A fMRI study in a normal population
shows that tVNS can acutely reduce activity in DMN hubs:
parahippocampal and posterior cingulate (Kraus et al., 2013).
There are also indications that tVNS produces changes in
the executive network itself. Badran et al. (2018) are the
first to show increases in metabolic activity between the
main hub axis of dorsolateral PFC and ACC by tVNS.
Another tVNS study produces changes between the executive
network and limbic system, by decreasing functional connectivity
between rostral ACC and medial hypothalamus in depression,
all associated with clinical improvement (Tu et al., 2018).
Somewhat paradoxically, a study on patients diagnosed with
major depressive disorder showed a decrease in symptoms
due to tVNS, but combined with an increase in resting-state
functional connectivity between the amygdala and dorsolateral
PFC, so between the limbic and executive systems (Liu et al.,
2016).

Concluding: it has clearly been shown that activity in
afferent branches of VN can affect areas and networks in
the CNS, both acutely (e.g., by tVNS) and chronically (e.g.,
by chronic VNS). This notably affects the DMN, which is a
critical CAN level in the latest version of the neurovisceral
integration model (see Smith et al., 2017 for details). Central
changes as a result of ContAct practice within DMN and
between DMN and executive network are practically identical
to those observed by (t)VNS studies. This makes vagal
involvement and thus the mechanism of rVNS highly likely
in producing these neurobiological effects and the concomitant
improvements in cognition and affect. Concretely stated:
DMN deactivation and increased DMN-executive network
connectivity is caused by rVNS and will lead to improvements
in cognitive control (e.g., cognitive inhibition) and performance
monitoring.

DISCUSSION

We have shown that ContAct practices, though diverse, have
a number of components in common that can explain their
efficacy in individual physical health, mental health and
cognition. Furthermore, one of these components: breathing
techniques, is a prime candidate to explain the complete
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pattern of results, notably in the stress-related domain. We
have further provided a neurophysiological model in which
slow respiration and extended exhalation stimulate VN via
two possible routes: rVNS. This results in PNS over SNS
dominance, structural and functional changes in higher cortical
areas through autonomic projections, and is thus responsible for
aforementioned effects.

In these claims, one of the main arguments for the rVNS
model of ContAct concerns the dovetailing between specific
functions of VN with the pattern of effectivity shown by diverse
ContActs; providing beneficial effects on cardiopulmonary
fitness, immune function, psychological health, stress, anxiety
and executive functions. The neurophysiological link between
the two can be found in vagal tone: the existent relationship
between the aforementioned functions and conditions with HRV
and that of HRV with the VN. Evidently HRV is then an index of
adaptability in a broad sense.

We realize that there might be more common factors
involved in ContAct interventions than we have covered and
categorized here. There also might be unique components to
particular traditions, as well as emergent properties of specific
combinations of components; almost all ContAct interventions
are multi-modal. For example, many of the covered traditions
are not practiced in isolation, but in group sessions. Social,
and even physical, contact could be a factor in relieving stress
and in alleviating depression. Though we do not discount the
other factors covered and those possibly left out, we believe
that respiration style and vagal functioning fit the evidence
best, and following Occam’s razor, it stands out as the most
parsimonious of explanations. However, also rVNSmight benefit
from a specific combination. For instance, combining rVNS
with affect training: exposure and reappraisal procedures could
be strengthened by the concurrent body relaxation brought on
by rVNS, the biofeedback would weaken the stress response
and negative emotion brought up by an aversive or traumatic
memory.

Following the observation on the multi-modality of ContAct,
we maintain that many null-findings and conflicting results
in the literature could be ascribed to the presence or absence
of particular effective components. For example, a yoga class
only focusing on stretching and shifting positions might
not have any executive functions benefits other than those
stemming from some form of relaxation, but does show
changes associated with mild exercise. Studies performing
systematic analyses that compare functional ContAct elements,
based on concrete predictions, are therefore sorely needed.
Reported findings that show controlled breathing increasing
SNS activity further underline the importance of making
clear what kind of techniques are employed. This includes
reporting on the exact instructions given and controlling for
compliance to these instructions. Our predictions are only valid
as far as interventions result in slow, deep (diaphragmatic)
breathing—not in other breathing styles, such as fast and
deep breathing during physical exercise. Thus, the described
beneficial effects on health and cognition are predicted to
occur more in ContActs with breathing exercises stressing
relatively short inhale (SNS controlled) and long exhale (PNS

controlled), than in ContActs that do not emphasize this
distinction.

Some ContAct practitioners might proclaim that their
particular tradition (notably FA) does not involve any breathing
exercises. That the exercises only instruct to pay attention to
the breath, and not to modulate respiration in any way; that
instructions to change anything in breathing patterns are absent.
They might also state that the breath is only one of many foci.
For example: it could be a visual focus, such as a flickering
candle flame or verbal, as in a mantra. But the fact is, that
across these diverse FA traditions it usually is not another kind
of focus, it usually is the breath, and we maintain that this
is not arbitrary. As previously stated, we maintain that it is
unlikely that focusing on the breath does not affect respiratory
patterns. In our view, directed conscious awareness to breathing
will slow respiration in expert and layman alike, through direct
and indirect experience with different breathing exercises and the
implicit or explicit idea, an ideomotor representation if you will,
what it should be like to meditate: meditating involves relaxed
breathing. Furthermore, the rhythm of auditory instructions is in
a slower pace than normal breathing, thereby slowing respiration
as well. Of course, these are assumptions that should be tested in
further experiments. But, if attention does slow respiration, this
makes all these traditions fall under the explanatory umbrella of
the rVNS model of ContAct.

So far, the picture painted from rVNS has been optimistic.
However, there might be circumstances and doses where no
beneficial effects can be expected. For example: in chronically
stressed individuals vagal activation might have such a high
threshold that rVNS will have no noticeable effect; they might
prove resistant to the intervention. rVNS might even have
adverse effects, such as overstimulation. In a condition known
as vasovagal syncope, vagal efferents reduce heart rate to such a
degree that blood pressure drops to dangerous levels, resulting
in fainting and symptoms of chronic fatigue. As indicated by
VNS studies showing bronchoconstriction, stimulation might
be dangerous for pulmonary pathology, such as chronic
asthma (Hajnšek et al., 2010). However, studies varying VNS
voltage suggest that strength of stimulation could make the
difference between beneficial or detrimental (Hoffmann et al.,
2012). Respiratory VNS might be as beneficial and healthy
as the individual baselines (e.g., autonomic balance) allow.
By extension, these dangers could be present for ContAct
practices as well. But as far as we know, there are no studies
on adverse effects produced by ContActs. This does not deny
their existence as the absence could be a result of publication
bias.

On a similar note: higher vagal tone HRV is not always better.
Much like arousal levels optimal levels of HRV for physical
and mental functioning might follow an inverted U-shape, as in
the Yerkes-Dodson law (Yerkes and Dodson, 1908). Individuals
with a resting HRV at the right side of their personal curve
might actually present adverse effects if HRV levels are further
increased, autonomic balance shifting too far away from the
sympathetic. In contrast, individuals with HRV levels falling at
the left end of that curve might benefit the most from increasing
HRV (by rVNS), being ‘‘parasympathetically compromised.’’
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Also, there might be differences between populations in the
shape of this curve and there might be different curves for
different VN functions. For example, as first reported by Wang
et al. (2005), but see Hill et al. (2015) for a review, African
Americans’ resting HRV is on average higher than that of
Caucasian Americans, while the prevalence of cardiovascular
disease is higher in African than in Caucasian Americans.
This is counterintuitive if HRV is seen as a pure measure of
vagal tone. At the same time, the relationship with anxiety
and depression does follow the predicted direction: African
Americans suffer less from these conditions than Caucasian
Americans (Breslau et al., 2006). Further research has to address
the question whether there is an inverse relationship between
HRV and cardiovascular disease in this population, whether
relatively higher HRV for this population is not optimal HRV
regarding cardiopulmonary function, giving room for further
enhancement, or perhaps whether this is a HRV methodological
artifact.

In light of the necessity to report the specific instructions
and exercises in every intervention study, mention has to
be made of mindfulness meditation. When we and many
other authors report on mindfulness meditation, this usually
refers to two clinical programs: mindfulness-based stress
reduction and mindfulness-based cognitive therapy. Both of
these are multi-modal interventions, in which not only
mindfulness meditation and other meditation techniques play
a role, but also physical exercises (some form of yoga),
mental strategies, and in mindfulness-based cognitive therapy:
cognitive-behavioral therapy. Most studies that report on the
effects of mindfulness or mindfulness meditation, that use these
programs as interventions, should therefore strictly speaking
not be taken as ‘‘pure’’ mindfulness meditation; subsequently,
caution is advised in interpreting result.

We want to note that HRV (respiratory sinus arrhythmia)
as a valid measure of vagal tone, also maintained by Thayer
and colleagues, is not without its critics (Grossman and Taylor,
2007). Grossman and colleagues have shown in their experiments
that under different respiration conditions, respiratory sinus
arrhythmia does not reflect changes in vagal tone accurately
(Kollai and Mizsei, 1990; Grossman and Kollai, 1993; Taylor
et al., 2001). They maintain that HRV measures should always
be controlled for by respiration. Since these studies, there has
been limited follow-up of these criticisms, as can be seen in a
recent review of HRVmethods (Laborde et al., 2017). We believe
this issue should be addressed resolutely. More neuroscientific
experiments directly assessing the relation between the different
HRV measures and vagal tone are needed. As far as the
implications for the rVNS model of ContAct: it includes
assumptions made by the polyvagal and the neurovisceral
integration accounts; and it loads evidence for the existence of
rVNS on those assumptions. However, we maintain that HRV
does not need to be a ‘‘pure’’ measure of vagal tone for it
to be useful as a measurement—a relational representation is
enough. But even if respiration confounds on vagal tone are
insurmountable, making HRV unusable as its measure, this
will not affect the core assumptions of our model and the
predictions it makes. In the future, other measures of SNS/PNS

activity and balance should be developed. In any case, the
rVNS model of ContAct still provides testable and falsifiable
predictions.

Though we are not able to definitively prove a causal
link between breathing, VNS and improvements in body and
mind, we believe we have provided ample evidence suggesting
the existence of this link, largely by providing overlapping
patterns of specific phenomena. Empirical studies need to
put our hypotheses to the test. Furthermore, other concrete
neurobiological mechanisms for the systems described in this
work need to be proposed and charted by experimental studies,
as prescribed for the field by Thayer et al. (2011). Studies on
different respiration styles, using psychophysiological measures
for PNS and SNS activity and tasks assessing executive functions
acutely and longitudinally could provide concrete tests of our
hypotheses. Imaging studies mapping structural and functional
changes in the CAN following rVNS are critical for our
hypotheses on cognitive functioning, especially: changes in DMN
and executive network mirroring VNS results are expected.
Other indirect tests include experiments comparing ContAct
interventions with (t)VNS manipulations. As an established
phenomenon, studies of rVNS dose-response relationships, with
personal baseline levels, could follow. What is the ‘‘vagus code’’
of rVNS (Kwan et al., 2016)? What are observed differences
caused by specific modes of stimulation? For instance, electrical
VNS and behavioral rVNS differ also in laterality: unilateral vs.
bilateral stimulation, which might produce different effects (and
strength of stimulation).

Lastly, as for the reasons why breathing techniques have gone
pretty much unnoticed as a mechanism of ContAct efficacy,
while being so prevalent and well-known, we propose that it
perhaps has to do with this prevalence: it is such an unremarkable
fact, so plainly observable and a starting point of practice. This
could be coupled with a tendency to focus on ‘‘higher’’ levels of
consciousness among practitioners, and on higher level processes
and structures in cognitive neuroscientific research. Relaxation
might also be assumed and uninteresting, breathing exercises
are automatically factored in, something for novices, hardly
remembered by the expert. We hope that through this work
future research on ContActs will recognize and study breathing
techniques as an effective component, and that neuroscience will
focus on rVNS respiratory patterns as potential cognitive and
(mental) health enhancers.
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