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We demonstrate the existence of a breather mode in the self-consistent electron dynamics of a semiconductor

quantum well. A nonperturbative variational method based on quantum hydrodynamics is used to determine the

salient features of the electron breather mode. Numerical simulations of the time-dependent Wigner-Poisson or

Hartree equations are shown to be in excellent agreement with our analytical results. For asymmetric quantum

wells, a signature of the breather mode is observed in the dipole response, which can be detected by standard

optical means.

DOI: 10.1103/PhysRevB.80.073301 PACS number�s�: 73.63.Hs, 73.43.Lp, 78.67.De

I. INTRODUCTION

The many-electron dynamics in nanoscale semiconductor

devices, such as quantum wells and quantum dots, has re-

cently attracted a great deal of interest, mainly in view of

possible applications to the growing field of quantum

computing.1 Particular attention has been devoted to inter-

subband transitions, which involve excitation frequencies of

the order of the terahertz.2 On this time scale, various collec-

tive electronic modes can be excited. For instance, the elec-

tric dipole response is dominated by a strong resonance at

the effective plasmon frequency. This resonance �known as

the Kohn mode�3 is characterized by rigid oscillations of the

electron gas, which, for perfectly parabolic confinement, are

decoupled from the internal degrees of freedom.

In this Brief Report, we show the existence of a new

distinct resonance—a monopole or “breather” mode—which

corresponds to coherent oscillations of the size of the elec-

tron gas around a self-consistent equilibrium. Breather

modes have been described in many areas of physics, such as

nuclear matter4,5 �where they are known as giant monopole

resonances� and ultracold atom dynamics.6,7 In experiments

on metallic nanoparticles, monopole oscillations of the ionic

structure have been observed, which manifest themselves as

slow modulations of the surface plasmon.8 However, to the

best of our knowledge, previous investigations have not ad-

dressed the features of the breather mode in the self-

consistent dynamics of a confined electron gas. Although

quantum wells constitute a typical instance of such confined

systems, the present approach should equally apply to metal

nanoparticles and carbon-based systems such as fullerenes.

II. MODEL

Because of the translational symmetry in the transverse

plane, the problem reduces to a one-dimensional �1D� one in

the x direction.9,10 To model the electron dynamics, we use a

self-consistent quantum hydrodynamic model �QHM� that

was originally derived for quantum plasmas11,12 and metallic

nanostructures.13 In the QHM, the evolution of the electron

density n�x , t� and mean velocity u�x , t� is governed by the

continuity and momentum equations
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where m
�

is the effective electron mass, � is the reduced

Planck constant, P�x , t� is the electron pressure, and Veff

=Vconf�x�+VH�x , t� is the effective potential, which is com-

posed of a confining and a Hartree term. The Hartree poten-

tial obeys the Poisson equation, namely VH� =−e2n /�, where e

is the magnitude of the electron charge and � is the effective

dielectric permeability of the material. The term proportional

to �2 on the right-hand side of Eq. �2� represents the quantum

force due to the so-called Bohm potential.14

The above QHM can be derived from the self-consistent

Hartree equations12— or equivalently from the phase-space

Wigner-Poisson equations15—in the limit of long wave-

lengths compared to the Thomas-Fermi screening length. For

the sake of simplicity, we shall neglect exchange/correlation

corrections and assume Boltzmann statistics, which is a rea-

sonable approximation at moderate electron temperatures

T.9,16 We also stress that the 1D model relies on the separa-

tion of the transverse and longitudinal directions, which may

be broken by collisional effects. However, such effects

should not be dominant on the fast time scales considered

here.17

The pressure P�x , t� in Eq. �2� must be related to the elec-

tron density n via an equation of state �EOS� in order to close

our system of electron fluid equations. We take a polytropic

relation P= n̄kBT�n / n̄��, where kB is the Boltzmann constant,

�=3 is the 1D polytropic exponent, and n̄ is a mean electron

density. For a homogeneous system �where n̄=n0�, this EOS

correctly reproduces the Bohm-Gross dispersion relation12 in

quantum plasmas. For the inhomogeneous electron gas con-

sidered here, the choice of n̄ is subtler and will be discussed

later.

We assume a parabolic confinement, with Vconf

=
1

2
�0

2m
�
x2, where the frequency �0 can be related to a ficti-

tious homogeneous positive charge of density n0 via the re-

lation �0= �e2n0 /m
�
��1/2. We then normalize time to �0

−1;

space to L0= �kBT /m
�
�1/2

/�0; velocity to L0�0; energy to
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kBT; and the electron number density to n0. Quantum effects

are measured by the dimensionless parameter H=��0 /kBT.

We shall use typical parameters that are representative of

semiconductor quantum wells:10 the effective electron mass

and the effective dielectric permeability are, respectively,

m
�
=0.067 me and �=13�0, the equilibrium density is n0

=4.7�1022 m−3, and the filling fraction n̄ /n0=0.5. These

values yield an effective plasmon energy ��0=8.62 meV, a

characteristic length L0=16.2 nm, a Fermi temperature TF

=51.8 K, and a typical time scale �0
−1=76 fs. An electron

temperature T=200 K then corresponds to a value H=0.5.

III. LAGRANGIAN APPROACH

In order to derive a closed system of differential equations

describing the breather mode, we fist express the quantum

hydrodynamical equations in a Lagrangian formalism. We

stress that this approach is not based on a perturbative ex-

pansion, and thus is not restricted to the linear regime. The

Lagrangian density corresponding to the system of Eqs. �1�
and �2� reads as �normalized units are used from now on�

L =
1

2
� �VH

�x
�2

− nVH − n
��

�t
− �n

W�n��dn� −
1

2
�n� ��

�x
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+
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4n
� �n

�x
�2� − nVconf, �3�

where the independent fields are taken to be n, �, and VH.

The velocity field follows from the auxiliary function ��x , t�
through u=�� /�x. The quantity W�n� in Eq. �3� originates

from the pressure, W	
n dP

dn�

dn�

n�
= �3 /2��n / n̄�2. Taking the

variational derivatives of the action S=
Ldxdt with respect

to n, �, and VH, we obtain the Eqs. �1� and �2�, as well as the

Poisson equation for VH.

The existence of a pertinent variational formalism can be

used to derive approximate solutions via the time-dependent

Rayleigh-Ritz trial-function method.18 For this purpose, we

assume the electron density to have a GAUSSIAN profile

n�x,t� =
A

�
exp�−

�x − d�2

2�2 � , �4�

where d�t� and ��t� are time-dependent functions that repre-

sent the center-of-mass �dipole� and the spatial dispersion of

the electron gas, respectively. The constant A=N /�2	, is

related to the total number of electrons in the well, N

=
ndx. The above Ansatz is a natural one, because for a

negligible Hartree energy, Veff reduces to a harmonic oscilla-

tor potential.

The other fields to be inserted in the action functional are

� and VH. The natural way to choose them is by requiring

that the continuity and Poisson equations are automatically

satisfied. The continuity equation is solved with n given by

Eq. �4� together with u= ḋ+ ��̇ /��
, which leads to �

= ��̇ /2��
2+ ḋ
, where 
	x−d. An irrelevant gauge func-

tion was discarded in the calculation of �. The solution of the

Poisson equation with a GAUSSIAN electron density is

VH = − A�e−
2
/2�2

− A�	

2

 Erf� 


�2�
� + const, �5�

where Erf is the error function. The integration constant is

chosen so that VH��a�=0, with 2a being the total size of the

system, and letting a→� at the end of the calculation. As the

potential VH is not bounded, a divergence appears in the

Lagrangian density when integrated over space. However,

the divergent term does not depend on the dynamical vari-

ables d and �, so that it can be ignored.

Using the above Ansatz, one obtains the Lagrangian

L 	
1

�2	A
� Ldx =

ḋ2 + �̇2

2
−

d2 + �2

2
+

�2

2
A� −

�3A2

6n̄2�2

−
H2

8�2
, �6�

which only depends on two degrees of freedom, namely the

dipole d and the variance �. The Euler-Lagrange equations

corresponding to the Lagrangian L read as

d̈ + d = 0 �7�

�̈ + � =
�2A

2
+

�3A2

3n̄2�3
+

H2

4�3
. �8�

The quantum-well potential Vconf manifests itself in the

harmonic forces on the left-hand side of both Eqs. �7� and

�8�. As expected, the equations for d and � decouple for

purely harmonic confinement. Equation �7� describes rigid

oscillations of the electron gas at the effective plasmonic

frequency, i.e., the Kohn mode.3,19 Equation �8� describes the

dynamics of the breather mode, which features coherent os-

cillations of the width of the electron density. The three

terms in the right-hand side of Eq. �8� correspond to the

Coulomb repulsion �Hartree term�, the electron pressure, and

the quantum Bohm potential, respectively. The breather Eq.

�8� can be written as �̈=−dU /d�, where U��� is a pseudo-

potential defined as U=�2
/2−�2A� /2+�3A2

/ �6n̄2�2�
+H2

/ �8�2�. From the shape of the pseudopotential �Fig. 1�, it

FIG. 1. Profiles of the pseudopotential U���, for H=0.5, A=0

�solid line� and H=0.5, A=1 �dashed line�. The fixed points are

�0=1.03 �A=0� and �0=1.43 �A=1�.
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follows that � will always execute nonlinear oscillations

around a stable fixed point �0�A ,H�, which is a solution of

the algebraic equation U���0�=0.

So far, we have not specified the value of the average

density n̄ that appears in the EOS, P=n3
/ n̄2, written in

normalized units. It is natural to assume that n̄ takes some

value smaller than the peak density at equilibrium A /�0. The

correct way to compute this value is to average the square of

the density using n itself, i.e., n̄2	�n2�=
n3dx /
ndx

=A2
/ ��3�0

2�. A useful check can be performed by plugging

this expression into Eq. �8� and neglecting the Hartree poten-

tial, which yields the equilibrium variance �0= 
1+ �1
+H2�1/2�1/2

/�2. This expression displays the correct low- and

high-temperature limits for the quantum harmonic oscillator:

�0→1, for H→0; and �0��H /2, for H
1.

With the above prescription for n̄, the pseudopotential be-

comes U=�2
/2−�2A� /2+�0

2
/ �2�2�+H2

/ �8�2�. The fre-

quency �=��A ,H� of the breather mode, corresponding to

the oscillations of �, can be obtained by linearizing the equa-

tion of motion 
Eq. �8�� in the vicinity of the stable fixed

point of U���. The dependence of the breather frequency

with A �i.e., with the electron density� is shown in Fig. 2. For

A=0 �i.e., without the Coulomb interaction� the exact fre-

quency is �=2�0. For finite A, the breather frequency de-

creases and approaches �=�0, for A→�. The latter limit

can be understood by noting that for large A the electron

density becomes flatter and flatter, due to the strong Cou-

lomb repulsion. Thus, in the limit A→� we end up with a

uniform electron density exactly neutralized by the ion den-

sity background. For such a homogeneous system, the

Bohm-Gross dispersion relation holds, which for long wave-

lengths yields �=�0. Indeed, if one computes the average

density using the prescription used for the EOS, one obtains

�n�=
n2dx /
ndx=A / ��2�0�→1, for A→� �see the inset of

Fig. 2�. Thus, as expected, for large Coulomb effects the

average electron density becomes equal to the ion back-

ground density.

IV. SIMULATIONS

In order to check the validity of the above results, we

performed numerical simulations of the Wigner-Poisson

�WP� system, which is equivalent to the time-dependent Har-

tree equations.15 In the normalized variables, the Wigner

pseudoprobability distribution f�x ,v , t� satisfies the evolution

equation

� f

�t
+ v

� f

�x
− i� dx�dv�

2	H2
�Veffe

i�v−v��x�/Hf�x,v�,t� = 0, �9�

and is coupled to the Poisson equation. In Eq. �9�, �Veff

	Veff�x+x� /2, t�−Veff�x−x� /2, t�. It is important to note that

this is a microscopic quantum mean-field model, much more

general than the hydrodynamic model on which our La-

grangian theory was based.

The initial condition used in the simulations is a quantum

canonical distribution for the harmonic oscillator at finite

temperature,20 where the spatial width �0 has been adjusted

to the value obtained from the Lagrangian approach to ac-

count for the Coulomb repulsion. This is very close, but not

quite identical, to an exact equilibrium of the WP equations,

so that the width of the electron density starts to oscillate. We

then compute the evolution of the dispersion �x2�1/2

= �
fx2dxdv /
fdxdv�1/2 and its frequency spectrum, which

generally shows a sharp peak at a dominant frequency.

The results of the WP simulations are plotted in Fig. 2

�squares� and agree very well with the theoretical curve

based on the Lagrangian approach. The agreement slightly

deteriorates for larger values of A, because the electron den-

sity deviates from the GAUSSIAN profile due to strong Cou-

lomb repulsion. This is clearly visible in Fig. 3, where we

represent the evolved density profiles for two values of A.

For A=1, the profile is still approximately GAUSSIAN,

whereas for A=3 an intricate internal structure has devel-

oped. Nevertheless, even in this case, the error on the fre-

quency is still just over 3%.

Table I shows that the breather frequency depends weakly

on the parameter H �and hence on the electron temperature�.
Our theoretical results are in good agreement with the simu-

lations, except for H=1. For this case, the frequency spec-

trum is particularly broad, denoting a significant fragmenta-

tion of the resonance.

FIG. 2. The breather frequency � as a function of A, for H

=0.5. Solid line: analytical results from the Lagrangian method.

Squares: the Wigner-Poisson �WP� simulations. The inset shows the

mean electron density �n�=A /�2�0 as a function of A.

FIG. 3. Solid lines: electron density profiles at �0t=150 from

the WP simulations for H=0.5 and two values of A. The dashed

lines represent GAUSSIAN distributions with the same width and the

same area as the numerical curves.
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V. NONPARABOLIC WELLS

For a parabolic potential well, there is no coupling be-

tween the breather and dipole modes, which may render the

experimental detection of the breather mode by optical

means difficult to realize in practice.

It can be shown that nonparabolic corrections do not in-

troduce any linear coupling if the confining potential is sym-

metric. A more interesting situation arises for asymmetric

wells,21 which we model by adding a small cubic term to the

confining potential, Vcub�x�= �K /3�x3. The equations of mo-

tion are then

d̈ + d = − K��2 + d2� , �10�

�̈ + � =
�2A

2
+

�3A2

3n̄2�3
+

H2

4�3
− 2K�d . �11�

Linearizing Eqs. �10� and �11� around the stable fixed point

�d0 ,�0�, we indeed find a coupling between the breather and

the dipole, with resonant frequencies ��.

We model the coupling to the laser field by instanta-

neously shifting the initial dipole of a small quantity, i.e.,

d�0�=d0+ d̃. Figure 4 shows a typical spectrum obtained

from the numerical solution of Eqs. �10� and �11�, which is

proportional to the optical absorption spectrum commonly

measured in the experiments. The sharp peaks correspond to

the resonant frequencies �−=0.97 and �+=1.58, which are

rather close to those obtained for parabolic confinement.

The breather mode can thus be triggered using a purely

dipolar excitation, and a clear signature of the breather fre-

quency can be observed in the optical absorption spectrum.

This opens the way to optically detecting the breather mode

by means of standard pump-probe experiments. Finally, the

methods used here could be readily extended to three-

dimensional nanostructures, and may find applications in re-

lated areas such as quantum free-electron lasers.22
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TABLE I. The breather frequency � and the equilibrium width

�0 for A=1 and for various values of H.

H �0 � �theory� � �sim.�

0.00 1.41 1.58 1.60

0.50 1.43 1.59 1.60

1.00 1.47 1.60 1.51

1.50 1.52 1.61 1.57

2.00 1.59 1.63 1.63

3.00 1.73 1.66 1.70

FIG. 4. The frequency spectra of the dipole �solid line� and

breather �dashed� modes, for an asymmetric well with A=1, H

=0.5, and K=−0.1.

BRIEF REPORTS PHYSICAL REVIEW B 80, 073301 �2009�

073301-4




