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Breathfinding: A Wireless Network that Monitors

and Locates Breathing in a Home
Neal Patwari, Lara Brewer, Quinn Tate, Ossi Kaltiokallio, and Maurizio Bocca

Abstract—This paper explores using RSS measure-
ments on the links between commercial wireless devices
to locate where a breathing person is located and to
estimate their breathing rate, in a home, while the
person is sitting, lying down, standing, or sleeping.
Prior RSS-based device-free localization methods re-
quired calibration measurements to be able to locate
stationary people, or did not require calibration but
only located people who moved. We collect RSS mea-
surements multiple short (3-7 minute) tests and during
a longer 66 minute test, and show the location of the
breathing person can be estimated, to within about 2 m
average error.We describe a detector that distinguishes
between sample times during which a person is moving
and sample times during which a person is breathing
but otherwise motionless. This detector enables re-
moval of motion interference, i.e., RSS changes due to
movements other than a person’s breathing, and more
accurately estimate a person’s breathing rate. Being
able to locate and monitor a breathing person, without
calibration, is important for applications in search and
rescue, health care, and security.

I. Introduction

A significant body of research has shown that moving
people can be located in a building using a static wireless
network that measures links’ RSS values [1], [2], [3], [4],
[5], [6], [7], [8], [9]. This can be done through walls [6],
[10], [11], [12], using a variety of statistics of the measured
RSS. However, state-of-the-art RSS-based non-cooperative
localization methods require either: 1) motion, that is, a
person to be moving at least once during the course of the
time in which measurements are collected [6], [13], [14], or
2) calibration, either measurements of the RSS from the
period of time when the area was cleared of any people [3],
[15], or measurements of the RSS while a person stands in
each possible location [16], [8]. Even systems sophisticated
enough to adaptively learn to distinguish the statistics of
RSS during crossing vs. no crossing require some periods
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of both to occur [17], [11]. Work on robotic RF sensor
networks has demonstrated the ability to image concrete
structures [18], however, work has not yet shown that a
motionless person could be located without prior empty
calibration.
This paper explores using standard wireless devices

which measure only received signal strength (RSS) to
monitor and localize the breathing of a person in a
building, without any prior calibration. Radar devices
can be used for this purpose [19], [20], but we believe
that enabling breathing monitoring and localization using
widely deployed commercial wireless devices may enable
new low-cost systems, potentially making use of already-
deployed wireless networking devices. Our work is the first,
to our knowledge, to use RSS measurements to locate
where breathing is occurring.
The core of the idea of RSS-based breathing localization

is that a link’s RSS measurements are sensitive to breath-
ing when the breathing person is near the link line (the
straight line between transmitter and receiver) and there
is no other motion occurring nearby. From many links’ RSS
data, we can both estimate breathing rate and localize a
breathing but otherwise motionless person.
We also address the challenge of keeping track of a per-

son’s breathing rate when the person occasionally moves.
The same links that are sensitive enough to motion to
change due to a person’s inhalation and exhalation also
experience motion interference, i.e., rapid change due to
other movement, for example, if the person’s limb moves.
We show that using a change detector across all links,
and negating the changes, allows the system to continue
to estimate breathing rate in periods containing motion
interference.
There are applications for RSS-based breathing moni-

toring and localization in health care, emergency response,
and in context-aware computing. Existing breathing mon-
itors used in health care typically require contact with
the body. For example, a standard practice in hospitals
is monitoring via a capnometer, which requires a patient
to have a mask or nasal cannula attached to them [21].
Microwave Doppler radars are being commercialized for
contact-free medical breathing monitoring [22], [23], [24].
Radar propagation losses are of order d4 in free space [25],
as opposed to d2 for transmission [26], and thus radar
devices either have limited range or high transmit power.
Regarding the latter, UWB radar devices are severely lim-
ited in transmit power by regulation, and thus compliant
devices have a low range. Although this paper does not
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provide human subject trials necessary for approval as a
medical device, RSS-based monitoring could potentially be
advantageous compared to radar-based monitoring.
One may be able to use a wireless network deployed

in a bedroom as a baby breathing monitor, or as part
of an in-home sleep apnea diagnostic system. We do not
present algorithms to identify or distinguish the breathing
rates of two people in the same room. However, breathing
monitoring is most critical when the person is alone, and
thus no other person is present to notice their apnea.
Presumably a baby breathing monitor would be more
important when no parent is in the same room as the
infant, as studies indicate that SIDS rate is 50% lower
when a parent sleeps in the same room as an infant [27].
We do not explore the localization of a breathing person

trapped in a collapsed building, or lying unconscious due
to smoke inhalation. However, RSS-based breathing local-
ization could provide improved localization capabilities for
emergency response applications because the system does
not require either calibration or a person to move after the
sensors are deployed.
In general, breathing rate provides a measure of a per-

son’s context, and context-aware computing systems could
benefit. Perhaps“smart”homes could also be“empathetic”
and respond appropriately when your at-rest breathing
rate is abnormally high. A scary movie could adapt to
the viewer’s measured level of stress.
Our initial work was presented in [28], which introduced

RSS-based breathing rate estimation and detecting the
absence of breathing. The methods were experimentally
verified on a subject in a hospital bed, using transceivers
placed within centimeters of the subject’s body. The report
shows that links in a deep fade are the ones most likely to
measure changes when the person breathes. Our breathing
rate estimator is compared to the method of [28] in Section
II-B.
This paper makes several contributions:

1) We show that a breathing but otherwise stationary
person can be located in a building using RSS mea-
surements on links in a wireless network, without
any calibration or training. We provide a radio tomo-
graphic imaging method to show the breathing inten-
sity in a deployment area, and locate the breathing
person from the highest point in the image. We
see average localization errors of about 2 m. Our
localization algorithm and experimental results are
presented in Section IV-D.

2) Past work was capable of breathing rate estima-
tion only when the person being monitored was
completely stationary [28]. We introduce the use of
“breakpoints” for mean removal, i.e., using change
detection methods to determine when a person’s
movements alter link RSS values, setting these times
as breakpoints, and subtracting from a link its aver-
age RSS during the period between two breakpoints.
Using 30 seconds of data, our method’s breath-
ing rate estimates have average error of 1.0 bpm,
compared to 1.7 bpm for [28]. Our breathing rate

estimation algorithm and experimental results are
presented in Section II-B.

3) We use measurements on multiple frequency chan-
nels, and quantify the improvement possible com-
pared to single-channel RSS measurements in Sec-
tion IV-H. This paper is the first to demonstrate
that breathing can be monitored using wireless net-
working devices meters, as opposed to centimeters,
away from the person. Our testbed and experimental
setups are described in Section III.

Finally, we conclude and discuss future research directions
in Section V.

II. Methods

A. Problem Formulation

We assume there is a network of S wireless devices
which can operate on C channels. Device s is located at
coordinate zs. Link l has transmitter (TX) Tl, receiver
(RX) Rl, and channel Fl, i.e., each transmitter / receiver
/ channel combination is a different logical link. We denote
the total number of measured logical links as L, that is,
the total number of transmitter / receiver / channel com-
binations which the network measures. Full connectivity
is not necessary for breathing monitoring.
We assume that each link’s RSS is measured at regular

intervals with period T by sending and receiving a packet.
We assume that there is both a maximum frequency fmax

and a minimum frequency fmin at which breathing may
occur. Note that newborns have the highest breathing
rates, near 37 breaths per minute (bpm), or 0.62 Hz, and
adults at rest breathe near 10-14 bpm, or 0.23 Hz [29].
To sample at the Nyquist rate, sufficient for a newborn
monitoring application, our sampling rate would need to
be more than 1.24 Hz. We denote the nth RSS on link l
as rl[n], in dB units. We further assume that the person is
breathing at a constant rate. Future work could extend
the presented algorithms for irregularly sampled data,
and breathing which occurs irregularly, that is, with a
period that changes over time. These assumptions limit
the robustness of the method to random multiple access
delays, and to erratic breathing patterns, respectively. We
discuss the need for extensions of the proposed method in
Section V.
The goals of the methods are: (a) for localization, to

estimate the current coordinate of the breathing person;
and (b) for rate estimation, to estimate f̂ , the rate at which
the person repeats her inhalation and exhalation cycle.

B. Breathing Rate Estimation

1) Basic Method: In [28], an RSS-based breathing rate
estimator is proposed which calculates the power spectral
density (PSD) over each link using the most recent N
samples, sums the PSD over all links, and estimates the
breathing rate as the frequency at the maximum of the
sum PSD. Mathematically,

f̂ = argmax
fmin≤f≤fmax

L
∑

l=1

∣

∣

∣

∣

∣

i
∑

n=i−N+1

yl[n]e
−j2πfTn

∣

∣

∣

∣

∣

2

, (1)



3

where i is the current time index, j =
√
−1, and yl[n] is

the change in RSS compared to the mean, defined as

yl[n] = rl[n]− r̄l, (2)

where r̄l is the average RSS on link l. We call yl[n] the RSS
signal because the mean RSS carries no information about
breathing, and in fact, a strong DC component overwhelms
any other frequency contained in the data. In [28], DC
removal is performed using a 7-tap IIR filter. However, we
find that setting r̄l =

1

N

∑i
n=i−N+1

rl[n], i.e., the window
average, has superior performance over a wide variety
of experiments we have conducted. When comparing our
method, to be fair to the spirit of the method in [28], we
use this window average in (2).

We note that the function in (1) is a short-time Fourier
transform when seen as a function of current sample index
i. The window duration, N , must be chosen appropriately
to the breathing pattern expected. If breathing may be
erratic, i.e., changing period over short periods, then N
should be selected to be shorter, while if breathing is
relatively constant, one may use a longer window N . In
our experiments, we test using a 30 second window.

2) Breakpoint Method: One challenge faced by RSS-
based breathing rate estimation is that the links which
best measure the person’s chest movement are also those
that best measure other motion in the environment. This
other motion, which we term “motion interference”, can
hide the breathing-induced changes. From our observation,
motion interference and breathing cause notably different
types of changes. While breathing causes slow, periodic
RSS changes, motion interference typically causes sudden
changes. For example, a person who rolls over in bed
or moves a foot causes fast RSS changes during their
movement. When the person stops moving, assuming they
stop in a different position, a link’s RSS typically settles
to an average value different than before the movement.
This is because the RSS is a very sensitive function of the
position of objects in the environment of the link, which
Woyach et. al. refer to as “spatial memory” [1].

If a large shift occurs during an N -sample time window,
subtracting the N -sample average as in (2) will not suffice
to remove the strong low-frequency component in the RSS
signal induced by the shift. Depending on the magnitude of
the shift, it may prevent the frequency-domain estimator
in (1) from recovering the true breathing frequency. We
note that the RSS signal with motion interference will
be acceptable for localization, because a person can be
located using existing DFL methods without calibration
or training if they are in motion or at least occasionally in
motion [6], [17], [11].

To make breathing rate estimation robust to motion
interference, we propose to use change detection to identify
each time index during which a sudden RSS change occurs.
We call these detected time indices “breakpoints”. Each
breakpoint is a renewal point at which one window ends
and the next window begins, and averages are calculated
over each window. By doing so, we are able to perform

more accurate mean removal, and thus make breathing
rate estimation more robust to motion interference.
A variety of change-point detection methods, which have

a long history of study in statistics and time-series analysis
[30], may be useful for the task of identifying breakpoints.
We require a change detector for a multivariate signal
r = [r1[n], . . . , rL[n]]

T
for which we do not know a priori

the distributions before and after the change. Note that
the magnitude of the change is different on each link and
unknown a priori, as shown in the example in Figure 3
in Section IV-A. Change detection methods which require
known means or variances before or after the change
point, such as multivariate versions of the cumulative
sum (CUSUM) algorithm [31] or Bayesian change-point
detectors [32], are not directly applicable to this problem.
We believe a variety of change detection methods could
be applied to identify breakpoints, and we test two in this
paper.
First, we study using Welch’s t-test for change detec-

tion. It is a generalized likelihood ratio test (GLRT) of
the change in mean between two groups of normally-
distributed data [33] when the two groups may also have
different variances. In our case, one group of RSS signal
samples is prior to the time-under-test (the sample index
at which we want to detect a change in mean), and another
same-duration group of data is after the time-under-test.
Specifically, the group t-score is,

τl[n] =
r̀l[n]− ŕl[n]

max
{

ǫ,
√

(σ̀2
l [n] + σ́2

l [n])/Q
} , (3)

for each link l and time n, where r̀l[n] and ŕl[n] are the
average of the Q samples of rl[m] before and after time
n, respectively, σ̀2

l [n] and σ́2
l [n] are the sample variances

of the Q samples of rl[m] before and after time n, re-
spectively, and ǫ > 0 is used to prevent division-by-zero.
We use ǫ = 0.5 in our experiments, a choice examined in
Section IV-B.
Note that we do not have evidence that the RSS data

rl[m] are normally-distributed. In fact, quantization in the
receiver and empirical measurements of temporal fading
[34], [35] both provide evidence against Gaussianity.
The unknown distribution is motivation for a non-

parametric detector. As a second method for change de-
tection, we study using the Wilcoxon rank-sum test [36],
perhaps “the most common non-parametric statistical test
for change detection” [37]. This test can be more efficient
than the t-test for data that is far from Gaussian [38].
The Wilcoxon rank-sum test sorts the 2Q samples of rl[m]
centered at time n to compute the rank of each sample.
Then, the ranks of the Q samples before n are summed,
and the ranks of the Q samples after n are summed.
We denote the maximum rank sum for link l at time
n as Sl[n], which is approximately Gaussian with mean
µS = Q(2Q+1)/2 and variance σ2

S = Q2(2Q+1)/12 [38].
We compute a z-score Zl[n] = (Sl[n] − µS)/σS which is
thus a standard normal random variable. Intuitively, Zl[n]
is high when the distributions of the samples before and
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after n have significantly different means.
For either change detection method, we must combine

the information across all links at time n to make a single
decision about whether there was a change in mean at that
sample. We compute the root-mean-squared (RMS) aver-
age of τl[n] (for Welch’s t-test) or of Zl[n] (for Wilcoxon’s
rank-sum test) over all links l,

τRMS [n] =

(

1

L

L
∑

l=1

τ2l [n]

)

1

2

. (4)

ZRMS [n] =

(

1

L

L
∑

l=1

Z2
l [n]

)

1

2

. (5)

Time n is a breakpoint index if τRMS [n] ≥ γt (or
ZRMS [n] ≥ γZ), where γt or γZ are predetermined thresh-
olds. For any time window, we also consider the starting
time index and ending time index as breakpoints. At the
current time i, with a window length N , these indices are
i−N + 1 and i.
Finally, the breakpoint method we propose is to use the

detected breakpoint indices to remove the mean from the
raw RSS as follows:

yl[n] = rl[n]− r̃l[n], (6)

where r̃l[n] is the average of rl[m] for all m such that bp ≤
m < bf , where bp is latest breakpoint before or at time
index n, and bf is the earliest breakpoint after time n.
Essentially, the mean model r̃l[n] is piecewise constant,
with transition times at each breakpoint. After performing
mean removal in (6), we use our new RSS signal yl[n] in
(1) to perform breathing rate estimation.

C. Breathing Localization

In this section, we describe a method to compute a
“map” of where the breathing, at the estimated rate, is
occurring. From the map we can estimate the coordinate
of the breathing person. In short, our method uses the
breathing rate estimate f̂ generated from either Section
II-B1 or Section II-B2, and in particular, the amplitude
of the signal component at f̂ on each link, in order to
estimate the person’s location.
Variance-based radio tomographic imaging (VRTI) uses

the variance of RSS on links in a wireless network to
identify the location of a moving person in a building [6].
However, a breathing but stationary person does not show
up in a VRTI image, as the image is more affected by
noise than by the small changes caused by breathing. In
this section, we adapt the approach from [6] for breathing
mapping and localization, and we show using the experi-
mental data that an approximate location of the breathing
person can be determined.
We use the PSD at the estimated breathing rate for each

link as an input to our method. For link l, at time i, the
PSD of link l at f̂ is,

vl =

∣

∣

∣

∣

∣

i
∑

n=i−N+1

yl[n]e
−j2πf̂Tn

∣

∣

∣

∣

∣

2

. (7)

The vector of all link values is v = [v1, . . . , vL]
T . Note

that yl[n] can be generated from either the basic or the
breakpoint method.
We estimate an image of breathing amplitude vs. space,

denoted vector x, where xk represents the quantity of
breathing energy coming from pixel k. As in [6], we assume
that v is a linear combination of x via a weighting matrix
W plus noise η,

v = Wx+ η (8)

where W is defined as having (l, k) element given by,

Wl,k =

{

1

Pl

,
‖zTl

−pk‖+‖zRl
−pk‖

‖zTl
−zRl

‖+λe
≤ 1

0, o.w.
, (9)

where zTl
and zRl

are the coordinates of TX and RX for
link l, respectively, pk is the coordinate of pixel k, λe is the
ellipse size parameter, and Pl is the number of non-zero
weights for link l. Essentially, Pl normalizes the weight so
that the total weight of each link is 1. We note that as
the path length ‖zTl

− zRl
‖ increases, the ellipse becomes

longer and thus increases in area, and thus the per-pixel
weight 1/Pl decreases.
Solving for x in (8) given measurement v is ill-posed. We

assume the image vector has zero mean and covariance
matrix Cx = σ2

xG, where G is a matrix with (k,m)
element Gk,m = e−‖zk−zm‖/δ, where σ2

x is the variance
of any element of x, and δ is the correlation distance. This
form of Cx provides an exponential decay in correlation
coefficient between pixels as a function of distance between
the pixels. Such a spatial decay is an approximation of
the covariance for a spatial random field whose value
is the number of points of an underlying Poisson point
process within a constant radius [39]. We then assume that
the elements of the noise vector η are independent and
identically distributed, and thus the covariance matrix of
η is σ2

nI, where I is the identity matrix. We note that
improved linear estimators can be developed when better
noise models are available [40]. With these assumptions,
an appropriate least squares estimator is,

x̂ = argmin
x

‖Wx− v‖2σ2
n
I + ‖x‖2Cx

(10)

= argmin
x

1

σ2
n

(v −Wx)T (v −Wx) + xTC−1
x x.

Taking the derivative of the argument of (10) and setting
to zero to find x̂,

x̂ = Πv, where Π =

(

WTW +
σ2
n

σ2
x

G−1

)−1

WT . (11)

Note Π must be computed only once. The real-time com-
putation of the image requires only one matrix multiply,
of O (LP ) multiplies and adds, where P is the number of
pixels. The ratio, σ2

n/σ
2
x, essentially becomes a regulariza-

tion parameter which can be tuned to emphasize either
the prior on the image covariance or the measurement v.

From the image, the coordinate of the pixel with max-
imum value in x̂ is used as the location estimate for
the (single) breathing person. Future work must address
localization in the multi-person case.
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Fig. 1. Floor plan of 7 × 8 m apartment, deployed nodes (•), and
dimensions in cm.

III. Experiments

In this section, we describe the testbed network, the
residential environment in which the tests are conducted,
and the testing procedure.

A. Network

In our experiments, we use the TI CC2531 dongle node
[41], an IEEE 802.15.4 compliant radio. The CC2531 has
a transmit power of 4.5 dBm, and can select from one of
16 frequency channels in the 2.4 GHz ISM band.
The network is a fully connected network, with each

node able to transmit to and receive from every other node
in the network. A multi-channel TDMA protocol is used so
that node transmissions do not overlap. In this protocol,
described in detail in [42], each node has a unique slot
number, and transmits only during its slot. Nodes are in
receive mode during all slots except for their own so that
they hear the transmission from every other node. After
a round of all nodes’ slots are completed, nodes switch
synchronously to the next frequency channel. A node’s
packet transmission includes its node ID and the RSS of
the most recent packet received from each other node. A
sink node that overhears all packets stores the data for
post-processing.

B. Apartment Experiment

In our first experiment, the apartment experiment, we
deploy S = 33 nodes, each at a height of 0.9 meters. Our
protocol uses C = 4, specifically, 802.15.4 channel numbers
15, 20, 25, and 26, selected to overlap the least with WiFi.
The center frequency of a 802.15.4 channel is given as fc =
2400+5(c−10) MHz, where c is the channel number. Each
link is measured each T = 428 ms. This is a sampling rate
of 2.3 Hz.
The testbed network is deployed in the 7 m by 8 m

apartment shown in Figure 1. Node locations are indicated
with circles on the map. The apartment is a fully furnished
residence on the third floor of a fully-occupied six story
building in downtown Salt Lake City, Utah. Tests are
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Fig. 2. Master bedroom floor plan, for“nap”experiment. Where two
nodes are at the same (x, y) coordinate on this 2D map, the higher
node number is listed first.

conducted on a Saturday between noon and 1:00 pm.
During the tests, other people are occasionally heard in
the hallway outside of the apartment and in neighboring
apartments.
As a large apartment building in a metropolitan area,

there are many sources of 2.4 GHz interference. The
apartment has its own wireless router, and more than ten
strong WiFi access points are observed, and although the
channels are chosen to have the least overlap with WiFi,
they are not perfectly orthogonal. Microwave ovens and
cordless phones also exist in the nearby environment.
Tests: Five tests are conducted. In each, the experimenter
stays in a single location for 3-7 minutes and maintains a
constant breathing rate of 10 bpm using a metronome. The
experimenter is instructed to sit or stand at the location,
but to move as required to be comfortable, i.e., move an
arm or leg or change position. The experimenter made
some movement, on average, twice per minute. In the tests,
the experimenter is located: (1) standing in the kitchen;
(2) sitting by the dining table; (3) sitting on the sofa; (4)
lying in bed; and (5) sitting on the toilet.

C. Nap Experiment

Our second experiment, the nap experiment, is con-
ducted in the master bedroom on the second floor of a
house, as shown in Figure 2. S = 12 nodes are deployed in
a 5.3 m by 5.3 m area, at power outlet locations or in power
strips in the room. We placed two nodes per power outlet,
one on the floor and the other at a height of about 0.48-
1.65 m. The height of the high nodes varied because they
are placed on top of furniture (bedside table, dresser, table,
etc.). In this experiment, C = 5 channels are measured,
specifically, IEEE 802.15.4 channels 11, 15, 18, 22 and 26.
Here, the sampling period was 179.6 ms, for a sampling
rate of 5.56 Hz.
There is also WiFi interference at this location, with

one wireless router on the first floor below the bedroom.
A laptop at location (2m, 0.5m) records data and sends it
over WiFi to a server, ensuring WiFi interference to the
breathing monitoring system.
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Parameter Value
Window Duration, N 70 (30 sec)

Breathing Rate Min., fmin 0.1 Hz (6 bpm)
Breathing Rate Max., fmax 0.4 Hz (24 bpm)

Nodes, S 33
Channels, C 4

Links, L = CS(S − 1) 4224
Sampling Period, T 0.428 sec

Change Det. Window, Q 14 (6 sec)
RMS t-test Threshold, γt 0.8

RMS Wilcoxon Threshold, γZ 1.15

TABLE I
Breathing Estimator and Apt. Experiment Parameters

A 66-minute long “person sleeping” test is conducted.
The experimenter starts collecting data on the laptop,
walks to and climbs into the bed, and takes a nap. In
contrast to the previous experiments, the experimenter’s
breathing rate is not known, as no separate breathing
monitoring sensor is attached to the person, and the
person cannot deliberately maintain a constant breathing
rate while sleeping. After time 65 minutes, the person
wakes up, gets out of bed and stops the data recording.
The person moved at least once during sleep, since it was
noted that he did not wake up in the same position in
which he went to sleep.
A second “no person” test is conducted with the experi-

menter out of the room (about 10 m away) for a duration
of three minutes. This second test is performed to be able
to see how the RSS data, when no breathing person is
present, compares to the case when the person is present
and breathing in the room.

IV. Results

A. Breathing Rate: Apartment Experiment
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Fig. 3. The mean-removed RSS signal yl[n] for four links that
best show breathing during ‘sofa’ experiment, using (top) basic and
(bottom) breakpoint methods, with estimated breakpoints (:).

To compare the basic and breakpoint methods, we de-
scribe an example taken from a 30-second window during
the ‘sofa’ experiment. Methods are tested using parame-
ters given in Table I. Figure 3 shows the mean-removed
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Fig. 4. Normalized average PSD from (1) using basic and breakpoint
methods and data from Figure 3, estimated breathing rate (• and �),
and true breathing rate (:).

RSS signal yl[n] for the basic and t-test breakpoint meth-
ods, for four links l that are the four best in terms of
signal amplitude at the true breathing frequency, vl. Note
that the methods use L = CS(S − 1) = 4224 in this case,
but we that we are plotting only four links for clarity. In
the basic method, yl[n] drifts upward for two of the links,
particularly around n = 213. Many links (including those
not shown) exhibit a shift in mean at this time index,
as well as near n = 175. The t-test breakpoint method,
using a threshold γt = 0.8, calculates a high RMS t-score
near these two times, and detects several time indices near
213 and 175 as breakpoints. By removing the mean in
between each pair of breakpoints, the signal yl[n] no longer
has a drifting mean in the t-test breakpoint method. Note
that some ranges are reduced to zero because breakpoints
are dense, and removing the average from a single sample
results in a zero value.

We note that in Figure 3, some links increase in RSS
while some decrease in RSS. An explanation given for this
in [28] is that the breathing-induced signal is the result of a
phasor sum of paths, and when one phasor’s phase changes
as a result of breathing, it may increase, decrease, or leave
unchanged the magnitude of the phasor sum. Thus when a
person inhales, they may increase the RSS on some links,
while simultaneously decreasing the RSS on other links.

Figure 4 shows the t-test breakpoint method enables
correct breathing rate estimation when the basic method
is unable. The basic method’s PSD is shown to be highest
at the lowest breathing rate, 0.10 Hz, and thus f̂ = 0.10
Hz. The PSD for the breakpoint method is reduced at all
frequencies, but has a clear maximum at 0.166 Hz, very
close to the true 0.167 Hz breathing rate.

Next we test all 30 second windows for all test locations,
moving the window 5 seconds each time. We first report
the fraction of estimates f̂ which are acceptable, which
we arbitrarily define as being within 3.0 bpm of correct.
Second, we report the average frequency error over all
windows. Results are given in Table II for the basic and
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% Acceptable Avg. Err. (bpm)
Basic Breakpoint Basic Breakpoint

Loc. Wilc. t-test Wilc. t-test
Sofa 71% 94% 94% 1.23 0.345 0.348
Table 81% 93% 89% 1.14 0.712 0.831
Kitchen 58% 77% 91% 1.81 2.11 0.859
Bath 71% 97% 97% 1.29 0.328 0.339
Bed 25% 35% 33% 2.95 2.64 2.63
Avg. 61% 79% 81% 1.69 1.23 1.00

TABLE II
Basic vs. breakpoint breathing rate estimation: percent of
estimates “acceptable”, and average error of acceptable

estimates. Breakpoints are determined either by the
Welch’s t-test or Wilcoxon rank-sum change detection

methods.

breakpoint method, where the breakpoints are found using
either the t-test or the Wilcoxon rank-sum test. Note that
the threshold for the Wilcoxon test, γZ = 1.15, is chosen so
that the Wilcoxon change method detects approximately
the same number of breakpoints as the t-test.
Results are shown in Table II. Over all tests, the basic

method obtains an acceptable rate estimate 61% of the
time. The breakpoint method achieves 79% acceptable
and 81% acceptable estimates with the Wilcoxon and
t-test change detection methods, respectively, approxi-
mately cutting in half the number of ‘unacceptable’ rate
estimates. With the t-test breakpoint method, four of
five tests have acceptable rates above 89%, whereas the
basic method had none. The t-test breakpoint method
reduces the average breathing rate error to 1.0 bpm, a 41%
reduction from the basic method. Primarily, the reduction
in average error comes from eliminating large errors —
both methods typically have less than 0.3 bpm error when
the rate estimate is “acceptable”. For reference, an end-
tidal CO2 meter, the gold standard breathing rate monitor
in hospitals [21], is accurate to ±1 bpm.
We note that the performance of the t-test and Wilcoxon

rank-sum test are very similar. Both are significantly bet-
ter than the basic method. The best average performance
across these five tests is using the t-test. As a result, in
the rest of this section, we report results when using the
t-test in the breakpoint method.
The bed test has particularly poor performance. If we

had used the t-test breakpoint method with γt = 0.5
(instead of 0.8), the bed test would have had 73% accept-
able estimates (vs. 33%), however, the kitchen test would
perform worse with the lower threshold. Future work
should address adaptive methods to set the threshold.

B. Parameter Sensitivity

In this section, we study the performance of breathing
rate estimation as a function of two of the Welch’s t-
test parameters, ǫ and γt, which we show have similar
characteristics.
The use of ǫ is motivated because some links, particu-

larly in an area with little motion, measure the same RSS
value at almost every time index. Note that the measured
RSS value is quantized, in our transceivers, to the nearest 1

dBm, so the probability that rl[n] = rl[n+1] has a positive
probability. On these relatively stable links, a set of Q
samples sometimes has a variance of zero, or very close to
zero, which result in infinite or very high t-scores in (3).
The problem is that, because of the quantization of RSS,
these links would estimate a standard deviation of zero,
even though the standard deviation of the unquantized
RSS would not have been zero, if it could have been
calculated.
To test the sensitivity of performance to ǫ, We test, for

each apartment experiment, the percentage of estimates
acceptable, as a function of 0 < ǫ < 1, and plot the
results in Figure 5(a). We see that below a minimum ǫ,
approximately 0.25 in Figure 5(a), performance is very
poor. This is very close to the minimum positive group
standard deviation that is possible to be measured in
our case — if all of the RSS values are identical in the
two Q-sized samples except for one RSS value that is
different by one, the calculated group standard deviation
√

(σ̀2
l [n] + σ́2

l [n])/Q is 0.26 for Q = 14. We also see that
as ǫ is made too high, beyond 0.65 in the average plot in
Figure 5(a), the performance of the estimator degrades, as
fewer breakpoints are detected. As ǫ → ∞, no breakpoints
will be detected, and the method reverts to the basic
method.
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Fig. 5. Breakpoint method performance (percent rate estimates
“acceptable”) vs. parameters (a) ǫ, and (b) γt; for each apartment
data set, and averaged over the five data sets. In (a), γt = 0.8, and
in (b), ǫ = 0.5.

Next, we study the sensitivity of breathing rate esti-
mation to the threshold γt. Recall that if τRMS [n] > γt
then time index n is included as a breakpoint. Using
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Parameter Value
Window Duration, N 167 (30 sec)

Breathing Rate Min., fmin 0.1 Hz (6 bpm)
Breathing Rate Max., fmax 0.4 Hz (24 bpm)

Nodes, S 12
Channels, C 5

Links, L = CS(S − 1) 660
Sampling Period, T 0.1796 sec
t-test Window, Q 14 (2.5 sec)

RMS t-score Threshold, γt 0.8

TABLE III
Breathing Rate Estimator and Nap Experiment Parameters.

each location from the apartment experiment, we test a
range of 0.3 ≤ γt ≤ 1.25 in 0.05 increments, and plot
the results in Figure 5(b). The average performance, in
terms of percent of estimates acceptable, is reasonably
constant for γt between 0.6 and 1.0. As in the study of ǫ,
as γt → 0, all indices are detected as breakpoints, and the
performance degrades. As γt → ∞, no points are detected
as breakpoints, and the performance reverts to the basic
method.
For both ǫ and γt, most data sets have very similar

performance, but the kitchen and the bed tests have
significantly different optima. Future work should address
adaptively setting these parameters based on the situation.

C. Breathing Rate: Nap Experiment

The data from the nap experiment is processed with
the t-test breakpoint method, using the parameters given
in Table III. Note these are identical to the apartment
experiment except that S = 12 nodes and C = 5 channels
are used, and because of that, the number of links is
smaller, and sampling period is lower.
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Fig. 6. Average normalized PSD of (1) when a breathing person is
present (——) with rate estimate (−·− ·−) compared with when no
person is present (- - - - -).

First, for the t-test breakpoint method, we compare the
“no person”condition with the“person sleeping”condition.
Figure 6 shows the average normalized PSD of (1) for a
typical 30-second period of the “no person” test along with
that of a typical 30-second period from the “person sleep-
ing” test. The PSD is significantly lower when no person is
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Fig. 7. Nap experiment breathing rate estimates based on 30 s data
window (·), and 90 s median (—–), for: (a) breakpoint with periods

of identified motion (
.
..); and (b) basic method.

present in the room. We note that other 30 second periods
in each condition also support the observation that the
PSD has a peak with a significantly higher value when a
breathing person is present, compared to when no person
is present. A similar observation is made in [28] using
significantly more “no person” tests, and the maximum
amplitude of the PSD in (1) is used to reliably detect
whether or not a breathing person is present or not.

As discussed in Section III-C, the true breathing rate
is not known for the nap experiment, however, there
are features of the breathing rate estimates from the
breakpoint method, shown in Figure 7(a), which match
our understanding of the human body during sleep. It
has been shown that breath rate decreases during the
transition from the awake state to stage two of sleep [43].
This is primarily because there is a downward trend in
energy expenditure during the onset of sleep [43], [44]. The
breath rate in the nap experiment decreases approximately
20% in the first 20 minutes, which correlates with pub-
lished data showing a measured metabolic rate decrease
of approximately 20% during the first 20 minutes of the
onset of sleep [44]. During sleep stages 2, 3/4 and REM
(rapid eye movement), the ventilation and metabolic rate
are known to become relatively stable [43], [45], which is



9

consistent with what we observed in our nap experiment
estimates. However, moving during sleep increases energy
expenditure and thus could temporarily increase breathing
rate [43], as we see clearly at time 38 minutes, just after
a period in which motion is detected Welch’s t-test. At
the end of the nap experiment, the breath rate increased
as the person awoke without an alarm. This is consistent
with published data showing increased movement and
metabolic rate during the transition to wakefulness [44].
In a period containing motion that is not detected and

removed by the breathing rate estimation algorithm, the
rate estimate tends to rail to fmin. This is because a
single step function, when the step is large compared to
other signals, would be estimated to be evidence of one
cycle in the measurement period. For a 30 second window,
this would be a rate of 2 bpm. Since fmin = 6 bpm in
these experiments, the estimator will return a value of 6
bpm in this case. Step functions are not removed when
using the basic algorithm, and in some instances, the t-test
breakpoint method may not detect a step function if the
amplitude of the change is small compared to the variances
before and after the jump. Although we are not certain
of the sleeping person’s true breathing rate, we quantify
the number of rate estimates at or very near 6 bpm as
a measure of the ability of the method to remove normal
(non-breathing) motion from the breathing-induced signal.
In this experiment, using the t-test breakpoint method,
there are fourteen breathing rate estimates below 9 bpm,
five of which are during identified periods of motion. Thus
out of 793 window f̂ estimates, only nine (1.1%) are very
low and are during periods when no motion is detected.
In comparison, we show results for the basic mean-

removal method in Figure 7(b). When using the basic
method, two metrics are worse. First, there are 48 esti-
mates with rate below 9 bpm. Since there are several of
these low estimates in a row, the median filter also falls
below 9 bpm during periods that we believe (from the
t-test breakpoint method results) contain movement. In
contrast, the median filter in the breakpoint method never
falls below 9 bpm. Not only are the basic method rate
estimates presumably incorrect, in addition, there is no
“motion” label provided to indicate to the application that
there was likely motion in that period. As a result, there
is no way to automatically discard the poor rate estimates
returned by the basic method.
A monitor that estimates very low or very high breath-

ing rates, particularly if repeated, would raise an alarm in
many applications. The reason for breathing monitoring
is often to alert a professional when emergency medical
attention is needed. The system using the basic mean-
removal method would, in this experiment, raise several
false alarms during the hour-long time period, and waste
time and resources by bringing medical attention to a
patient when she was breathing normally.

D. Breathing Localization: Apartment Experiment

In this section, we implement the breathing mapping
and localization of (11) using the parameters given in Ta-

Parameter Value
Pixel Width, δp 0.2 m

Variance Ratio,
σ2

n

σ2
x

0.5

Correlation Distance, δ 2 m
Ellipse Size Parameter, λe 1 m

TABLE IV
Breathing mapping and localization parameters

Avg. Loc. Error (m)
Test Loc Basic Breakpoint (t-test)
Sofa 1.5 1.7
Table 2.1 2.1
Kitchen 2.9 3.6
Bathroom 1.5 1.9
Bed 2.6 2.7
Average 2.1 2.4

TABLE V
Average location errors for basic and breakpoint methods

ble IV, and evaluate its performance using the apartment
experiment.
We note that parameters in Table IV are not necessarily

optimal. The pixel width δp will determines P , the number
of pixels in the image. Image estimation has computa-
tional complexity O (P ), it is desirable to set δp high,
but quantization errors increase with increasing δp. The
value of δp = 0.2m was chosen to be smaller than the
best case average error we might possibly expect. We used
a larger ellipse size λe = 2 m than used in either [42]
or [6]. This is because we know that links that detect
breathing tend to be those with average or lower-than
average RSS for their path length [28], and that such
links are affected by motion in a wide area around the
link line [9]. Finally the two regularization parameters, δ

and
σ2

n

σ2
x

, were set by trial-and-error, we simply ran several
settings and checked performance on the apartment data
sets. Ideally, parameters should be set based on those used
in prior tests in similar environments, and would not need
to be tuned for a particular deployment. For example,
localization for the nap experiment was performed using
the same parameters as determined for the apartment
experiment, even though it had a different number of
sensors and was conducted in a different home.
Using the same example window as that shown in Figure

3, we first draw link lines corresponding to the few links l
with highest vl in Figure 8(a), where vl is the PSD of link
l at the breathing rate estimate, as defined in (7). These
include the four plotted in Figure 3. The image x̂ for the
same data is shown in Figure 8(b). For this example, the
location estimate has 0.82 m error.
We summarize location estimation performance in the

apartment experiment in Table V. Using the basic method
for mean removal, the average location error over all tests
is 2.1 m. In a 7 by 8 meter area, this is a coarse estimate
relative to performance reported for radio tomographic
imaging [6], [42], however, it is typically sufficient to tell
which room the person is in. For the t-test breakpoint
method, the localization estimates degrade 14% to 2.4 m.
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Fig. 8. Apt. “couch” exp.: (a) lines for the top ten links by vl, and (b) breathing image x̂ (white=high), with true (×) and estimated (+)
locations. In (c), location ests. for each 30 second window (of which there are 792) during the nap experiment.

From examination of the RSS data and images produced
using the basic method for mean removal, we see that
when windows include motion interference caused by the
experimenter, the breathing map x̂ is as accurate or more
accurate than without the motion interference. This is
because the experimenter is causing the motion, which
then leaks into the RSS signal on links near the exper-
imenter, and helps to increase the image value near the
experimenter’s location. The breakpoint method removes
most motion interference, which then decreases the image
value near the correct location.

We notice some times when the image suddenly shifts
and shows a bright spot at the top of the apartment,
where there is a hallway outside of the apartment wall.
The experimenter had heard people walking through the
hallway during some tests. However, we did not record
the actual times of these events and thus future controlled
experiments are suggested.

E. Breathing Localization: Nap Experiment

Finally, we test the nap experiment data for localization
performance. We use the same algorithm (using the t-
test breakpoint method) and same parameters (shown in
Table IV). There is only one actual coordinate, which we
measure to be the position of the chest when the person
started napping. There are 792 estimates, which are shown
in Figure IV-E. Since we use the center of the maximum
pixel of x̂ as the location estimate, many of the location
estimates exactly overlap. We also show the average of all
location estimates in Figure IV-E. This average is about
1.0 m away from the true chest position. Considering the
estimates individually, the RMS localization error is 1.2
m. In general, performance is better than the average of
the apartment experiment, but the size of the area is also
smaller as well, about half of the area of the apartment.

F. Discussion

It is interesting to note that both experiments have a
“lying in bed” condition. In the apartment experiment,
the person is lying in bed, awake, breathing at a constant
rate, while in the nap experiment, the person is sleeping
in the bed without a controlled rate. The localization
performance is significantly better in the nap vs. the
apartment experiment (1.0 m vs. 2.7 m average error),
even though the node density (0.42 nodes/m2 in the nap
experiment, 0.59 nodes/m2 in the apartment experiment)
is similar. Although the true breathing rate is not known
for the nap experiment, we believe that the breathing rate
estimates are “acceptable” significantly more often than
33%, as was the case in the“bed”location in the apartment
experiment. Among differences between the two experi-
ments, one significant one is the use of sensors at different
heights in the nap experiment, whereas the apartment
experiment nodes were all uniformly placed at a height
of 0.9 m. Due to the 0.9 m node height in the apartment
experiment, the link lines passed purely above the person
in the bed. In contrast, some of the link lines between
nodes at different heights in the nap experiment crossed
through the sleeping person, and presumably diffracted
around the person’s body. Some of the links with highest
vl, as defined in (7) are those links which cross through
the sleeping person.

Finally, computation time is about 0.2 s per 30 s win-
dow, for both rate estimation and localization, in Python
on a two-core 2.0 GHz processor — thus real time moni-
toring is very possible. There is some non-causality in the
monitoring method: 1) we estimate the breathing rate after
the window of data (N samples) is completely collected;
2) The t-test requires Q samples, as described after (3),
requiring additional delay. In our tests, Q = 14 samples
(6 seconds in the apartment experiment and 2.5 seconds
in the nap experiment), thus the breakpoint method adds
a few seconds of latency, depending on the sample rate.
In contrast, the basic method adds no latency beyond the
data window N .
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Fig. 9. RMS of the difference between the estimate and the short-
term median, as a function of S, the number of nodes, for nap
experiment.

G. Number of Nodes

In this section, we show the performance of breathing
monitoring when we only use a subset of nodes, to test
using experimental data how the performance changes as
a function of S. We would like to know, if the person’s
breathing is only to be monitored in one area (and not an
entire home), how many nodes are required for acceptable
performance? The nap experiment has all nodes in the
bedroom, the same room as the experimenter was located.
In this section, we both randomly and deterministically
chose subsets of the twelve nodes used in the experiment
and test performance only using that subset of nodes.

Since the true breathing rate is not known during the
nap experiment, we evaluate the performance of breathing
rate estimation as follows. We assume that short-term
variation in breathing rate estimates are characteristic of
a less-accurate estimator. As such, we report the RMS
difference between a current breathing rate and the short-
term median, where the median is taken from all breathing
rates estimated in a 90-second window centered at the
current time, which we refer to as the “RMS-median”.

First, we test using random subsets of the twelve nodes.
For each number of included nodes S < 12, we run 30
random trials. We show the RMS-median value for each
trial, as well as the average vs. S, in Figure 9. The RMS-
median value, on average, decreases with S; however, the
lowest possible RMS-median value seems to have a shallow
minimum at a value of S = 6, and every tested subset size
had some trial with RMS-median value below 1.0. It would
seem that low number of nodes is fine if you select the right
nodes.

To explore this further, we test specific (non-random)
subsets of nodes and compare the results in Table VI.
First, we have eight nodes near the four corners of the
bed, with nodes 0, 2, 4, and 6 at a height of about 0.67
m, and nodes 1, 3, 5, 7 on the floor. We first test the four
nodes on the floor, {1, 3, 5, 7}, and see an RMS-median of
1.96 bpm. In contrast, the four nodes at 0.67 m, {0, 2, 4, 6}

Subset of Nodes RMS-median (bpm)
{0, 2, 4, 6} 0.72
{1, 3, 5, 7} 1.96

{0, 2, 4, 6, 8} 0.84
{0, 1, 2, 3} 3.57
{0, 1, . . . , 5} 1.31
{0, 1, . . . , 7} 0.68
{0, 1, . . . , 9} 0.73
{0, 1, . . . , 11} 0.91

TABLE VI
RMS-median using node subsets

have RMS-median of 0.72 bpm. We suspect that the links
between nodes on the floor have signals which propagate
largely along the floor, and as such do not interact strongly
with the person in the bed. We also test using nodes
{0, 1, 2, 3}, the nodes closest to the person. Using this set
of nodes results in a very high RMS-median of 3.57 bpm.
Although they are close to the person, they are close to the
person’s head, and no link line crosses the person’s chest.

H. Number of Channels

In prior work [28], nodes used only one channel. We
are interested in whether our performance has improved
due to the measurement of multiple channels. Here, we
test the performance during the nap experiment when only
links from a subset of the channels are used. We test each
possible (non-empty) subset of the five measured channels,
and plot the RMS-median performance in Figure 10. First,
using all S = 12 nodes, we see average performance
improves as the number of utilized channels increases,
although slowly. At C = 1, the average RMS-median
is 1.56 bpm, while when using all C = 5 channels, the
value is 0.91, a 41% reduction. The result is much more
pronounced when re-running the test using only the nodes
{0, 2, 4, 6}. These were a set of four sensors at height 67
cm closest to the bed, which achieve a RMS-median of
0.83 when using all C = 5 channels. The improvement
for this set, when increasing from one to four channels, is
dramatic. The average RMS-median with C = 1 for this
set of nodes is 2.54 — thus five channels achieves a 73%
reduction.
Interestingly, in some cases, a lower number of chan-

nels and a lower number of nodes can actually improve
performance. We do not believe that it is better, on
average, to use fewer sensors or fewer channels, because
we may not know ahead of time which sensor positions
will be best, and we can’t know ahead of time which set
of channels is best. Regardless, future work may exploit
adaptive methods to select channels from among those
that can be measured, or adapt which set of sensors should
be operating, in order to best estimate breathing rate.
Such adaptive protocols could dramatically reduce the
energy used in a breathing monitoring RF sensor network.
Further, it would seem that better algorithms, which are
more aligned with the statistics of the measured data,
should be developed so that including more links’ data
doesn’t degrade performance.
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median vs. # channels for Nap exp, for all twelve sensors {0, . . . , 11},
and for node subset {0, 2, 4, 6}.

V. Conclusion

This paper demonstrates key advances for the use of
RSS in a wireless network for non-cooperative localization
and monitoring. We show that a person’s breathing alone
is sufficient body movement in order to be located in a
building with a static deployed wireless network. By using
the estimated amplitude of breathing on each link in the
network, a tomographic algorithm can produce an image
map showing where breathing is occuring, and thus be
used to locate a person within about 2 meters error in
the experiments reported in this paper. We show that
the person’s breathing rate can be estimated using the
same RSS measurements. When a person occasionally
moves, a method described in prior work fails to accurately
estimate the person’s breathing rate. In this paper, a
change-detection method is used to identify times at which
this motion occurs, negate it, and then accurately esti-
mate breathing rate even during short periods of motion.
Methods are tested using a multi-channel sensor network
deployed in two homes. The results show the possibilities
for accurate and reliable breathing monitoring and local-
ization of a breathing person for a variety of applications.

Monitoring and localizing breathing using a static wire-
less network has many open questions. In this paper we
have assumed that breathing is periodic with a constant
rate during the N sample time window. However, a per-
son’s breathing may be erratic, with a changing rate over
time. Further research should identify methods for esti-
mating the duration in between two subsequent respira-
tion peaks, from our noisy multivariate measurements, to
obtain a peak-to-peak period, rather than simply a period
based on the average PSD over the entire window. We
may be able to do this by examining the temporal signals
measured on the few links which observe high breathing
amplitudes. From a signal processing perspective, this may
be similar to the processing performed in pulse-position
modulation (PPM) demodulators. One may then be able
to identify signs of erratic breathing that may be useful

for medical monitoring. Additionally, perhaps compressed
sensing methods could be used to reduce the sensor and
sampling requirements, and in fact, be robust to the
inevitable MAC delays which will make sampling times
random.
For breathing localization, we would benefit from better

statistical and radio propagation models that explain a
link’s ability to measure breathing as a function of the
person’s position. What algorithms should be used to
track multiple breathing people in the same deployment
area? What WLAN protocols could be used to prevent
an adversary from surreptitiously using someone’s wireless
network to eavesdrop on their breathing rate and location?
How should breathing be measured with other wireless
hardware, such as 802.11 devices? Each of these questions
may result in interesting and useful research directions.
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