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Ongoing fluctuations of neuronal activity have long been considered intrinsic noise that

introduces unavoidable and unwanted variability into neuronal processing, which the

brain eliminates by averaging across population activity (Georgopoulos et al., 1986;

Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al., 1999). It is now

understood, that the seemingly random fluctuations of cortical activity form highly

structured patterns, including oscillations at various frequencies, that modulate evoked

neuronal responses (Arieli et al., 1996; Poulet and Petersen, 2008; He, 2013) and affect

sensory perception (Linkenkaer-Hansen et al., 2004; Boly et al., 2007; Sadaghiani et al.,

2009; Vinnik et al., 2012; Palva et al., 2013). Ongoing cortical activity is driven by

proprioceptive and interoceptive inputs. In addition, it is partially intrinsically generated

in which case it may be related to mental processes (Fox and Raichle, 2007; Deco

et al., 2011). Here we argue that respiration, via multiple sensory pathways, contributes

a rhythmic component to the ongoing cortical activity. We suggest that this rhythmic

activity modulates the temporal organization of cortical neurodynamics, thereby linking

higher cortical functions to the process of breathing.

Keywords: mind-body, cortical oscillations, respiration, embodied cognition, phase transitions, phase amplitude

coupling, proprioception, graph theory

We have recently shown that respiration-locked olfactory bulb activity in awake, head

restrained mice causes respiration-locked delta oscillations and gamma power modulations in the

somatosensory cortex (Ito et al., 2014). This unexpected direct ability of respiration-locked sensory

activity to modulate oscillatory neuronal activity in the neocortex led us to consider the potential

wider implications of a link between breathing and brain activity, particularly with respect to the

possibility that respiration influences cortical neuronal activity underlying cognitive function.

Based on our own experimental findings, results from our modeling studies using a simple

graph theory model and a review of the literature, we argue that respiration, via multiple sensory

pathways, provides a subtle but continuous rhythmic modulation of cortical neuronal activity that

modulates sensory, motor, emotional and cognitive processes. Specifically, we hypothesize that:

(1) respiration causes respiration-locked oscillations that are synchronized across large areas of

neocortex at the species-specific respiratory rhythm; (2) that increases in the power of gamma

oscillations (40–100 Hz) occur preferably during certain phases of (i.e., are phase-locked to) the

respiratory cycle. Both hypotheses are supported by solid experimental results in the somatosensory
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barrel cortex in awake mice (Ito et al., 2014; Figure 1) and by

our modeling studies (see below). Additional results, published

in abstract form, support the possibility that respiration-locked

oscillations are also present in several other areas of mouse

neocortex (Liu et al., 2015), including the visual cortex (McAfee

et al., 2016).

A third prediction is supported by preliminary experimental

findings on sudden changes in synchronization patterns of

neural activity published in abstract form (Kozma et al., 2015).

We predict that (3) the timing of the sudden changes in

the network activity, i.e., fast transitions between synchronized

and de-synchronized network states, are phase-locked to the

respiratory rhythm. These transitions can be detected as jumps

in the analytic phase of oscillatory population activity using

a Hilbert transform based analysis of local field potential

(LFP) or electroencephalographic (EEG) activity (Freeman

and Rogers, 2002; Freeman et al., 2006; Freeman, 2015).

Graph theoretical arguments provide a modeling framework

to describe the experimentally observed sudden changes

as ‘‘phase transitions’’ (Puljic and Kozma, 2008; Kozma

and Puljic, 2015), a term we will use throughout this

article.

As we lay out in more detail below, gamma oscillations

are forms of cortical activity widely linked to cognitive and

other higher cortical functions. Our hypotheses predict that

a consciously controlled change in respiratory behavior will

cause a change in cognitive and emotional states, which is a

common observation in yogic breathing (Jella and Shannahoff-

Khalsa, 1993; Stancák and Kuna, 1994; Brown and Gerbarg,

2005) and stress reducing respiratory exercises such as combat

tactical breathing employed by military and special forces

(Grossman and Christensen, 2011). A second key prediction

is that respiration-locked modulation of cortical gamma

activity and phase transition timing directly links respiratory

behavior to higher cortical processes, including cognitive and

limbic functions, sensory perception and motor control. The

respiration-locked modulation of neocortical activity we propose

here would thus provide a neuronal mechanism and causal link

between respiration and pain perception (Arsenault et al., 2013;

Iwabe et al., 2014), motor control (Ebert et al., 2002; Rassler

and Raabe, 2003; Li and Laskin, 2006; Iwamoto et al., 2010; Cao

et al., 2012; Krupnik et al., 2015), attention (Gallego et al., 1991;

Krupnik et al., 2015) and emotion (Benson et al., 1974; Arch and

Craske, 2006; Homma and Masaoka, 2008).

FIGURE 1 | From Ito et al. (2014): respiratory modulation of the power of gamma frequency oscillations in mouse whisker barrel cortex.

Phase–amplitude coupling between respiration-locked delta and gamma band oscillations in the barrel cortical local field potential (LFP) activity of an awake intact

and an awake bulbectomized mouse, followed by population statistics. (A) Respiratory activity (top trace), amplitude of gamma band oscillations (middle trace) and

delta oscillations (light green bottom trace) and its phase (dark green bottom trace) in an intact mouse. Gamma oscillation (75 Hz) amplitude peaks rhythmically

phase locked to the delta cycle. (B) Gamma oscillation amplitude as a function of delta phase (red). The solid and dotted black lines indicate the mean and the

2.5 and 97.5 percentile boundaries of the surrogate amplitude distribution estimated from 1000 phase-randomized surrogates. Gamma amplitude modulation is

significant at phase 0 of the delta cycle. (C,D) Same as (A,B), respectively, but for a bulbectomized mouse. After removal of the olfactory bulb, the amplitude

modulation of the gamma band oscillations is no longer phase locked to respiration.
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Oscillations of neocortical activity in the gamma (30–100 Hz)

frequency range, have been strongly implicated in affective and

cognitive brain functions such as attention (Fries et al., 2001;

Laufs et al., 2003; Tallon-Baudry, 2004), sensory perception

(Engel et al., 2001; Tallon-Baudry, 2003; Gould et al., 2012),

decision making (Kay and Beshel, 2010; Siegel et al., 2011; Gould

et al., 2012; van Vugt et al., 2012; Wyart et al., 2012; Nácher et al.,

2013), problem solving (Sheth et al., 2009), memory formation

(Marshall et al., 2006; Tort et al., 2009; Chauvette et al., 2012)

and language processing (Crone et al., 2001; Towle et al., 2008;

Babajani-Feremi et al., 2014).

Sudden changes in network synchronization are characteristic

features of cortical activity that have been widely linked to

cognitive processes (Kozma and Freeman, 2016). Detailed

analysis of rabbit and human intracranial electrocorticography

(ECoG) signals revealed discontinuities in the analytic phase

determined by Hilbert analysis (Freeman and Rogers, 2002;

Freeman et al., 2006; Freeman, 2015). Experiments with rabbits

trained with a classical conditioning paradigm showed that

discontinuities of the analytic phase have cognitive relevance

(Freeman, 2004; Kozma and Freeman, 2008). Namely, after

delivering the conditioned stimulus, the occurrence of the

phase discontinuity correlates with the stimulus, suggesting

that these discontinuities can be viewed as markers of the

cognitive activity (stimulus classification) performed by the

rabbits.

Schölvinck et al. (2015) observed that variability of neuronal

responses in the primary visual cortex to repeated identical

stimuli was caused by large scale network activity, which

was more variable when the network was in a synchronized

state vs. an asynchronous state. Recently, Tan et al. (2014)

also showed that visual stimulation shifted the activity states

of the macaque primary visual cortex from synchronous to

asynchronous activity. These findings are fundamentally in line

with our hypothesis that the timing of such phase transitions is

linked to the rhythmic sensory stimulation caused by respiration.

We have obtained preliminary supporting evidence for phase-

locking between respiration and phase discontinuities in human

cortical activity from an analysis of ECoG signals from a human

subject. We interpreted the results as phase transitions in cortical

population activity between synchronized and de-synchronized

states; see Kozma et al. (2015).

A small group of researchers have envisioned the possibility of

respiration influencing large-scale brain activity via the olfactory

system. Freeman and colleagues performed pioneering studies on

the influence of respiration through olfaction on the rat brain

(Eeckman and Freeman, 1990; Kay and Freeman, 1998). Effects

of theta-modulation of saccadic signals have been described

as visual sniffing (Kozma and Freeman, 2001). Fontanini

and Bower (2006) speculated that olfactory bulb respiration-

locked oscillations in rodents may propagate through the entire

cortex. However, none of these earlier studies anticipated that

respiration could modulate the power of gamma oscillations

or considered a respiratory influence on the timing of phase

transitions in cortical population activity as a mechanism

that directly links respiratory behavior and cognitive brain

processes.

Respiration creates both conscious and unconscious streams

of rhythmic sensory inputs to the brain. Consciously accessible

sensations of normal, unobstructed breathing include odor

perception, the mechanical and thermal sensation of air flowing

through nose, mouth and upper airways, and the proprioception

of movements of the chest and abdomen. Unconscious sensory

signals caused by respiration include interoceptive signals from

the lungs, diaphragm and internal organs, which represent

the mechanical consequences of respiratory movements, and

the chemosensitive signals from the cardiovascular system,

which represent breath-by-breath fluctuations of CO2 and

O2 levels in the blood. The sensations and brain activity

patterns associated with hunger-for-air (Liotti et al., 2001;

Macey et al., 2005) are not considered here, as they represent

an emergency response not related to normal, unobstructed

breathing.

There are also a number of indirect ways cortical areas

receive respiration-locked sensory input. Eye movements, for

example, have been shown to be transiently phase-locked to

respiration during sleep (Rittweger and Pöpel, 1998) as well as

in the awake state (Rassler and Raabe, 2003). Recently, Ito et al.

(2013) reported saccade related changes in the power of neuronal

oscillatory activity in four frequency bands, including gamma,

in primates that were freely viewing their environment. This

suggests that the retinal flow associated with eye movements

causes a modulation of power in visual cortical oscillations

that is partially correlated with respiration. Another indirect

respiration-locked sensory input comes from the auditory cortex,

which receives rhythmic auditory input related to respiration

caused by the sound of air flowing through the nose or mouth.

Finally, neurons in the brain stem project broadly to thalamic

nuclei (Carstens et al., 1990; Krout et al., 2002). These projections

likely provide respiration-locked input to the thalamus (Chen

et al., 1992), introducing a non-sensory respiratory rhythm to the

thalamo-cortical network.

While there are many sources of respiration-locked activity,

the olfactory system deserves special attention, because early

mammals relied strongly on their olfactory sense and had

proportionately large olfactory bulbs (Rowe et al., 2011).

Furthermore, neuronal oscillations, particularly gamma

oscillations, are a universal element of odor processing in

animals as far removed from joint evolutionary ancestors as

mammals and insects are (Kay, 2015). Even though in primates

the olfactory sense lost the prime importance it has for most

other mammals in favor of vision (Gilad et al., 2004). EEG

studies comparing nasal and oral breathing of room air found

that nasal breathing elicited significantly different patterns of

EEG activity than mouth breathing (Servít et al., 1977; Lorig

et al., 1988). This is in line with our findings of nasal air flow in

mice driving delta oscillations and gamma power modulations in

a non-olfactory area of neocortex (Ito et al., 2014) and suggests

that the olfactory bulb activation exerts similar influence on

human cortical activity.

The detection and analysis of respiration locked cortical

activity requires the simultaneous measurement of respiration

and brain activity. Such simultaneous measurements are not

commonly performed. A notable exception is a recent study of
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the effects of sleep disordered breathing (SDB) in children on

cortical oscillatory activity (Immanuel et al., 2014). Immanuel

et al. (2014) showed that the average power of the EEG signal

decreased during inspiration and increased during expiration,

in a frequency band and sleep stage dependent manner, in both

healthy subjects and subjects suffering from SDB. This study did,

however, not evaluate phase-locking between EEG oscillations

and the respiratory cycle.

Respiration related sensory activity during unobstructed

breathing mainly reaches three areas of the cortex: (1) the

olfactory cortex and surrounding areas receive olfactory bulb

input; (2) the somatosensory cortex receives inputs from

mechanoreceptors of chest, the abdominal skin and muscles that

are stretched andmoved by respiration; and (3) the insular cortex

receives input from chemoreceptors and mechanoreceptors in

the lungs, diaphragm and internal organs. Our recordings of

olfactory bulb dependent respiration-locked oscillations in the

mouse somatosensory cortex suggest that respiration-locked

activity propagates from primary sensory areas to parts of the

cortex that do not receive direct respiration related sensory

inputs. A likely mode of propagation is through the cortico-

cortical network itself, possibly involving also cortico-thalamic

connections. However, the anatomy of axonal connections

within the parabulbar and limbic areas suggest a number of

subcortical regions and neuromodulator systems may also be

influenced by respiration-driven sensory input. For example,

widely projecting serotonergic and cholinergic neurons within

the rat basal forebrain have been shown to rhythmically

discharge in phase with respiration (Manns et al., 2003;

Mason et al., 2007), with olfactory bulb respiration-locked

activity as a likely driving force (Linster and Hasselmo, 2000).

Stimulation of cholinergic neurons in particular is associated

with increased neocortical gamma oscillations (Cape and Jones,

2000) a mechanism that might contribute to the respiration-

locked modulation of gamma power in mouse somatosensory

whisker barrel cortex (Ito et al., 2014). However, as we

argue below, respiration-locked gamma power modulation

may result from intrinsic properties of the cortical network

itself.

The link between respiration-locked cortical oscillations

and respiration-related sensory inputs to the cortex

is straightforward: respiration-locked rhythmic inputs

drive cortical neurons to fire rhythmically at the same

frequency. Experiments in anesthetized rodents show that

respiration-locked oscillations in the piriform cortex are driven

this way by respiration-locked activity of olfactory bulb afferents

(Fontanini and Bower, 2005; Uchida et al., 2014), which also

drive respiration-locked activity in the hippocampus of mice,

both under anesthesia (Yanovsky et al., 2014) and while awake

and walking on a tread mill (Nguyen Chi et al., 2016). However,

the mechanisms behind respiration-locked modulations of

gamma power, which we observed in the mouse somatosensory

cortex (Figure 1), are less obvious.

To investigate the processes leading to respiration locked

increases in the power of gamma oscillations we used a

simple graph theory model inspired by cortical network

architecture, with a biologically appropriate balance of excitatory

and inhibitory neurons and mix of short- and long-range

connections. Expanding on previous work (Reijneveld et al.,

2007; Turova and Villa, 2007; Gallos et al., 2012; Janson et al.,

2016), we define a geometric graph, which is the combination

of a regular 2-dimensional square lattice with N × N vertices,

and a few additional long edges between some lattice points.

The additional long edges, or ‘‘shortcuts’’ are selected randomly

according to probability p = c/(N × d), where d is the

Euclidian distance between the lattice points, and c is a constant

(Janson et al., 2015). Note that this model defines a scale-free

distribution of the shortcuts with power exponent 1. The

expected number of long edges per node has been shown to be

LAMBDA = 2c ∗ ln(2). Next, we define an activation process

on the random lattice graph, and the activation of a node at

time t + 1 is denoted as Av(t + 1). Note that some of the

nodes are excitatory (E), while others are inhibitory (I). In the

present model, we select 25% of the nodes as inhibitory and the

rest are excitatory. The update rule is defined by the so-called

‘‘k-majority’’, i.e., a node becomes active at time t + 1, if more

than k of its neighbors have been active at time t, while it will

be inactive in the opposite case. Note that inhibitory nodes

have inverse effects on excitatory nodes; namely, the activity

of inhibitory nodes are subtracted from the total activation

when the k-majority rule is tested (for details see Janson et al.,

2015).

Our model has several parameters; the number of shortcuts

(LAMBDA); the ratio of excitatory nodes (OMEGA), and

threshold parameter (k). In a regular square lattice without

shortcuts, the majority rule is given by k = 2. In the

results shown here, we select k = 2 and k = 3 for E and

I nodes, respectively. Figure 2A shows that depending on

the choice of LAMBDA and OMEGA, various dynamical

regimes can be modeled, such as limit cycle, non-zero fixed

point (following a dampened oscillation), and zero fixed

point.

In order to simulate respiratory effects, we introduce a

sinusoidal input with magnitude (RA). In this model we select

parameters OMEGA = 0.75 and LAMBDA = 0.0017; this

parameter choice is illustrated by yellow circle in Figure 2A.

Examples of our simulations with varying magnitudes of

perturbation are shown in Figure 2B. With very weak

perturbation (RA = 0.001) we observe strong oscillations

dominated by a periodic (gamma) component, see Figure 2Ba.

As the magnitude of the input perturbation increases, we reach

a condition when the high-frequency (gamma) component is

constrained to the time segment of increasing perturbation.

This shows that the graph theory model can reproduce the

respiration-locked modulation of gamma power, i.e., the gamma

power increases at the inhalation stage for a suitably selected

input signal.

This suggests that the physiological properties of cortical

network itself may be sufficient to explain the modulation of

gamma power in phase with respiration-locked sensory activity.

This is not to say that other factors, such as cortico-thalamic

interactions or the action of neuromodulators have no role,

but future research will have to determine the nature of their

involvement.
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FIGURE 2 | Results of calculations using graph theory models of coupled excitatory-inhibitory populations; the following parameter values are used:

proportion of excitatory units OMEGA = 0.75, expected number of long axonal connections (shortcuts) is LAMBDA = 0.0017. (A) Phase diagram with

parameter regions with the dominance of limit cycle oscillations (purple), nonzero fixed point (light green) and zero-fixed point (blue) regimes; the yellow circle

corresponds to parameter settings used in (B) plot at the edge of the limit cycle regime, close the fixed point regime. (B) Illustration of the phase-locked amplitude

modulation of the gamma oscillations (of excitatory population) in response to periodic input (respiration) perturbations of increasing amplitude (RA); (Ba) RA = 0.001;

(Bb) RA = 0.02; (Bc) RA = 0.03; (Bd) shape of the respiratory sinusoid signal. The amplitude modulation of the inherent high-frequency oscillation (around 60 Hz) is

locked to the respiratory cycle, so that the high-frequency component has increased magnitude during the increasing segment of the input signal from its minimum

value.

Each of these forms of cortical activity appears to have

different functions. Oscillatory rhythms that are phase-locked to

respiration may help to synchronize large portions of the cortical

network and create a temporal alignment for slower processes.

The calming effect of controlled, slow and deep breathing

could be due to this respiration-locked synchronization of

activity across large areas of cortex, an EEG activity pattern

commonly observed during meditative states (Dillbeck and

Bronson, 1981; Gaylord et al., 1989). Additional evidence

of respiration-locked synchronization of cortical oscillatory

activity comes from a study of EEG activity during meditation

with forced alternate nostril breathing, which caused an

increase in interhemispheric beta coherence (Stancák and Kuna,

1994).

Few studies have evaluated cognitive processing as a function

of respiratory phase. However, interactions between respiration

and non-respiratory functions have been documented in humans

and rodents. In humans, for example, phase-locking with

respiration has been observed for visual signal detection

(Flexman et al., 1974) eye movements (Rittweger and Pöpel,

1998; Rassler and Raabe, 2003), the temporal grouping of

pianistic finger movements (Ebert et al., 2002), reaction time

to visual (Li et al., 2012) and auditory (Gallego et al., 1991)

stimuli, and grip-force (Li and Laskin, 2006). Rassler et al.

(1996) reported that response latency, tracking-precision and

movement duration of finger movements made to track a

visual target showed significant respiratory-phase-dependent

differences and that the respiratory-phase-dependence differed

between finger flexion and extension movements (Rassler, 2000).

In mice, movements of the mystacial whiskers are phase-locked

to respiration (Cao et al., 2012; Moore et al., 2013).

Respiration has also been implicated in the modulation

of pain perception. Pain-studies in humans showed that pain

perception is reduced during inspiration (Arsenault et al., 2013)

and that focused slow breathing reduces the perceived severity

of pain (Zautra et al., 2010). Other clinical studies have shown

that the strength of cortico-spinal communication assessed

with transcranial magnetic stimulation (TMS) is modulated

in phase with respiration (Li and Rymer, 2011). We suggest

that these interactions between respiration and sensory motor

processes are mostly caused by respiration-locked fluctuations

of ongoing neuronal activity in motor and sensory cortical

areas.

In summary, we propose that ongoing neuronal activity

of the neocortex is rhythmically modulated by respiration-

locked sensory inputs. We predict three emergent patterns of

cortical activity that are phase-locked to respiration and are

synchronized across large areas of neocortex: (1) neuronal

oscillations following the respiratory rhythm; (2) increases

in gamma power phase locked to breathing; and (3) the

timing of phase transitions in large scale network activity

phase locked to respiration. Gamma oscillation power and

phase transition timing are strongly implicated in cognitive

function, directly linking breathing to cognitive processes.

Our findings and hypotheses provide a new perspective

of the function of respiration beyond the life-supporting

exchange of gases towards a link between the states of the

body and mind. This new physiological role of respiration

calls for experimental designs to incorporate respiratory

information and for future investigations of the interactions

between respiration and cognitive, sensory and motor

processes.
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