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INTRODUCTION

Recently, analytical methods for measuring volatile organic 

compounds	 (VOCs)	 in	 exhaled	 air	 with	 high	 resolution	
and high throughput have been extensively developed. 

Yet,	 the	 application	 of	 machine	 learning	 methods	 for	
fingerprinting	VOC	profiles	 in	 the	breathomics	 is	 still	 in	
its infancy. A recent literature suggests that the potential 

utility of breath analysis is an alternative noninvasive 

methodology.

In clinical medicine, reaching a conclusion about a patient’s 

symptoms, when presented with complex and sometimes 

contradictory clinical information, is really difficult. 

A clinician usually makes decisions based on a set of 

measurements and observations about a patient and 

evaluates all the factors subjectively to reach a diagnosis. 

However, it is obvious that clinicians may have great 

difficulty in analyzing enormous amount of clinical and 

histopathological data. Therefore, more sophisticated 

quantitative techniques are needed to help clinicians 
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consider all the data and make better diagnoses. Some 

sophisticated quantitative techniques are proposed to the 

doctors by computer scientists through machine-learning 

techniques to help in this decision-making process.[1]

Breath diagnostics, the measurement of volatile chemicals 

in human breath, is currently receiving attention as a 

technique for the detection of disease which, being 

noninvasive in nature, is particularly suited to screening 

for presymptomatic disease in healthy populations.[2] An 

entirely noninvasive methodology, breath analysis, has the 

potential to deliver accurate and reproducible diagnostic 

tests without risk to the patient, making it ideal for 

population-based health screening as well as individual 

testing in response to symptom occurrence. Breath analysis 
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relies on the fact that disease states alter cellular metabolite 

levels, these being transferred to the bloodstream and, for 

volatile compounds, subsequently discerned in the breath.[3]

Gastric carcinoma (GC) is the second most common cause of 

cancer-related deaths among Indian men and women.[4] GC 

ranks among the five most common cancer among young 

Indian men and women (aged 15–44 years) based on a study 

from Karnataka.[5] It has been estimated that the number of 

new GC cases is about 34,000 (with a male predominance 

ratio of 1:2) with a progressive increase postulated such 

that by the year 2020, there would be approximately 

50,000 new GC cases annually in India.[6]

�e Gastric Carcinoma Domain

GC is a disease in which cancer (malignant) cells are found 

in the tissues of the stomach. The stomach is a J-shaped 

organ in the upper abdomen where the food is digested. 

Food reaches the stomach through a tube called the 

esophagus that connects the mouth to the stomach. After 

leaving the stomach, partially digested food passes into the 

duodenum then the small intestine and then into the large 

intestine called the colon. Sometimes, cancer can be in the 

stomach for a long time and can grow very large before it 

causes any symptom. In the early stages of the stomach 

cancer, a patient may have indigestion and stomach 

discomfort, a bloated feeling after eating, mild nausea, 

loss of appetite, or heartburn. In more advanced stages of 

cancer of the stomach, the patient may have blood in stool 

and vomiting, weight loss, or pain in the stomach. Some 

factors that increase the chances of getting stomach cancer 

are a stomach disorder, called atrophic gastritis, disorder 

of the blood, called anemia, or a hereditary condition of 

growths, called polyps, in the large intestine. Stomach 

cancer is difficult to detect in its early stages because its 

early symptoms are absent or mild. Unfortunately, this is a 

highly aggressive cancer and the overall survival rate is very 

low. The chance of recovery (prognosis) and the choice of 

treatment depend on the stage of cancer, whether it is just 

in the stomach or it has spread to other places, and the 

patient’s general state of health.[1]

Classification of Gastric Carcinoma

If there are symptoms of cancer, a physician will usually 

order an upper gastrointestinal X-ray or he may also 

look inside the stomach with a thin, lighted tube called 

a gastroscope. This procedure is called gastroscopy, and 

it is useful in the detection of most stomach cancer. For 

this test, the gastroscope is inserted through the mouth 

and guided into the stomach and the stomach mucosa is 

examined. According to the Gastroenterological Endoscopy 

Society, based on the visual inspection of the mucosal 

surface of the patient’s stomach, GC is classified mainly into 

three categories: early GC (EGC) and advanced GC (AGC) 

and the remaining ones which cannot be included in these 

categories.[7]

EGC is defined as GC confined to the mucosa or submucosa, 

regardless of the presence or absence of lymph node.[8] On 

the other hand, in AGC, as defined by Bormann, the tumor is 

invaded into the proper muscle layer beyond the stomach.[9] 

Moreover, knowledge of these types permits a preliminary 

assessment of tumor spread in stomach.

Chemical	analysis	of	the	breath	samples	showed	that	five	VOCs	
(2-propenenitrile, 2-butoxyethanol, furfural and 6-methyl-

5-hepten-2-one and isoprene) were significantly elevated 

in patients with GC and/or peptic ulcer as compared with 

less severe gastric conditions. The encouraging preliminary 

results presented here have initiated a multicenter clinical 

trial with considerably increased sample size to confirm the 

observed breath prints.

This study has been organized into five sections. Section  2 

presents the experimental setup of Breath analysis. 

Section 3 elaborates the methodology of collecting Breath 

samples from the volunteers. Section 4 discusses the 

experimental method and materials. Section 5 presents the 

experimental analysis results. In Section 6, conclusion and 

further research scope are presented.

EXPERIMENTAL SETUP

Study Design

The primary aim of this study was to distinguish GC 

patients from patients with benign gastric conditions who 

may present similar clinical symptoms. The secondary 

aim was to distinguish subpopulations in the malignant 

and nonmalignant study groups. This study with a limited 

patient group of 161 (out of 236 patients after application 

of the exclusion criteria) was designed as a feasibility test of 

a nonmaterial-based breath test for GC, with a more realistic 

ration of malignant to nonmalignant gastric conditions.

Sensor Array

Three screen-printed commercially available metal oxide 

semiconductor gas sensor arrays are used to construct the 

proposed Breath analyzer. The gas sensors are manufactured 

and commercialized by Figaro USA Inc. The resulting array, 

populated by sensor devices tagged by the manufacturer as 

TGS813, TGS822, and TGS2620, is placed into a test chamber. 

The obtained sensor element is mounted onto a stainless 

steel substrate with head of chlorinated polyvinyl chloride, 

and then connected by lead wires to the pins of the sensor 

package. To generate the required dataset, connect the said 

test chamber to a data acquisition card (DAQ), which provides 

versatility for conveying the chemical compounds of interest 

at the desired concentrations to the sensing chamber. The 
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response of the gas sensor array was measured when the 

operating temperature of sensors which, according to the 

deterministic one-to-one look-up table provided by the 

manufacturer (Figaro USA Inc., http://www.figarosensor.

com), is attained through a built-in heater that is driven by an 

external	DC	voltage	source	set	at	5V.	The	sensor	response	is	
read-out in the form of the resistance across the active layer of 

each sensor; hence, each measurement produces a 6-channel 

time series sequence. The DAQ collects data from the gas 

sensors and controls the analog voltage signal to every sensor 

heater. The experimental setup is shown in Figure 1.

COLLECTION OF BREATH SAMPLES

Exhaled alveolar breath was collected in a controlled 

manner, none of the volunteers consumed food, tobacco, 

or alcohol during an (overnight) 12 h interval before the 

breath collection. All volunteers were asked to rest for 1 

h before the breath sampling and did not perform heavy 

physical exercise 24 h before taking the breath sample. 

All breath samples were collected in the same clinical 

environment and in duplicates (for the dual analysis) from 

each volunteer. The breath samples were characterization 

of the breath samples with an array of sensors, combined 

with a statistical pattern recognition algorithm, with the 

aim of identifying specific patterns (the so-called breath 

prints) for GC and nonmalignant gastric conditions.

Samples are collected through stainless steel chamber 

of 140 ml volume which is standardized. Samples could 

be collected even from the elderly or bedridden patients 

without causing discomfort. The collection period was 

1.5 min at 0.5 per 1 min, and the dead space of samples 

is	 removed	 by	 setting	 the	 system	 timer.	 Volunteers	 are	
from various hospitals and dispensary in and around the 

Tirunelveli district, Tamil Nadu, India. All subject samples 

were collected in random order, sample collection from 

subject volunteer is shown in Figure 2.

Breath samples were collected after written informed 

consent from 270 volunteers, aged 21–73 years, at the 

CSI Jayaraj Annapackiam Mission Hospital and CSI Bell 

Pins Inndrani Chelladurai Mission Hospital, Palayamkottai, 

Tirunelveli. All volunteers underwent upper digestive 

endoscopy after recruitment according to the hospital’s 

routine clinical protocol. Biopsy samples were taken for 

histopathology if lesions (including ulceration of the 

stomach lining) were visually observed.

The following exclusion criteria were applied before 

sample collection: patients who have undergone gastric 

resection in the past; patients who were found to suffer 

from endoscopically detectable precancerous conditions 

(e.g., mucosal atrophy); and patients who took medication 

affecting gastric acid secretion (e.g., proton pump inhibitors) 

and/or antibiotics during an interval of 1 month before the 

breath test. The reason for the latter exclusion criterion 

for this study was that previous medication could strongly 

affect the composition of the exhaled breath.

After excluding, we employed the breath samples of 161 

patients were analyzed for this study: 49 GC patients, 

19 patients with benign gastric ulcers, and 11 patients 

with less severe gastric conditions are shown in Table 1. 

The less severe stomach conditions cases included with 

no endoscopic abnormalities (82) and with endoscopic 

abnormalities without ulceration (11).

Ethical approval was obtained from the Ethics Committee of 

Periyar University, Salem, Tamil Nadu, India, and the clinical 

trial was registered. The treatment decisions were based 

solely on the conventional diagnosis described above. 

Table 1: Composition of the subject database

Type of subject Number Gender 
(male/female)

Age Diagnosis

Healthy 82 34/48 20‑32

Abnormalities 

without ulceration

11 9/2 24‑35 Endoscopy 

only

Gastric ulcer 19 11/8 45‑58 Endoscopy 

with BiopsyGastric cancer 49 25/24 38‑55

Figure 1: Electronic‑nose system using data acquisition card Figure 2: Collection of breath samples from cancer volunteers
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Neither the patients nor their treating physicians were 

informed of the results of the breath tests.

EXPERIMENTAL RESULTS

Data Sampling

The dataset consists of experimentally obtained 

161 observations. The dataset was divided into ten disjoint 

subsets, namely, training set containing 145 observations 

(90% of total observations) and test set comprising 

16 observations (10% of total observations). The overall 

acceptability was used as output parameter for developing 

the artificial intelligence tool.

Artificial Neural Networks

Cascade-forward back-propagation (CFBP) and feed-forward 

back-propagation (FFBP) artificial intelligence models [Figures 

3-6] were trained with the breath sampled dataset. Different 

combinations of several internal parameters, i.e., data 

preprocessing, data partitioning approach, number of hidden 

layers, number of neurons in each hidden layer, transfer 

function, error goal, etc., were attempted. Different variants 

of the back-propagation algorithm were tried here: Levenberg-

Marquardt (LM), Bayesian regularization, BFGS Quasi-Newton, 

Resilient (RP), scaled conjugate gradient, conjugate gradient 

with Powell/Beale restarts, conjugate gradient with Fletcher-

Powell, conjugate gradient with Polak-Ribiére, one step 

secant, variable learning rate gradient descent, gradient 

descent with momentum, gradient descent shown in Tables 

2-5 with different activation functions such as radial basis, 

normalized radial basis, triangular basis, hyperbolic tangent 

sigmoid, Elliot symmetric sigmoid, Elliot 2 symmetric sigmoid, 

hard-limit, symmetric hard-limit, competitive, soft max shown 

in Tables 6-9. RP algorithm produced better results, during 

training of single- and multi-layer FFBP neural network as 

shown in Figures 7-12; however, during training of multilayer 

Figure 3: Network diagram of single‑layer feed‑forward neural network classifiers

Figure 4: Network diagram of multilayer feed‑forward neural network classifiers

Figure 5: Network diagram of single‑layer cascade‑forward neural network classifiers

Figure 6: Network diagram of multilayer cascade‑forward neural network classifiers
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Table 2: Classification accuracy of single‑layer feed‑forward 
neural network

Training algorithm Percentage MSE MAE SSE SAE

LM 90.14 0.124 0.235 1.867 3.758

BR 90.47 0.096 0.192 1.543 3.062

BFG 92.39 0.09 0.185 1.253 2.975

RP 92.54 0.086 0.203 1.378 3.252

SCG 91.3 0.089 0.208 1.422 3.326

CGB 91.58 0.087 0.209 1.387 3.341

CGF 91.25 0.09 0.211 1.442 3.379

CGP 91.17 0.09 0.209 1.43 3.356

OSS 92.01 0.098 0.198 1.325 3.188

GDX 90.43 0.108 0.226 1.628 3.616

GDM 85.39 0.226 0.332 3.623 5.317

GD 91.09 0.09 0.214 1.443 3.418

Average 90.81 0.095 0.198 1.489 3.185

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 3: Classification accuracy of multilayer feed‑forward 
neural network

Training algorithm Percentage MSE MAE SSE SAE

LM 91.42 0.094 0.186 1.503 2.974

BFG 93.04 0.071 0.161 1.136 2.581

RP 93.17 0.077 0.153 1.111 2.444

SCG 92.09 0.083 0.197 1.325 3.104

CGB 92.94 0.072 0.173 1.158 2.763

CGF 92.03 0.083 0.19 1.33 3.038

CGP 92.41 0.076 0.176 1.224 2.822

OSS 92.36 0.079 0.181 1.27 2.892

GDX 91.24 0.093 0.21 1.484 3.357

GDM 87.83 0.161 0.289 2.583 4.621

GD 91.58 0.085 17.21 1.372 3.185

Average 91.83 0.088 0.33 1.408 3.071

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 4: Classification accuracy of single‑layer cascade‑forward 
neural network

Training algorithm Percentage MSE MAE SSE SAE

LM 92.25 0.1 0.228 1.604 3.655

BR 92.39 0.087 0.186 1.185 2.969

BFG 92.26 0.092 0.222 1.465 3.569

RP 92.49 0.104 0.244 1.67 3.897

SCG 92.06 0.093 0.23 1.486 3.687

CGB 92.3 0.089 0.222 1.436 3.547

CGF 92.16 0.098 0.224 1.459 3.59

CGP 92.1 0.089 0.222 1.418 3.551

OSS 91.78 0.099 0.236 1.586 3.773

GDX 92.14 0.092 0.224 1.452 3.584

GDM 82.88 0.919 0.638 14.71 10.21

GD 92.03 0.096 0.231 1.539 3.693

Average 91.4 0.168 0.261 2.673 4.188

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton

Table 5: Classification accuracy of multilayer cascade‑forward 
neural network

Training algorithm Percentage MSE MAE SSE SAE

LM 92.62 0.089 0.213 1.432 3.433

BFG 92.35 0.086 0.213 1.381 3.405

RP 92.38 0.114 0.25 1.816 4.009

SCG 92.21 0.097 0.223 1.419 3.571

CGB 92.34 0.091 0.22 1.454 3.518

CGF 92.29 0.09 0.224 1.412 3.567

CGP 92.18 0.09 0.225 1.446 3.599

OSS 91.99 0.095 0.23 1.512 3.68

GDX 92.13 0.098 0.238 1.562 3.805

GDM 91.91 0.281 0.309 4.823 5.099

GD 91.91 0.093 0.227 1.491 3.629

Average 92.21 0.111 0.233 1.795 3.755

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; LM – Levenberg‑Marquardt algorithm; BR – Bayesian 
regularization; SCG – Scaled conjugate; CGB – Conjugate gradient with Powell/Beale 
restarts; CGF – Conjugate gradient with Fletcher‑Powell; CGP – Conjugate gradient 
with Polak‑Ribiére; OSS – One step secant; GDM – Gradient descent with momentum; 
GD – Gradient descent; GDX – Variable learning rate gradient descent; RP – Resilient; 
BFG – BFGS Quasi‑Newton
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Figure 7: Resilient back‑propagation training algorithm outperformance: 

good in classification accuracy of single‑layer feed‑forward neural network
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Figure 9: Resilient back‑propagation training algorithm outperformance: 

good in classification accuracy of multilayer feed‑forward neural network

Table 6: Classification accuracy of single‑layer feed‑forward 
neural network based on activation functions

Activation function Percentage MSE MAE SSE SAE

RBN 90.8 0.107 0.22 1.537 3.514

NRBN 90 0.106 0.226 1.688 3.599

TBN 90.97 0.1 0.218 1.605 3.52

HTSN 90.88 0.1 0.217 1.587 3.465

ESSN 90.76 0.1 0.217 1.594 3.477

E2SSN 91.03 0.124 0.224 1.903 3.587

HLN 90.85 0.108 0.219 1.633 3.504

SHLN 91.71 0.093 0.203 1.433 3.246

CN 90.45 0.113 0.219 1.661 3.508

SMN 90.68 0.113 0.223 1.808 3.571

Average 90.81 0.106 0.219 1.645 3.499

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 7: Classification accuracy of multilayer feed‑forward 
neural network based on activation functions

Activation function Percentage MSE MAE SSE SAE

RBN 92.09 0.084 0.173 1.255 2.77

NRBN 92.15 0.077 0.172 1.23 2.754

TBN 91.84 0.082 0.179 1.304 2.864

sHTSN 91.62 0.081 0.176 1.293 2.823

ESSN 91.58 0.081 0.179 1.299 2.82

E2SSN 91.83 0.079 0.177 1.257 2.832

HLN 91.75 0.081 0.175 1.292 2.8

SHLN 91.77 0.08 0.175 1.277 2.798

CN 91.79 0.094 0.187 1.498 2.996

SMN 90.68 0.113 0.223 1.808 3.571

Average 91.82 0.082 0.182 1.291 2.815

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 8: Classification accuracy of single‑layer cascade‑forward 
neural network based on activation functions

Activation function Percentage MSE MAE SSE SAE

RBN 91.33 0.19 0.271 3.023 4.339

NRBN 91.49 0.154 0.254 2.38 4.059

TBN 91.35 0.151 0.256 2.414 4.098

HTSN 91.36 0.123 0.249 1.963 3.98

ESSN 91.56 0.211 0.269 3.366 4.297

E2SSN 91.24 0.19 0.266 2.926 4.255

HLN 91.4 0.146 0.254 2.329 4.061

SHLN 91.5 0.137 0.248 2.181 3.963

CN 91.26 0.162 22.08 2.585 4.188

SMN 91.56 0.168 0.262 2.672 4.198

Average 91.40 0.163 2.441 2.584 4.144

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network

Table 9: Classification accuracy of multilayer cascade‑forward 
neural network based on activation functions

Activation function Percentage MSE MAE SSE SAE

RBN 92.24 0.087 0.204 1.658 3.378

NRBN 92.05 0.094 0.214 1.501 3.417

TBN 92.27 0.153 0.234 2.446 3.749

HTSN 92.2 0.088 0.211 1.408 3.373

ESSN 92.23 0.098 0.216 1.46 3.454

E2SSN 92.32 0.119 0.217 1.895 3.478

HLN 92.15 0.088 0.208 1.395 3.322

SHLN 92.18 0.119 0.218 1.896 3.506

CN 92.36 0.085 0.207 1.33 3.306

SMN 92.11 0.092 0.215 1.467 3.447

Average 92.21 0.102 0.214 1.646 3.443

MSE – Mean squared normalized error; MAE – Mean absolute error; SSE – Sum squared 
error; SAE – Sum absolute error; RBN – Radial basis network; NRBN – Normalized 
radial basis network; TBN – Triangular basis network; HTSN – Hyperbolic tangent 
sigmoid network; ESSN – Elliot symmetric sigmoid network; E2SSN – Elliot 2 symmetric 
sigmoid network; HLN – Hard‑limit network; SHLN – Symmetric hard‑limit network; 
CN – Competitive network; SMN – Soft max network
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Figure 10: Resilient back‑propagation training algorithm outperformance: 

good in error rate of multilayer feed‑forward neural network

CFBP neural network, LM produces better results as shown in 

Figures 13 and 14. Normalized radial basis, symmetric hard-

limit, competitive, soft max activation function supports to 

the algorithms outperformance are  shown in Figures 15-22. 

There is no generalized method to determine the optimum 

values for number of hidden layers, neurons in each hidden 

layer, etc., as they are working of expected intelligence.
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Figure 11: Resilient back‑propagation training algorithm outperformance: 

good in classification accuracy of single‑layer cascade‑forward neural network
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Figure 12: Resilient back‑propagation training algorithm outperformance: 

good in error rate of single‑layer cascade‑forward neural network
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Figure 13: Levenberg‑Marquardt back‑propagation training algorithm 

outperformance: good in classification accuracy of multilayer cascade‑

forward neural network
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Figure 14: Levenberg‑Marquardt back‑propagation training algorithm 

outperformance: good in error rate of multilayer cascade‑forward neural 

network
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Figure 15: Symmetric hard‑limit activation function outperformance: good 

in classification accuracy of single‑layer feed‑forward neural network
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Figure 16: Symmetric hard‑limit activation function outperformance: good 

in error rate of single‑layer feed‑forward neural networkInitially, the reduced feature set selected from the feature 

selection methods is normalized between zero and one. 

That is each value in the feature set is divided by the 

maximum value from the set. These normalized values are 

assigned to the input neurons.

The number of hidden neurons is greater than or equal to 

the number of input neurons. Moreover, there is only one 

output neuron. Initial weights are assigned randomly. The 

output from each hidden neuron is calculated using the 

sigmoid function:

S
e

1

1

1
=

+
−x , where λ = 1 and x w k

i

=∑ ih i
 (1)

where w
ih 

is the weight assigned between input and 

hidden layer and k is the input value. The output 
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Figure 17: Normalized radial basis activation function outperformance: 

good in classification accuracy of multilayer feed‑forward neural network
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Figure 18: Normalized radial basis activation function outperformance: 

good in error rate of multilayer feed‑forward neural network
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Figure 19: Elliot symmetric sigmoid and soft max activation function 

outperformance: good in classification accuracy of single‑layer cascade‑

forward neural network

0

5

10

15

20

25

R
B

N

N
R

B
N

T
B

N

H
T

S
N

E
S

S
N

E
2
S

S
N

H
L
N

S
H

L
N

C
N

S
M

N

E
rr

o
r 

R
a
te

Activation Functions

MSE

MAE

SSE

SAE

Figure 20: Elliot symmetric sigmoid and soft max activation function 

outperformance: good in error rate of single layer cascade‑forward neural 

network
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Figure 21: Competitive activation function outperformance: good in 

classification accuracy of multilayer cascade‑forward neural network
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Figure 22: Competitive activation function outperformance: good in error 

rate of multilayer cascade‑forward neural network

from the output layer is calculated using the sigmoid 

function.

S
e

2

1

1
=

+
−x , where λ = 1 and x w S

i

=∑ ho i
 (2)

where w
ho

 is the weight assigned between hidden and 

output layer and S
i
 is the output value from hidden 

neurons. S
2
 is subtracted from the desired output. 

Using this error (e) value, the updating of weight is 

performed as:

δ = −eS S2 21( )  (3)

The weights assigned between the input and the hidden 

layer and the hidden and output layer are updated as:
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w w n Sho ho= + ( )δ 1  (4)

w w n k
iih ih= + ( )δ  (5)

where n is the learning rate and k is the input value. Again the 

output is calculated from the hidden and output neurons. Then, 

the error (e) value is checked and the weights get updated.[2] 

This procedure is repeated till the target output is equal to the 

desired output. The algorithm of back-propagation classifier 

for classification is shown below.[10]

Back‑propagation neural network (C, D)

 C, Conditional features; D, Decision feature

1. Normalize the feature between 0 and 1 and assigned to input neurons

2. Initialize random weight

3. Compute each hidden neuron,

 

S
e

1

1

1
=

+ −λx
, x w k

i

=∑ ih i

4. Compute output layer, S
e

2

1

1
=

+ −λ x
,

 
x w S

i

=∑ ho i

5.  Subtract S
2
 from the desired output. Using error (e) value, compute 

weight as: δ = eS
2
(1-S

2
)

6. Update the weights using this δ value

7. w
ho

 = w
ho

 + (nδ S
1
)

8. w
ih
 = w

ih
 + (nδ k

1
)

Perform steps 4 to 8 with the updated weights, till the target output is 

equal to the desired output

Feed-forward back-propagation model
FFBP artificial intelligence model consists of input, hidden, and 

output layers. Back-propagation learning algorithm was used 

for learning these networks. During training this network, 

calculations were carried out from input layer of network 

toward output layer, and error values were then propagated to 

prior layers. Feed-forward networks often have one or more 

hidden layers of sigmoid neurons followed by an output layer 

of linear neurons. Multiple layers of neurons with nonlinear 

transfer functions allow the network to learn nonlinear and 

linear relationships between input and output vectors. The 

linear output layer lets the network produce values outside 

the range –1 to +1. On the other hand, outputs of a network 

such as between 0 and 1 are produced, then the output layer 

should use a sigmoid transfer function.[11]

Cascade-forward back-propagation model
CFBP models are similar to feed-forward networks but 

include a weight connection from the input to each layer 

and from each layer to the successive layers. While two-layer 

feed-forward networks can potentially learn virtually any 

input-output relationship, feed-forward networks with 

more layers might learn complex relationships more quickly. 

For example, a three-layer network has connections from 

layer 1 to layer 2, layer 2 to layer 3, and layer 1 to layer 3. 

The three-layer network also has connections from the 

input to all three layers. The additional connections might 

improve the speed at which the network learns the desired 

relationship.[12] CFBP artificial intelligence model is similar 

to FFBP neural network in using the back-propagation 

algorithm for weights updating, but the main symptom 

of this network is that each layer of neurons related to all 

previous layer of neurons.[11]

The performance of CFBP and FFBP were evaluated using 

mean squared normalized error, mean absolute error, sum 

squared error, and sum absolute error technique.

The functionality of 12 different training algorithms, which 

are used in this work, is synopsized in Table 10. A short 

description of all training algorithms is presented in Table 

Table 10: Description of artificial neural networks training 
algorithms

Description

Levenberg‑Marquardt algorithm[13,14]

Bayesian regularization[15]

BFGS Quasi‑Newton[16]

Resilient[17]

Scaled conjugate[18]

Conjugate gradient with Powell/Beale restarts[19‑21]

Conjugate gradient with Fletcher‑Powell[19,22]

Conjugate gradient with Polak‑Ribiére[19,21]

One step secant[23]

Variable learning rate gradient descent[24]

Gradient descent with momentum[24]

Gradient descent[24]

SLFF MLFF SLCF MLCF

SAE 3.185 3.071 4.188 3.755

SSE 1.489 1.408 2.673 1.795

MAE 0.198 0.33 0.261 0.233

MSE 0.095 0.088 0.168 0.111

Accuracy 90.81 91.82 91.4 92.21

86

88

90

92

94

96

98

100

A
c
c
u
ra
c
y

Figure 23: Classification accuracy outperformance in different neural 

network based on algorithms

SLFF MLFF SLCF MLCF

SAE 3.499 2.815 4.144 3.443

SSE 1.645 1.291 2.584 1.646

MAE 0.219 0.182 2.441 0.214

MSE 0.106 0.082 0.163 0.102

Accuracy 90.81 91.82 91.4 92.21
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Figure 24: Classification accuracy outperformance in different neural 

network based on activation function
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10[25] while more analytical representations are shown 

in Table 10.[13-24] The basic steps of the back-propagation 

algorithm have been described in several textbooks.[26,27] 

The functionality of ten different activation functions, 

which are used in this work, is synopsized in Table 11.[28,29] 

The overall performance of the neural network based on 

the algorithm and activation functions are shown in Figures 

23 and 24.

CONCLUSION

In this study, neural network has been used to classify the 

GC as malignant or benign or normal. Based on the obtained 

results, the RP algorithm produced, up to the mark of 

classification accuracy (92.54%, 93.17%, and 92.49%), during 

training of single- and multi-layer FFBP neural network; 

however, by multilayer CFBP neural network, LM (92.62%) 

produces better classification accuracy. Normalized 

radial basis (92.15%), symmetric hard-limit (91.71%), Elliot 

symmetric sigmoid (91.56%), competitive (92.36%), soft 

max (91.56%) activation function supports the algorithms 

performance  for the better classification. It was also 

observed that in general, multi hidden layer network 

provided the better classification accuracy compared 

to the single hidden layer network to classify the breath 

samples of GC. In the near future, we need to standardize 

the procedures and develop a learning system widely 

acceptable by breath analysts worldwide. In this way, we 

will be able to reduce deaths due to GC, the second leading 

cause of cancer deaths worldwide.

Table 11: Description of artificial neural networks activation functions

Activation function Input/output relation Icon

Radial basis exp (−n2)

Normalized radial basis exp (−n2)/sum (exp [−n2])

Triangular basis 1 ‑ abs (n), if−1≤ n ≤1
0, otherwise

Hyperbolic tangent sigmoid 2/(1+exp [−2 × n]) − 1
(x × n)/(1 + |x × n|)

n × 1/([1 + |x × n|] × [1 + |x × n|])

Elliot symmetric sigmoid

Elliot 2 symmetric sigmoid

Hard‑limit 1, if n ≥
0, otherwise

Symmetric hard‑limit 1 if n ≥
0, −1 otherwise

Competitive 1, neuron with max n

0, all other neurons

Soft max exp (n)/sum (exp [n])
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