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Key message Thermotolerant crop research.

Abstract Global warming has become a serious worldwide

threat. High temperature is a major environmental factor

limiting crop productivity. Current adaptations to high

temperature via alterations to technical and management

systems are insufficient to sustain yield. For this reason,

breeding for heat-tolerant crops is in high demand. This

review provides an overview of the effects of high temper-

ature on plant physiology, fertility and crop yield and dis-

cusses the strategies for breeding heat-tolerant cultivars.

Generating thermotolerant crops seems to be a challenging

task as heat sensitivity is highly variable across develop-

mental stages and processes. In response to heat, plants

trigger a cascade of events, switching on numerous genes.

Although breeding has made substantial advances in devel-

oping heat-tolerant lines, the genetic basis and diversity of

heat tolerance in plants remain largely unknown. The

development of new varieties is expensive and time-con-

suming, and knowledge of heat tolerancemechanismswould

aid the design of strategies to screen germplasm for heat

tolerance traits. However, gains in heat tolerance are limited

by the often narrow genetic diversity. Exploration and use of

wild relatives and landraces in breeding can increase useful

genetic diversity in current crops. Due to the complex nature

of plant heat tolerance and its immediate global concern, it is

essential to face this breeding challenge in a multidisci-

plinary holistic approach involving governmental agencies,

private companies and academic institutions.
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Introduction

Ambient temperatures are rising at a considerable rate as part

of the current global climate change. The last three decades

are thought to be thewarmest the earth has experienced in the

past 1400 years in the Northern Hemisphere. Climate mod-

els predict that the global mean temperature will continue

this trend, increasing by 1–4 �Cby the end of the twenty-first

century. Additionally, climatological extremes such as heat

waves are likely to occur more frequently (IPCC 2013;

Tebaldi et al. 2006;Hansen et al. 2015).While the above data

refer to average global temperature increases, there are sig-

nificant regional and seasonal differences with further

potential impact on agriculture (IPCC 2007). The biggest

temperature changes will be at higher latitudes (IPCC 2007).

In these regions, the increase in temperature might benefit

overall crop production by alleviating low-temperature

growth inhibition at the start of the growing season, allowing

earlier planting of crops, and the possibility of a longer

growing season or more cropping cycles per year in the

longer term (Gitay et al. 2001). Thus, a rise in temperature is

expected to lead to expansion of areas suitable for crop

production in the Russian Federation, North America and

Northern Europe as well as in East Asia (Lotze-Campen and

Schellnhuber 2009;Olesen andBindi 2002). Offsetting these

Communicated by Enrico Schleiff.

A contribution to the special issue ‘Pollen development and stress

response’.

& Ivo Rieu

i.rieu@science.ru.nl

1 Department of Molecular Plant Physiology, Institute for

Water and Wetland Research, Radboud University,

Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

2 Bayer CropScience Vegetable Seeds, PO Box 4005,

6080 AA Haelen, The Netherlands

123

Plant Reprod (2016) 29:67–79

DOI 10.1007/s00497-016-0275-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00497-016-0275-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00497-016-0275-9&amp;domain=pdf


benefits, however, are negative effects at lower latitudes,

where temperatures are already at the higher end of the crops’

optimal grow temperature ranges. Regions in Africa, for

example, have been predicted to become (semi-)arid due to

heat and water stress, resulting in significant yield losses

(Fischer et al. 2002; Ortiz et al. 2008), and in Asia and the

Middle East, crop yields are predicted to fall 15–35 % if the

average temperature increases 3–4 �C (Ortiz et al. 2008;

FAO 2009).

More than 200,000 plant species are estimated to exist

globally, ofwhich*80,000are edible to humans.Despite this

huge variety, 95 %of the calories and protein intake of human

and livestock are derived from only 20–25 species (Füleky

2009). For example, only three species, wheat, rice andmaize,

account for 75 % of global grain production (Bansal et al.

2014; Lobell and Gourdji 2012). Breeding and agronomic

improvements of these species have resulted in increased

production between 1985 and 2005, and previous IPCC pro-

jections assumed that this will continue in the future (Ains-

worth and Ort 2010; Teixeira et al. 2013). However, based on

an extended update of the IPPC projections, a newmeta-study

predicted a less optimistic scenario. Primarily due to a more

negative effect of moderate warming on yield, worldwide

yield reductions are now expected forwheat, rice andmaize in

both tropical and temperate regions under a scenarioof2 �Cof

local warming without adaptation (Challinor et al. 2014).

Relative rates of yield increase for major cereal crops are

already declining (Fischer and Edmeades 2010; Foley et al.

2011). However, to meet the demand for food from the pop-

ulation of an expected 9 billion people in 2050, a 70 %

increase in food production is deemed necessary according to

the Declaration of theWorld Summit on Food Security (FAO

2009). This means that the yearly increases in production for

the coming 40 years need to be 38 % higher than those

achieved historically (Tester and Langridge 2010).

Thus, the temperature changes associated with global

warming have become a major challenge with respect to

agricultural output. Here, we provide an overview of

research that aims to support increasing heat tolerance of

crops. We evaluate potential changes to crop management,

the availability of genetic resources for breeding activities

and the usefulness of (academic) research into the molec-

ular and physiological basis of heat tolerance. Finally, it is

discussed whether academic research and breeding activi-

ties are complementary with mutual benefits.

Effects of high temperature on crops

General physiological effects of high temperature

The intensity, duration and rate of temperature change

together determine the impact of high temperature on plant

development and physiology (Wahid et al. 2007; Zinn et al.

2010). Air and soil temperature affect crop yield in dif-

ferent ways, and this should be considered when studying

heat impact (Lobell and Gourdji 2012; Sharkey and

Schrader 2006). Plant physiological responses to heat stress

have been reviewed in great detail (Wahid et al. 2007; Bita

and Gerats 2013; Bokszczanin et al. 2013; Mathur et al.

2014). In general, a moderate increase in air temperature

leads to faster plant development and a shorter crop dura-

tion and consequently a reduction in cumulative light

perception and assimilation over the plant’s life cycle. In

addition, disturbance of fundamental processes such as

carbon assimilation, respiration and transpiration may

reduce overall metabolic efficiency and result in vegetative

developmental defects such as fewer, malformed and/or

smaller organs (Takeoka et al. 1991; Maestri et al. 2002;

Stone 2001). High air temperature can also negatively

affect sexual reproduction and consequently fruit and seed

yield (Peet et al. 1997; Erickson and Markhart 2002; Zinn

et al. 2010). On the other hand, high soil temperature can

reduce germination capability and plant emergence and can

cause heat necrosis of roots (Stevenson et al. 2001).

Heat sensitivity in crop plants

Individual plant yield is a function of various components

including plant architecture, photosynthetic efficiency,

resource partitioning and reproductive success—each of

these components may be vulnerable to heat. Optimum

temperature range and consequently heat sensitivity vary

among crop types, species and cultivars (Ulukan 2008;

Levy and Veilleux 2007; Luo 2011; Saha et al. 2010). Heat

sensitivity has been shown to cause yield reduction in

species of both temperate and tropical zones, but in gen-

eral, tropical varieties often tolerate higher temperatures

better, compared to varieties of the same crop species

grown in temperate zones, as was shown for yard-long

bean, cucumber and radish (Wahid et al. 2007; Momonoki

and Momonoki 1993; Yamamoto et al. 2011). Similarly,

warm-season annuals usually cope better with high tem-

peratures than cool-season annuals. For example, for the

warm-season annuals cowpea and rice, the maximum

temperature for emergence is 37 and 40 �C, respectively

(Yoshida et al. 1981; Akman 2009), while cool-season

crops such as chickpea, lentils and lettuce show decreased

germination rate at soil temperatures above 33, 24 and

32 �C, respectively (Covell et al. 1986; Hall 2001).

Various temperature thresholds of a range of crops,

including cereals, horticultural and legume crops, have

been reviewed in detail (Luo 2011). Most crops suffer if

high temperatures are encountered during the vegetative

growth period, as has been documented for both cool-

season annuals like wheat (Porter and Gawith 1999) and
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Brassica juncea (Hayat et al. 2009) and for warm-season

annuals, such as rice (Peng et al. 2004; Lyman et al. 2013),

maize (Crafts-Brandner and Salvucci 2002), legumes

(McDonald and Paulsen 1997) and tomato (Camejo et al.

2005).

However, for many crops, including rice, maize, soy-

bean, legumes, rapeseed, sunflower and tomato, the

reproductive stage appears to be even more vulnerable to

temperature increase (Jagadish et al. 2014; Zinn et al. 2010;

Barnabás et al. 2008; Hedhly et al. 2009). This is especially

true during inflorescence/panicle development and during

flowering, where heat may lead to flower abortion or

reduced fertility, respectively (Maduraimuthu and Prasad

2014; Luo 2011).

Heat and fertility

Reduced fertility is a common problem associated with

heat, and has been found to be caused by high temperatures

during meiosis and fertilization in various species, e.g.,

Arabidopsis, tomato, rice, cowpea and barley (Bac-Mole-

naar et al. 2015; Giorno et al. 2013; Jagadish et al. 2014;

Ehlers and Hall 1998; Sakata and Higashitani 2008). The

male reproductive organs and, in particular, pollen devel-

opment are the most heat sensitive. Exposure to high

temperature stress during flowering results in a reduction of

viable and germinating pollen (Sato et al. 2006; Abiko

et al. 2005; Prasad et al. 2006; Oshino et al. 2007; Jagadish

et al. 2010; Zinn et al. 2010; Peet et al. 1998). For example,

in rice, spikelet sterility occurs if temperatures exceed

35 �C for just 1 h (Yoshida et al. 1981; Endo et al. 2009).

Tomato also has a dramatic decrease in fruit set in response

to heat stress, especially when applied during

microsporogenesis (Zhang and Yang 2014). During this

stage, a short period at 40 �C or extended exposure just a

few degrees above optimal temperature (32 �C rather than

26 �C during the day) results in male sterility (Sato et al.

2006; Giorno et al. 2013). Similarly, barley shows vul-

nerability to chronic mild heat stress (30 �C/25 �C day/

night, for 5 days), by failure of tapetum differentiation and

injuries to the microsporogenesis process (Sakata and

Higashitani 2008).

Maternal tissues of the pistil and the female gameto-

phyte have traditionally been considered to be more ther-

motolerant. However, malformations of the female tissues

can occur in some species when subjected to heat. Embryo

sac malformations have been reported in peach developed

above 25 �C, in wheat at 30 �C and rapeseed at 32 �C,

which consequently reduced the seed set in the latter two

species (Hedhly 2011). In apricot, even a mild increase of

3 �C above control conditions during the last week of

flower development resulted in shortening of the style and

abnormal ovaries (Rodrigo and Herrero 2002). In addition

to effects on male tissue, stigma receptivity is shortened by

heat in cherry and peach, and ovule longevity is reduced in

cherry and plum (Endo et al. 2009; Hedhly 2011). Such

alterations result in a lack of synchrony between male and

female reproductive tissues, ultimately leading to reduced

fertilization efficiency. However, timely pollination does

not guarantee fruit or seed set, as post-pollination processes

such as pollen tube growth, fertilization, formation of the

endosperm and embryo development were also shown to be

heat sensitive (Peet et al. 1997; Erickson and Markhart

2002; Barnabás et al. 2008).

Adaptation of cultivation methods to avoid heat

stress

As part of the plant’s phenotype, yield is the result of the

expression of the genotype (G), the environment (E) and

their interaction (G 9 E). In the field of agriculture, man-

agement practices (M) are often included as a separate third

factor, leading to the G 9 E 9 M model. Thus, yield

improvement can in principle be achieved by adapting the

genotype, as discussed later, the environment, or the

management practices.

At the level of farming, a few technical and management

adjustments may contribute to an increased ability of crops

to cope with temperature changes. Firstly, assuming con-

comitant higher winter temperatures, the dates of planting

can be adapted to avoid heat stress later in the growing

season (Olesen and Bindi 2002; Easterling 1996; Rosen-

zweig and Tubiello 2007; Lotze-Campen and Schellnhuber

2009). Crop planting and harvesting dates from around the

world have been recorded and used to make a so-called

crop calendar. This calendar contains *1300 planting and

harvesting date observations for 19 crops, allowing esti-

mation of the effects of planting time patterns at many

geographic locations (Sacks et al. 2010). For example, in

the US Midwest, early planting seems to be a successful

strategy to avoid summer heat for maize and spring wheat

(Reilly et al. 2003). Secondly, improvements in water

management can alleviate heat stress in agriculture, as

plants transpire to keep foliage temperature under control.

One option is shifting from rain-fed to irrigated agriculture,

including low-cost ‘‘rainwater harvesting’’ practices.

Additionally, adjusting the timing of irrigation may ensure

a crop’s water supply at critical, temperature-sensitive

stages (Easterling 1996; Smithers and Blay-Palmer 2001;

Smit and Skinner 2002; Lotze-Campen and Schellnhuber

2009).

Another strategy of avoiding heat stress is to change the

‘‘environment’’ factor of the GxExM model, by shifting the

geographical location of crop cultivation. Although this

strategy is drastic, it is already occurring, for instance, in
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Australia’s wine industry, where several large wine pro-

ducers have bought new properties in cooler regions to

maintain vineyards in the future (Chapman et al. 2012;

Park et al. 2012). It is also occurring for other crops, like

maize and rice (Kenny et al. 1993; Duzheng 2003; Tche-

bakova et al. 2011).

While adapting to climatic changes via alterations in

cultivation may be possible for some crops, heat stress

cannot be avoided by this approach alone (Reilly et al.

2003; Tubiello et al. 2002). For example, in areas where

water is a scarce and valuable resource, improving water

supply might not be an option. Similarly, moving cultiva-

tion areas geographically might be a solution for Aus-

tralia’s wine industry, but is not for Australia’s wheat

farmers, because winter temperatures at lower latitudes

near the sea are also too high (Chapman et al. 2012).

Because of these limitations, the introduction of more heat-

tolerant cultivars or shifting to other crops is essential to

maintain food production in areas with increasing

temperatures.

Conventional breeding for heat tolerance

Increasing temperature tolerance by conventional breeding

is an obvious approach to reduce the negative effects of

heat on crop yield. Usually, breeding programs are carried

out in a climacteric region similar to that where the crop

will be produced eventually. Thus, the selection of breed-

ing lines for relatively hot regions takes place under hot

conditions (Mickelbart et al. 2015). This implies that in hot

regions, thermotolerance traits are ‘‘passively’’ selected for

by locally operating breeders. Considering that cultivars

from warmer regions are often more heat-tolerant than

those from cooler regions, it seems that this technique has

been rewarding (Tonsor et al. 2008; Smillie and Nott 1979;

Yamamoto et al. 2011; Momonoki and Momonoki 1993;

Kugblenu et al. 2013). Conventional breeding has also

been used to intentionally develop new heat-tolerant crop

genotypes. For example, a variety of broccoli has an

improved head quality thanks to early maturation, because

this trait prevents hot days later in season to affect the heat-

sensitive flower initiation developmental stage (Farnham

and Bjorkman 2011). In addition, new varieties of cowpea

showed higher average grain yield when grown under hot

and long days during reproduction (Ehlers and Hall, 1998)

and recurrent selection has also been successful for

improving wheat yield using ancestor T. tauschii as a gene

donor, leading to increased rates of grain filling and larger

grains in BC1F6 plants (Gororo et al. 2002). Finally, in

potato breeding a genetic gain was obtained after three

cycles of recurrent selection for heat tolerance leading to

strong increase in yield up to 37.8 % (Benites and Pinto

2011).

Although conventional ‘‘yield’’ breeding has succeeded

in developing heat-tolerant lines, the ultimate genetic and

physiological bases of the improvements remain unclear.

This prevents the development of molecular or other

biomarkers, which would assist germplasm screening for

improved heat tolerance and allow for efficient breeding of

the complex trait. Another drawback of conventional

breeding is that the programs are often based on crossing

relatively advanced starting material, which has already

been used in the particular breeding areas specifically

related to the market segment that is targeted. This implies

that the potential gain in heat tolerance level is limited by

the low genetic diversity (Ladizinsky 1985; Paran and Van

Der Knaap 2007).

Advanced breeding for heat tolerance

Intra-specific QTL discovery

Heat tolerance seems to be polygenic, which might explain

why the genetic basis of heat stress tolerance in plants is

poorly understood (Wahid et al. 2007; Ainsworth and Ort

2010; Collins et al. 2008). In order to improve knowledge

about thermotolerance at the genetic level, many efforts

have been made to identify quantitative trait loci (QTL) in

segregating mapping populations. Jha et al. (2014) recently

listed QTLs associated with heat tolerance in various

plants, including Arabidopsis, azuki bean, barley, brassica,

cowpea, maize, potato, rice, sorghum, tomato and wheat. In

this paper, the authors showed several types of genetic

markers linked to different traits of interest which spanned

the various aspects of a plant’s vulnerability to heat. This

included QTLs for yield traits, such as fruit set or grain

filling rate, under heat. Also, QTLs for several heat toler-

ance-related traits have been discovered, such as for lower

canopy temperature during vegetative and reproductive

stages and higher chlorophyll fluorescence in wheat (Pinto

et al. 2010; Lopes et al. 2013; Vijayalakshmi et al. 2010).

High chlorophyll fluorescence represents heat-tolerant

photosynthesis, and lower canopy temperature reflects

efficient water uptake which has been associated with deep

rooting (Pinto and Reynolds 2015). A major QTL for high-

temperature seed germination capacity in lettuce, Htg6.1,

colocates with a temperature-sensitive gene encoding an

abscisic acid biosynthesis enzyme (LsNCED4) (Argyris

et al. 2008, 2011). In potato, nine QTLs for internal heat

necrosis in tubers were detected that each explain between

4.5 and 29.4 % of the phenotypic variation (McCord et al.

2011). Many studies have focused on the effect of high
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temperature on reproductive characteristics, including

pollen germinability, pollen tube growth, grain weight,

days to heading, grain filling and post-anthesis leaf senes-

cence, fruit set and quality traits such as white-back kernels

in rice. In maize, five and six QTLs for pollen quality and

tube growth have been identified with a high heritability of

0.64 and 0.68, respectively. However, the pollen tests were

performed in vitro and might not be representative of the

situation in vivo (Frova and Sari-Gorla 1994). Lastly, in

tomato, six QTLs were identified that explain 33 % of the

phenotypic variation related to fruit set at high temperature

(Ventura et al. 2007). A recent QTL study in rice focussed

on spikelet fertility under high temperature (Ye et al.

2015). This study followed up previous work (Ye et al.

2012) and confirmed the presence of a recessive QTL on

chromosome 4 which contributes 15 % higher rice spikelet

fertility under heat stress compared to plants without the

QTL (Ye et al. 2015). Heat tolerance QTLs on this chro-

mosome have been identified in different populations of

heat-tolerant rice varieties (Ye et al. 2012, 2015; Xiao et al.

2010). Ye et al. (2015) showed that the QTL is located in a

highly conserved chromosomal region. Unfortunately, this

limits mapping resolution and causal gene identification.

More advanced approaches such as the use of multi-parent

advanced generation inter-cross (MAGIC) populations

were suggested as a way to introduce more genetic varia-

tion and determine the genes involved in thermotolerance

of spikelet fertility (Ye et al. 2015).

Besides dedicated mapping populations, QTLs can be

detected via exploration of natural populations. As noted

previously, linkage mapping can be considered as being

useful for identification of major genes and QTLs. How-

ever, due to the limited number of generations and thus

recombination events, those QTLs cover a relatively large

region and gene identification requires time-consuming

fine-mapping processes. Exploiting natural diversity panels

avoids these hurdles. Using a genome-wide association

approach, the linkage decay is fast, therefore providing a

much higher resolution. Consequently, fine mapping is

often not necessary for identification of candidate genes

(Bergelson and Roux 2010). So far, genome-wide associ-

ation study (GWAS) panels have been established in

Arabidopsis and several crops including maize, rice, sor-

ghum and foxtail millet (Buckler et al. 2009; Huang et al.

2011; Jia et al. 2013; Morris et al. 2013). Maize and rice

seem to be the two major models for crop GWAS, con-

sidering the magnitude of resources already developed and

published for these species (Huang and Han 2014). So far,

QTLs explaining transition of the vegetative to generative

stage have been established in these crops (Buckler et al.

2009; Huang et al. 2011). Although those QTLs are not

related to heat tolerance directly, QTLs explaining flow-

ering time are of interest for heat tolerance breeding, as

early flowering might enable a plant to complete the heat-

sensitive reproductive processes before late-season heat

episodes (Ishimaru et al. 2010). QTLs directly associated

with high-temperature-induced reduction in fertility have

recently been revealed in Arabidopsis. An Arabidopsis

inflorescence can have flowers at many different develop-

mental stages, and by measurement of the plant silique

length after short-term heat stress, sensitivity of the dif-

ferent reproductive stages was determined. Meiosis, fer-

tilization and early embryogenesis were shown to be most

vulnerable to heat. GWAS study of this experimental setup

revealed four QTLs related to specific developmental

stages. Three QTLs were responsible for sensitivity of pre-

anthesis reproductive processes including male and female

meiosis, while one QTL explained population variation of

early embryogenesis heat sensitivity. A strong negative

correlation between flowering time and silique length was

detected, which were strongly and moderately associated

with the same SNP, respectively. Interestingly, this SNP

has been linked to the flowering time repressor FLC, sug-

gesting a role for the regulation of flowering time in the

heat stress response (Bac-Molenaar et al. 2015). As Ara-

bidopsis is a member of the Brassicaceae family, the

results might provide insights for breeding within this

family.

Altogether, the QTL studies in different crops all iden-

tified multiple QTLs per trait, varying from two in rice and

azuki bean (enhancing spikelet and pollen viability under

heat stress, respectively) up to 34 in barley for several heat-

related traits (e.g., number of spikes per plant and days

until heading). This demonstrates that heat tolerance is

dependent on a range of factors and QTLs which seem to

vary between crops (reviewed in Jha et al. 2014).

Expanding genetic diversity with crop-related wild

species

Crop domestication may be regarded as the first stage of

plant breeding, resulting in dramatic morphological and

physiological modifications to meet human needs, includ-

ing seed and fruit size and number, seed shattering, seed

dormancy, photoperiod and flowering time, taste, nutrition

and overall plant architecture (Meyer and Purugganan

2013; Gross and Olsen 2010). Domestication inevitably

involves a genetic bottleneck due to selection and breeding

of similar lines with favorable traits, after which only a

subset of the genes and alleles available in the wild pro-

genitor gene pool are present among crop cultivars (God-

fray et al. 2010; Ladizinsky 1985; Olsen and Wendel

2013). This reduction in diversity seems to have led to a

loss of abiotic stress tolerance traits, since many wild rel-

atives and landraces are more tolerant to stresses compared

to domesticated crops (Dolferus 2014; Maduraimuthu and
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Prasad 2014). Therefore, the identification of superior wild

alleles that are lacking in cultivated germplasm has become

of great interest (Tanksley and McCouch 1997; Grandillo

et al. 2007; Lippman et al. 2007; Feuillet et al. 2008). For

example, introgression of wild alleles has resulted in crop

improvement in several cereals such as rice (Atwell et al.

2014), wheat (Pradhan et al. 2012) and maize (Prasanna

2012). However, exploiting wild relatives as a source of

novel alleles has been hindered by the introduction of

linked, undesirable traits, compounded by a lack of

molecular markers for precision breeding. (Dolferus 2014).

Only recently, new sequencing methods have made it cost-

effective to re-sequence complete genomes, as has been

done for wild tomato (Aflitos et al. 2014), cucumber (Qi

et al. 2013), sorghum (Mace et al. 2013), grape (Lijavetzky

et al. 2007), soybean (Li et al. 2013), rice (Xu et al. 2010)

and maize (www.panzea.org). Difficulties still arise when

QTLs are crossed in a particular genetic background and

show a smaller or no effect at all. Due to the potential for

unfavorable epistatic interactions, it is difficult or even

impossible to predict in advance whether a QTL might be

transferable to elite backgrounds (Podlich et al. 2004;

Collins et al. 2008).

Despite difficulties associated with fine mapping, iden-

tification of the causal gene was successful for a major

QTL for seedling survival rates under high temperature in

African rice (Oryza glaberrima) (Li et al. 2015). This

species has several advantageous traits, including tolerance

to drought, salinity and heat (Sakai et al. 2011). The heat

tolerance QTL was associated with a single gene, Thermo-

tolerance 1 (TT1), coding for an a2 subunit of the 26S

proteasome which is involved in the degradation of ubiq-

uitinated proteins. This gene is thought to protect cells

from heat stress by enhancing efficient elimination of

cytotoxic denatured proteins and maintaining heat-response

processes (Li et al. 2015). Comparison of the sequence of

TT1 from the Asian and African cultivated parental lines,

Oryza sativa ssp. japonica and Oryza glaberrima, revealed

three exonic SNPs, one of which resulted in an amino acid

substitution. Interestingly, TT1 was suggested to be a major

determinant for variation in thermotolerance among O.

sativa varieties: geographical distribution of three TT1

haplotypes showed that environmental pressure was

responsible for the selection of the TT1 heat tolerance

locus. In addition to a higher seedling survival, near-iso-

genic lines (NILs) containing the O. glaberrima TT1 allele

showed a higher thermotolerance at flowering and filling

stages compared to NILs with an O. sativa TT1 allele.

Overexpression of this gene not only led to enhanced

seedling thermotolerance in other rice species, but also in

Arabidopsis and Festuca elata (Li et al. 2015), showing the

enormous potential of this allele to enhance crop produc-

tivity under high-temperature stresses.

Together, these studies indicate that QTL analysis and

subsequent fine mapping and cloning are promising ways

to identify loci and genes for heat tolerance. Several can-

didate genes have been proposed, but characterizing the

causal gene underlying a heat tolerance QTL remains

challenging. However, for breeding purposes, the exact

underlying genes do not have to be known. Using molec-

ular markers based on linked flanking polymorphisms of a

QTL, a QTL can still be successfully introduced into

crossable breeding germplasm.

Discovery of thermotolerance genes

In response to high-temperature stress, plants modulate the

expression of a plethora of genes. These genes and their

annotation could help to identify the processes that are

induced or repressed such as those involved in acclimation

and protection to heat stress.

Transcriptional profiling has been performed during the

onset and recovery of heat stress, between stressed and

unstressed plants, or between heat-tolerant and heat sus-

ceptible variants. Such analyses have been performed in

many crops, e.g., rice, tomato, barley, brassica and grape

(Frank et al. 2009; Sarkar et al. 2014; Frey et al. 2015; Bita

et al. 2011; Liu et al. 2012; Mangelsen et al. 2011; Dong

et al. 2015). An extensive summary of recent transcrip-

tomic analysis in plant species was published by Lavania

et al. (2015). This summary revealed that plants reprogram

their signal transduction pathway, transcription factors and

proteins associated with metabolism in a conserved man-

ner. Although the studies were performed in different crops

which were exposed to different heat regimes, there was

considerable similarity in the heat stress-responsive genes.

For example, there is a conserved induction of genes

encoding for enzymes that govern the fluidity of mem-

branes upon heat stress. In agreement with this, overex-

pression of one of the enzymes: glycerol-3-phosphate

acyltransferase, resulted in increased saturation of the

thylakoid membrane lipids of transgenic tobacco plants,

showed a faster recovery after heat stress compared to

wild-type plants (Yan et al. 2008). When plants are

exposed to heat, reactive oxygen species (ROS) are formed

as a by-product in various aerobic metabolic pathways in

different cellular compartments (Miller et al. 2009; Wang

et al. 2014a; Chou et al. 2012; Dat et al. 1998; Volkov et al.

2006; Wu et al. 2012; Vacca et al. 2004; Mostofa et al.

2013), and cause cellular damage to membranes, proteins,

lipids and DNA (Volkov et al. 2006; Wu et al. 2012;

Bokszczanin et al. 2013; Baker and Orlandi 1995; Giardi

et al. 1997; O’Kane et al. 1996; Larkindale and Knight

2002). In order to prevent damage to the cell and regain

redox homeostasis, a typical response to heat is hyper-
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activation of the ROS scavenging machinery. The tran-

script and protein level of genes responsible for ROS

scavenging are increased under heat stress in many dif-

ferent plant species (Chou et al. 2012; Chao et al. 2009;

Mittal et al. 2012; Suzuki et al. 2013) and this has been

associated with basal heat tolerance (Almeselmani et al.

2006; Bhattacharjee 2012; Gupta et al. 1993; Kang et al.

2009; Rui et al. 1990; Wang et al. 2014b; Sairam et al.

2000; Badiani et al. 1993). A ROS scavenging-related gene

that seems to be important for thermotolerance is glutare-

doxin (GRX). This small ubiquitous protein is a regulator

in diverse cellular processes and oxidative stress response,

and its function is conserved in prokaryotes and eukaryotes

(Lillig et al. 2008; Cheng et al. 2009; Wu et al. 2012). As a

critical component of ROS metabolism, Arabidopsis

AtGRXS17 may be crucial for temperature-dependent

postembryonic growth and development (Cheng et al.

2011). Indeed, improvement of plant heat stress tolerance

has been achieved by increasing antioxidant enzyme and

GRX activities (Almeselmani et al. 2006; Badiani et al.

1993; Gupta et al. 1993; Rui et al. 1990; Sairam et al. 2000;

Wu et al. 2012; Chen et al. 2013). Probably, the best-

studied mechanism in response to heat stress is the pro-

duction of heat shock proteins (HSPs) upon exposure to

high temperature (Wang et al. 2004). By acting as molec-

ular chaperones, HSPs prevent deleterious protein confor-

mations and eliminate non-native aggregations formed

during stress (Morimoto 1998; Boston et al. 1996; Vierling

1991). Strong transcriptional up-regulation of a number of

HSPs by heat stress has been shown in plants and many

other organisms. The expression of HSPs and various other

heat-responsive genes is controlled by heat shock tran-

scription factors (HSFs) (Kotak et al. 2007). Experiments

in Arabidopsis, rice, tobacco and tomato have shown that

enhanced thermotolerance can be gained by overexpressing

HSPs or HSFs (reviewed in Grover et al. 2013).

Conclusion

Despite the urgent need to improve crop heat tolerance, a

very limited number of heat-tolerant varieties have been

developed. The development of new varieties through plant

breeding is expensive and time-consuming (Lotze-Campen

and Schellnhuber 2009; Rosenzweig and Tubiello 2007)—

for annual crops, it may take 10–30 years to introduce

specific adaptations (Chapman et al. 2012; Rosenzweig and

Tubiello 2007; Smit and Skinner 2002; Olesen and Bindi

2002). Therefore, it is very important that genetic variation

for the trait can be identified and characterized efficiently

in order to introduce it in a breeding program. At this point,

fundamental research plays an important role as knowledge

on molecular physiology of the plant heat response can

speed up the cloning of causal genes after QTL identifi-

cation. Furthermore, fundamental knowledge may be used

to generate leads for biotechnological modification of heat

tolerance traits. Although genetic modification is contro-

versial in some parts of the world, the products generated

with new gene editing techniques may be in the near future

classified as non-transgenic in the EU (https://www.euro

seeds.eu/new-plant-breeding-techniques). Gene editing

techniques involve several site-directed nuclease tech-

niques such as SDN-1 and SDN-2 using zinc-finger

nucleases (ZFNs), transcription activator-like effector

nucleases (TALENs), meganucleases and the clustered

regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated Protein9 (Cas9) system (CRISPR/

CAS9) (Sander and Joung 2014; Lusser et al. 2012; Har-

tung and Schiemann 2014; Mahfouz et al. 2014). Several

heat-tolerant transgenic plant species have been generated

already. However, a major finding of fundamental research

is that the plant heat stress response is highly complex,

with challenges that may be tissue, developmental stage

and even species specific (Hedhly 2011; Maduraimuthu

and Prasad 2014). Thus, heat tolerance should not be

regarded as a single trait, and as such, it is unlikely that a

general strategy can be developed to generate heat toler-

ance. For the near future, it will be important to evaluate to

what extend the current research data obtained from model

species such as Arabidopsis is translatable to crop species.

Fortunately, genomes of most of the important crop species

have been sequenced and annotated, making it possible to

transfer technologically advanced methods to the crop

species themselves. A remaining limitation is the space and

expertise necessary to grow a crop under controlled, rep-

resentative conditions and geographic location. Herein lies

an opportunity for academic research groups to closely

work together with breeding companies so that each can

benefit from the other’s expertise.

Despite widely being regarded as essential, academic

research is expensive and companies are often unwilling or

unable to subsidize research when no short-term payback is

foreseen. At the same time, research with a high certainty

of application may not be suitable or challenging for aca-

demics, many who strive to publish in higher-ranked sci-

entific journals. A solution to this problem may lie in

tripartite collaboration between academia, the private sec-

tor and governments, based on the shared aim of con-

tributing to sustainable food production for a growing

population in a warming world. Well-balanced investments

may have synergistic effects on academic research output

and the potential for application of findings.

In conclusion, in order to achieve success, combined

efforts of plant physiologist, molecular biologists and crop

breeders are required. Given the importance of global food

security, the need for a versatile and linked global strategy
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and multidisciplinary collaboration involving governmen-

tal agencies, companies and academics is particularly

evident.
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