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Disease resistance in plants is mostly quantitative, with both major and minor genes

controlling resistance. This research aimed to optimize genomic selection (GS) models

for use in breeding programs that are needed to select both major and minor genes for

resistance. In this study, stripe rust (Puccinia striiformis Westend. f. sp. tritici Erikss.) of

wheat (Triticum aestivum L.) was used as a model for quantitative disease resistance. The

quantitative nature of stripe rust is usually phenotyped with two disease traits, infection

type (IT) and disease severity (SEV). We compared two types of training populations

composed of 2,630 breeding lines (BLs) phenotyped in single-plot trials from 4 years

(2016–2020) and 475 diversity panel (DP) lines from 4 years (2013–2016), both across

two locations. We also compared the accuracy of models using four different major

gene markers and genome-wide association study (GWAS) markers as fixed effects.

The prediction models used 31,975 markers that are replicated 50 times using a 5-fold

cross-validation. We then compared GSmodels using a marker-assisted selection (MAS)

to compare the prediction accuracy of the markers alone and in combination. GS models

had higher accuracies than MAS and reached an accuracy of 0.72 for disease SEV.

The major gene and GWAS markers had only a small to nil increase in the prediction

accuracy more than the base GS model, with the highest accuracy increase of 0.03 for

the major markers and 0.06 for the GWAS markers. There was a statistical increase in

the accuracy using the disease SEV trait, BLs, population type, and combining years.

There was also a statistical increase in the accuracy using the major markers in the

validation sets as the mean accuracy decreased. The inclusion of fixed effects in low

prediction scenarios increased the accuracy up to 0.06 for GS models using significant

GWAS markers. Our results indicate that GS can accurately predict quantitative disease

resistance in the presence of major and minor genes.

Keywords: genomic selection, fixed-effect, disease resistance, stripe rust, genome-wide associate studies,
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INTRODUCTION

Plant breeding programs select and improve both qualitative
and quantitative traits. Qualitative traits are controlled by a
few large-effect genes that are readily detectable and follow a
Mendelian inheritance (Chen, 2013). In contrast, quantitative
traits are controlled by several small-effect genes that are difficult
to distinguish and controlled by quantitative trait loci (QTL;

Bernardo, 2008). The genetic control of a trait determines the
types of selection that will be most effective for improvement.
However, disease resistance can be either a qualitative or a
quantitative trait, and, therefore, the most effective method of
improvement varies (Poland and Rutkoski, 2016). Breeding for
disease resistance is a major goal for most breeding programs due
to the effect of the disease on yield and quality performance.

Breeding for qualitative disease resistance is controlled by one

or two large-effect alleles, called resistance (R) genes and further
referred to as major genes (Agrios, 2005). Qualitative disease
resistance generally follows a race-specific resistance and quickly
degrades due to the rapid evolution of new pathogen races (Chen,
2005). Major gene pyramiding can reduce the possibility of major
genes by combining multiple major genes to provide a more
durable resistance to multiple pathogen races into a single line.
Pyramiding is implemented through a marker-assisted selection
(MAS) and has been an effective method for various crops (Wang
et al., 2001, 2017; Pietrusińska et al., 2011; Bai et al., 2012; Jiang
et al., 2012; Liu et al., 2016b; Singh et al., 2017). Successful
implementation of major genes relies on identifying the useful
sources of the genes, finding the linked markers, confirming the
effect in different genetic backgrounds, and finally, deploying
said major genes (Bernardo, 2008). Major gene implementation
is further complicated when it comes to selecting multiple major
genes simultaneously for gene pyramiding. A large population is
needed to screen and select the lines with more than one gene
in early generations while still maintaining enough lines to select
for other traits in later generations (Poland and Rutkoski, 2016).
The difficulty can be further attributed to unfavorable linkage and
multiple major gene sources (Bernardo, 2008).

Breeding for quantitative resistance conferred by minor-
effect genes or a combination of minor and major genes
tends to produce a more durable resistance in breeding lines
(BLs) because it relies on multi-resistant alleles. Breeding for
quantitative resistance requires multiple breeding cycles to
improve resistance gradually (Poland and Rutkoski, 2016). The
breeding method for quantitative resistance is similar to the
methodology used for other complex traits such as grain yield
(Rutkoski et al., 2014; Poland and Rutkoski, 2016; González-
Camacho et al., 2018). Similar to qualitative resistance, selecting
for quantitative resistance can be completed throughout the
breeding process, but disease resistance is commonly completed
in earlier generations to select for other traits further in the
program. Therefore, selecting for quantitative resistance in
earlier generations can be difficult due to the lack of replication
and environments. However, selecting for resistance in later
generations reduces genetic gain due to the selection for other
traits (Poland and Rutkoski, 2016). Both methods, therefore,
reduce the effectiveness of breeding quantitative resistance.

One such trait that displays both qualitative and quantitative
resistance is stripe rust, also called yellow rust (Yr), caused by
Puccinia striiformisWestend. f. sp. tritici Erikss.

Stripe rust is one of the most devastating diseases of wheat
(Triticum aestivum L.) and is highly destructive in the western
USA (Chen, 2005; González-Camacho et al., 2018; Liu et al.,
2019). Stripe rust can cause more than 90% yield losses in
fields planted with susceptible cultivars (Liu et al., 2020). The
use of resistance varieties and the applications of fungicide are
the primary methods to control stripe rust (Chen and Line,
1995; Liu et al., 2020). Stripe rust resistance is categorized into
qualitative all-stage resistance (ASR) and quantitative adult-plant
resistance (APR).

All-stage resistance is conferred by race-specific genes that are
inherited qualitatively with a life span of ∼3.5 years per gene
(Case et al., 2014; Chen and Kang, 2017). There are more than
300 identified QTL conferring resistance to stripe rust (Wang
and Chen, 2017). The identification of a large number of major
genes shows numerous resistance alleles available for breeding
purposes in various varieties and populations. Previously, major
genes Yr5 and Yr15 have been shown to be effective against all
races of the stripe rust pathogen in the USA (Wang and Chen,
2017). However, virulence to Yr5 has been demonstrated in a few
countries not including the USA (Wellings et al., 2009; Zhang
et al., 2020; Kharouf et al., 2021; Tekin et al., 2021). Virulence
to Yr15 has only been documented in Afghanistan (Gerechter-
Amitai et al., 1989). The virulence to these genes demonstrates
the need to not rely on any singlemajor gene to provide resistance
in a cultivar.

Adult-plant resistance is usually a non-race-specific
quantitative resistance that is associated with durable resistance
with some genes being effective for more than 60 years (Chen,
2013). APR is often affected by temperature and also can be
referred to as high-temperature adult-plant (HTAP) resistance,
which is often controlled by more than one gene mainly with
additive effect (Chen and Line, 1995; Chen et al., 1995; Liu et al.,
2019). HTAP resistance is influenced by the temperature and age
of the plants. As the temperature increases, the plant becomes
more resistant, and rust development slows down (Chen, 2005).
However, to confirm HTAP, greenhouse studies with different
temperature ranges need to be conducted (Chen, 2005). HTAP
resistance and APR are conferred by different loci with varying
effects and often display partial resistance, making them difficult
to incorporate into new cultivars (Chen and Line, 1995; Liu et al.,
2019). Consequently, APR or HTAP resistance must be improved
over multiple selection cycles as mentioned previously (Rutkoski
et al., 2014; Poland and Rutkoski, 2016; González-Camacho
et al., 2018). APR is generally expressed in the later stages of
wheat, whereas ASR is expressed throughout the lifecycle of
the plant (Wang and Chen, 2017). Therefore, it is difficult to
identify APR genes due to the masking of their effect by ASR
genes. The masking of ASR genes and the quantitative nature of
APR genes result in much of the APR resistance in a population
being uncharacterized. It is recommended to combine both ASR
and APR genes to take advantage of both types of resistance
limitations (Wang and Chen, 2017). The lack of ASR durability
coupled with the challenge in identifying and breeding APR
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creates a unique opportunity for genomic selection (GS). In
addition, major ASR genes are known to interact with APR
and including them in GS models as fixed effect have increased
prediction accuracy (Bernardo, 2014; Rutkoski et al., 2014;
Arruda et al., 2016).

In many crops, the difficulty in selecting for qualitative and
quantitative disease resistance (similar to stripe rust) creates
an opportunity for GS to integrate quantitative resistance by
accounting for small-effect alleles in the presence of large-effect
major genes without the development and analysis of mapping
populations and techniques (Poland and Rutkoski, 2016). The
goal of this study was to determine the most accurate GS method
to select for disease resistance in the presence of both major
and minor genes. Wheat stripe rust was used as an example as
most plant breeders try to capture the additive effects of both
ASR and APR simultaneously. The identified GS approaches will
be a valuable tool for breeders to facilitate cultivar and parental
selection for accumulating favorable alleles for disease resistance
in the presence of major and minor resistance genes (Rutkoski
et al., 2014; Michel et al., 2017).

MATERIALS AND METHODS

Phenotypic Data
Two training populations were used to compare the inclusion of
fixed-effect markers in populations with different frequencies of
stripe rust genes. The first training population consists of F3 : 5
and double-haploid soft white winter wheat BLs developed by
the Washington State University (WSU) winter wheat breeding
program. The BL population was evaluated for stripe rust in the
unreplicated single-plot trials in Pullman and Lind, Washington
planted in 2016, 2017, 2018, and 2020 growing seasons (Table 1).
Due to the unreplicated nature of the single-plot trails, each trial
consisted of unique lines, which resulted in a total of 2,630 lines
for all years and locations. The year 2019 was not included due to
the lack of adequate disease SEV in our trials. The BL population
was previously selected for stripe rust resistance in headrow
plots the year previous to unreplicated trials. Susceptible BLs in
headrow plots were culled and not included in the BL population,
which represents a prior selected, closely related BL population
with similar pedigree sources of stripe rust resistance. The second
training population consists of diverse associationmapping panel
[diversity panel (DP)] trials evaluated in unreplicated trials in
Central Ferry and Pullman, Washington from 2013 to 2016
with the same 475 lines represented in each trial (Table 1). The
mapping panel consists of varieties and BLs from at least six soft
white winter wheat breeding programs in the Pacific Northwest
(PNW) and represents diverse backgrounds with the potential
sources of stripe rust resistance.

The measured disease traits were stripe rust IT and SEV. The
recordings of these traits were dependent on natural infection
and stripe rust incidence at the time of observation and were
not previously inoculated. Some trials had three observations for
stripe rust and were identified with sequential numbers. The first
recording was taken soon after the emergence of a flag leaf, the
second was taken again after anthesis, and the third was taken in
the early milk stage. The trials with only one observation were

recorded right after anthesis for responses in the adult plant stage
as stripe rust was not present in the field during earlier growth
stages. IT was recorded based on a 0–9 scale (Line and Qayoum,
1992). SEV was recorded as the percentage of the leaf-infected
area using themodified Cobb Scale (Peterson et al., 1948).Table 1
summarizes environments, years, genotyped individuals, and the
measurements taken for each trial during which stripe rust was
recorded. However, due to the nature of APR being effective
in the adult stage and the fact that not all trials had multiple
recordings, only the last observation for each trial was used to
measure the disease traits for APR.

To account for differences in disease pressure under different
environments, a two-step adjusted mean method by which a
linear model was implemented to adjust both IT and SEV
means within and across environments was used. Then, a mixed
linear model was used to calculate genomic estimated breeding
values (GEBVs; Ward et al., 2019). Means from the stripe rust
data collected in the unreplicated trials were adjusted using the
residuals calculated for the unreplicated genotypes in individual
environments and across environments using the modified
augmented complete block design (ACBD)model (Federer, 1956;
Goldman, 2019). The adjustments were made according to the
method implemented in Merrick and Carter (2021), with the full
model across environments as follows:

Yij = Blocki + Checkj + Envk + Blocki × Envk + Checkj

× Envk + εijk (1)

where Yij is the trait of interest, either IT or SEV; Blocki is the
fixed effect of the ith block and kth trial; Checkj is the fixed effect
of the jth replicated check cultivar; Envk is the fixed effect of the
kth trial; and εijk denote the residual errors.

Heritability on a genotype-difference basis for broad-sense
heritability was calculated using the variance components from
the models implemented in Merrick and Carter (2021) and
using the best linear unbiased predictors for both individual
environments and across environments with the formula:

H2
Cullis = 1−

vBLUP1..

2σ 2
g

(2)

where σ 2
g and vBLUP1 are the genotype variance and mean

variance of the BLUPs, respectively (Cullis et al., 2006). In
general, the broad-sense heritability measurement is not suitable
for an unreplicated, unbalanced multi-environment trial, and,
therefore, narrow-sense heritability was not calculated (Schmidt
et al., 2019).

Genotypic Data
Lines were genotyped using genotyping-by-sequencing (GBS;
Elshire et al., 2011) through the North Carolina State Genomics
Sciences Laboratory in Raleigh, NC, USA, using the restriction
enzymes MspI and PstI (Poland et al., 2012). Genomic DNA
was isolated from seedlings in the one-leaf to three-leaf stage
using Qiagen BioSprint 96 Plant kits and the Qiagen BioSprint
96 workstation (Qiagen, Germantown, MD, USA). DNA libraries
were prepared following the protocol of DNA digestion with PstI
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TABLE 1 | Training populations for stripe rust IT and SEV in Central Ferry, Lind, and Pullman, WA, USA from 2013 to 2020.

Populationa Year Trials Locations Linesb IT 1c SEV 1d IT 2 SEV 2 IT 3 SEV 3

DP 2013 2 2 475 X X X X X X

DP 2014 2 2 474 X X X X X X

DP 2015 2 2 474 X X X X X X

DP 2016 1 1 474 X X X X X X

DP 2013–2014 4 4 475 X X X X X X

DP 2013–2015 6 6 475 X X X X X X

DP 2013–2016 7 7 475 X X X X X X

BL 2016 2 2 304 X X X

BL 2017 4 2 728 X X X X X X

BL 2018 3 2 1,239 X X X X X X

BL 2020 1 1 373 X X

BL 2016–2017 6 4 1,029 X X X X X X

BL 2016–2018 9 6 2,262 X X X X X X

BL 2016–2020 10 7 2,630 X X X X X X

aDP, Diversity panel; BLs, Breeding lines.
bLines, Unique lines in the training population.
c IT, Infection type.
dSEV, Disease severity.

X, Indicates measurement recorded.

and MspI restriction enzymes (Poland et al., 2012). Genotyping-
by-sequencing (GBS; Elshire et al., 2011) was conducted at North
Carolina State University Genomic Sciences Laboratory with
either an Illumina HiSeq 2500 or a NovaSeq 6000. DNA library
barcode adapters, DNA library analysis, and sequence single-
nucleotide polymorphism (SNP) calling were provided by the
USDA Eastern Regional Small Grains Genotyping Laboratory
(Raleigh, NC, USA). Sequences were aligned to the Chinese
Spring International Wheat Genome Sequencing Consortium
(IWGSC) RefSeq v1.0 (Appels et al., 2018), using the Burrows–
Wheeler Aligner (BWA) 0.7.17 (Li and Durbin, 2009). Genetic
markers with more than 20% missing data, a minor allelic
frequency of<5%, and themarkers that weremonomorphic were
removed. Markers were then imputed using Beagle version 5.0
and filtered once more for markers less than a 5% minor allelic
frequency (Browning et al., 2018). A total of 31,975 SNP markers
for the 475 unique DP lines and 2,630 BLs were obtained from
GBS. Principal components for themarkers were calculated using
the function “prcomp,” and a biplot with k-mean clusters was
created using the function “autoplot” in R (R Core Team, 2018).
Cluster number for k-means was calculated according to the
elbow method using a screen plot with the identification of the
optimal number of clusters when the total intracluster variation
was minimized.

Major rust-resistant genes observed to be common in the
WSU breeding population are Yr10, Yr17, Lr68, and Qyr.wpg-
1B.1, and molecular marker data for these genes were included
as fixed effects in our GS models. All winter wheat lines were
genotyped using Kompetitive Allele Specific PCR (KASP R©) assay
for Yr17, Lr68, and Qyr.wpg-1B.1 in the WSU winter wheat
breeding laboratory. The Yr17 gene (Helguera et al., 2003) was
screened using the KASPmarker developed byMilus et al. (2015).
The Lr68 leaf rust resistance gene (Herrera-Foessel et al., 2012)

was screened using the KASP marker developed by Rasheed et al.
(2016). Although leaf rust resistance is not commonly selected
in the US PNW breeding programs, this gene was found in
a large proportion of BLs, and thus was hypothesized that it
might have been selected congruently with stripe rust resistance.
The APR QTL Qyr.wpg-1B.1 reported on chromosome 1B by
Naruoka et al. (2015) was screened using the marker IWB12603
(Mu et al., 2020). The KASP assays were performed using
PACETM Genotyping Master Mix (3CR Bioscience, Essex, UK)
following the instructions of the manufacturer, and endpoint
genotyping was conducted on fluorescence using a Lightcycler
480 Instrument II (Roche, Indianpolis, IN, USA). The previously
reported ASR gene Yr10 (Frick et al., 1998) was screened
with a microsatellite marker Xpsp3000 developed by Bariana
et al. (2002). The microsatellite marker Xpsp3000 was run
using PCR products, which were separated on an ABI3730XL
DNA fragment analyzer (Applied Biosystems, Waltham, MA,
USA), and alleles were scored with the GeneMarkerv4.0 software
(SoftGenetics, State College, PA, USA), in collaboration with the
USDAWestern Regional Small Grains Genotyping Laboratory in
Pullman, Washington.

Genome-Wide Association Model
In addition to the inclusion of molecular markers for major rust-
resistant genes as fixed effects, the markers identified through
genome-wide association studies (GWASs) were included
through de novo GWAS. This method is further referred
to as GWAS-assisted GS (GWAS-GS). The GWAS-GS was
implemented according to McGowan et al. (2020). Briefly,
a proper cross-validation using GWAS was conducted using
BLINK in the genome association and prediction integrated tool
(Liu et al., 2016a; Tang et al., 2016; Huang et al., 2019; GAPIT)
with three principal components fitted as fixed effects on the
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training population only. Three principal components were used
because they were previously observed to be most reliable in
accounting for a population structure for yield and agronomic
traits in winter wheat for the same populations (Lozada et al.,
2017). In accordance to advice put forward by Rice and Lipka
(2019), the first method of GWAS-GS included only significant
markers based on a Bonferonni cutoff of 0.05 (GWAS_B). Due
to our cross-validation scheme, different significant markers for
GWAS_B were identified in each cross-validation, year, and
population. Therefore, significant markers were not presented.
For the remaining GWAS-GS methods, the markers were
ordered by the degree of statistical significance based on the
values of p from the smallest to largest. We compared the
inclusion of the top 5, 10, 25, 50, and 100most significantmarkers
as fixed effects (GWAS_5, GWAS_10, GWAS_25, GWAS_50,
and GWAS_100).

Prediction Models
Marker-Assisted Selection Model
Single and multiple regression models were used as MAS models
to compare major rust-resistant markers and the predictive
ability of de novo GWAS markers alone and in combination. The
fixed-effect multiple regression model is described as follows:

yi = µ + X1β1 + . . .Xiβi + εi (3)

where yi is the observed phenotypic value of the ith individual, µ
is the mean, Xi is the genotype of the marker i, βi is the effect of
the ith marker, and εi is the residual error term.

GS Model
rrBLUP was used as the base GS model and was implemented
using the package “rrBLUP” (Endelman, 2011). rrBLUP was
used as the base model due to the nonplacement of the ridge
regression penalty implemented by rrBLUP on the fixed effects,
allowing a large effect on the model. Further, rrBLUP has shown
to outperform other models when integrating fixed effects into
the models and in predicting disease resistance (Rutkoski et al.,
2014; Arruda et al., 2016; Poland and Rutkoski, 2016; Muleta
et al., 2017). The basic rrBLUPmodel is described as follows (Rice
and Lipka, 2019):

yi = µ +

p∑

k=1

xikβk + εi (4)

where yi is the observed phenotypic value of the ith individual,
µ is the mean, xik is the genotype of the kth marker and ith
individual, p is the total number of markers, βk is the estimated
random marker effect of the kth marker, and εi is the residual
error term.

GS Model With Fixed Effects
To evaluate the effect ofmajor and de novoGWASmarkers on the
prediction accuracy of GS models, we used the rrBLUP model as
described (Rice and Lipka, 2019):

yi = µ +

m∑

j=1

xijαj

p∑

k

xikβk + εi (5)

where yi is the observed phenotypic value of the ith individual,
µ is the mean, xij is the jth marker of the ith individual, m is the
number of markers included as fixed-effect covariates, αj is the
fixed additive effect of the jth marker, xik is the genotype of the
kth marker and ith individual, p is the total number of markers,
βk is the estimated random marker effect of the kth marker, and
εi is the residual error term.

Prediction Accuracy and Schemes
The prediction accuracy for the GS was reported using Pearson
correlation coefficients, and a prediction bias was reported using
a root mean square error (RMSE) between GEBVs and their
respective adjusted means using the function “cor” in R (R Core
Team, 2018). The effect of fixed-effect markers on prediction
accuracy was assessed using a 5-fold cross-validation scheme
and independent validation sets for IT and SEV in the DP
and BL training populations. The two populations were used
to compare the effects of the significant markers in populations
with different genetic relatedness, frequency of markers, and
sources of resistant pedigrees. GS models were conducted with
5-fold cross-validation by including 80% of the samples in the
training population and predicting the GEBVs of the remaining
20% (Lozada and Carter, 2019). One replicate consists of the five
model iterations, where the population is split into five different
groups. This was completed 50 times. As mentioned previously
for the GWAS-GS, the GWASwas conducted on 80% of the lines,
and then the markers are included in the GS model to predict
the remaining 20% of the lines. Independent validation sets were
then performed on a yearly basis by combining the two training
populations and environments together per year. This allows the
evaluation of models in a realistic breeding situation in which we
combine all available data to build a training population.

The training populations were evaluated for cross-validations
on a yearly basis and over combined years and trials. We assessed
each year independently using cross-validations.We then created
prediction models starting with the earliest trial and then a new
model with the addition of each subsequent trial to evaluate a
genotype-by-environment interaction, continuous training of a
prediction model, and the effect of different races of P. striiformis
f. sp. tritici. Independent validation sets were first conducted
using continuous training. For example, the earliest year, i.e.,
2013, was used to predict the following year, i.e., 2014. The
years were then combined to predict the following year, i.e.,
2013 and 2014 to predict 2015, and this process was continued
until the years 2013–2018 were used to predict 2020. Using this
scenario, the first 3 years, 2013–2015, consisted of the DP lines
alone, and therefore, each year consisted of the same lines. With
the inclusion of the years 2016–2020, unique lines from the BL
were added each year due to the fact that each trial in the BL
consisted of unique lines only phenotyped in a single trial as
mentioned previously.

All GS and MAS models and scenarios were analyzed using
WSU’s Kamiak high performance computing cluster (Kamiak,
2021). Model and year comparisons were evaluated by using a
Tukey’s honestly significant difference (HSD) test implemented
in the “agricolae” package in R (R Core Team, 2018; de
Mendiburu and deMendiburu, 2019). The comparison of models
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was then plotted for a visual comparison using “ggplot2” in R
(Wickham, 2011; R Core Team, 2018).

RESULTS

Phenotypic Data
Stripe rust phenotyping was dependent on natural infection.
Therefore, it is important to evaluate GSmodels in different years
to account for environments with little to no variation in stripe
rust SEV and pathogen race changes. Overall, the maximum
IT and SEV were relatively high for each scale, indicating the
presence of adequate stripe rust SEV in each trial (Table 2). The
BL had relatively high coefficient of variations (CVs) for each
trial. However, the heritability was very high, ranging from 0.60
to 0.96 across traits and trials, indicating adequate screening trials
for stripe rust. Further, the phenotypic correlations between IT
and SEV were relatively high in the DP, ranging from 0.67 in
2013 to 0.88 in 2015 (Table 3). The phenotypic correlation in the
BL between IT and SEV was similarly high, ranging from 0.70 in
2016 to 0.86 in 2018.

The inclusion of multiple environments creates a challenge
for GS models due to the genotype–environment interaction
(GEI). There were significant differences between the majority
of years for each population and trait (Figures 1A–D). The
ranges for both IT and SEV were large, indicating both resistant
and nonresistant varieties within the populations. The mean
IT and SEV were also lower in the BL compared to the DP
(Figures 1A–D; Table 2). In comparison to the DP, the BL
population consisted of a larger proportion of resistant cultivars,
which was expected as these had previously been selected under
field conditions. SEV displayed a large concentration of values
near zero, specifically in the year 2018 (Figure 1D). Significant
differences of each year indicate an environmental effect that
needs to be accounted for within the prediction models.

In addition to GEI, stripe rust races may change from year
to year, which creates an opportunity for major genes to be
overcome by virulent races. TheUSDA stripe rust lab records race
frequencies and virulence each year (https://striperust.wsu.edu/
races/data/). The major stripe rust races for each year was either
PSTv-37 or PSTv-52 with the exception of 2017 and 2020, which
had large frequencies for PSTv-37 (Supplementary Table 1).
The other races with higher frequencies included PSTv-39,
PSTv-322, PSTv-48, PSTv-79, PSTv-11, and PSTv-73. Therefore,
the difference in race change was not a major factor in
prediction scenarios.

Genotypic Data
The major rust genes present in the WSU winter wheat breeding
program germplasm are Yr10, Yr17, Lr68, and Qyr.wpg-1B.
The frequency of genotypes, as determined by the previously
described molecular markers for each of these genes, is presented
inTable 4. Similar frequencies in both populations were observed
for the homozygous resistant allele for Lr68 with 50 and 46% in
the DP and BL, respectively. The frequency of the marker for
Yr10 and IWB12603 was much higher in the DP than in the BL
with Yr10 having a relatively high frequency of 53% in the DP.
However, the homozygous resistant allele for Yr17 was much

higher in the BL (38%) than in the DP (19%). There was also
a wide combination of homozygous resistant alleles within each
population (Figure 2).

The principal component biplot using the GBS SNP markers
over the combined DP and BL training populations accounted
for only 9.1% of the total genetic variation, indicating a large
population structure (Figure 3). PC1 explained 5.4% of the
variation, and PC2 explained 3.7% of the variation. The biplot
revealed three main clusters over the combined populations
using k-means clustering. A majority of lines in both the DP and
BL were included in the first cluster with 355 and 2,107 lines,
respectively. The second cluster also displayed a mixture of DP
lines and BLs with 108 and 219 lines, respectively. Finally, the
third cluster included mainly BLs with 12 lines in the DP and 304
lines from the BL.

Cross-Validations
Major Markers
Multiple comparisons for accuracy and RMSE between the
inclusion of each major molecular marker for the known rust-
resistant genes individually and in combination (ALL_M) were
completed for both populations in and across the years for IT
and SEV (Supplementary Tables 2, 3). The markers for major
rust genes were included as fixed effects and compared to
the base rrBLUP model and MAS models with the markers
as variables alone (Figures 4, 5; Supplementary Tables 4, 5).
Within individual years in the BL, the rrBLUP base model
reached a high accuracy of 0.65 in 2018 and 2020 for IT and
0.68 in 2018 for SEV. The effects of the major markers varied
from year to year, but the marker for Yr17 showed an increase
in the prediction accuracy for every year except in 2018 for
IT (Supplementary Table 2) and in 2018 and across 2016–2018
and 2016–2020 for SEV (Supplementary Table 3). A majority of
markers had relatively low prediction accuracies for MAS with
the exception of the Yr17marker that reached an accuracy of 0.05
and 0.42 for IT and SEV, respectively (Supplementary Tables 4,
5). When all markers were combined, similar accuracies were
attained and compared to the time of inclusion of only the
Yr17 marker in both the rrBLUP model and MAS models. The
remainder of major rust gene markers with the exception of
Lr68 increased the accuracy within specific years but had less
consistency than the Yr17 marker for. The largest differences
from the rrBLUP model within a single year in the BL were
seen in 2016 for GS models (Supplementary Figure 1). In 2016,
the combination of both Yr10 and Yr17 markers increased the
accuracy by 0.06 for SEV. Yr17 and the combination of markers
only slightly increased the accuracy across environments with an
increase in IT of 0.01 (Supplementary Figure 2). Additionally,
the RMSE was similar between all markers and rrBLUP for
both traits (Supplementary Figure 3; Supplementary Tables 2,
3). However, for MAS, RMSE was higher than all GS models.
In MAS models, the RMSE was lower for Yr17, and ALL_M,
compared to another marker, with SEV having a much higher
error than IT for the majority of years. The individual years of
2018 and 2020 displayed a higher RMSE compared to the other
individual years and combined years (Supplementary Figure 3;
Supplementary Tables 4, 5).
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TABLE 2 | Stripe rust IT and disease SEV heritability (H2) and trial statistics for unadjusted phenotypes in the DP and BL training population phenotypes from 2013 to

2016 and 2016 to 2020.

Population Year Trait H2 CVa Maxb Mean Minc SDd

DP 2013 IT 0.85 52.31 9 3 1 2

DP 2014 IT 0.82 57.13 9 4 1 2

DP 2015 IT 0.89 43.82 9 5 1 2

DP 2016 IT 0.84 46.23 9 4 0 2

DP 2013–2014 IT 0.93 55.58 9 4 1 2

DP 2013–2015 IT 0.94 52.66 9 4 1 2

DP 2013–2016 IT 0.95 51.77 9 4 0 2

DP 2013 SEV 0.91 108.31 100 22 2 24

DP 2014 SEV 0.78 116.04 90 24 2 28

DP 2015 SEV 0.92 72.78 100 43 2 32

DP 2016 SEV 0.89 70.57 100 36 0 26

DP 2013–2014 SEV 0.93 112.77 100 23 2 26

DP 2013–2015 SEV 0.96 99.31 100 30 2 30

DP 2013–2016 SEV 0.96 94.90 100 31 0 29

BL 2016 IT 0.90 87.56 8 3 0 2

BL 2017 IT 0.83 83.36 9 3 0 2

BL 2018 IT 0.79 172.49 8 2 0 3

BL 2020 IT 0.96 93.03 8 3 0 3

BL 2016–2017 IT 0.83 84.06 9 3 0 2

BL 2016–2018 IT 0.79 115.26 9 2 0 3

BL 2016–2020 IT 0.80 113.22 9 2 0 3

BL 2016 SEV 0.86 152.31 80 9 0 13

BL 2017 SEV 0.88 131.79 90 16 0 21

BL 2018 SEV 0.60 212.74 80 11 0 24

BL 2020 SEV 0.96 125.06 80 18 0 23

BL 2016–2017 SEV 0.89 136.36 90 15 0 20

BL 2016–2018 SEV 0.85 165.25 90 13 0 22

BL 2016–2020 SEV 0.86 160.47 90 14 0 22

aCV, Coefficient of variation.
bMax, Maximum.
cMin, Minimum.
dSD, Standard deviation.

TABLE 3 | Phenotypic correlations between IT and disease SEV.

Population Year 1 Year 2 Year 3 Year 4 Year 1–2 Year 1–3 Year 1–4

DP 0.79 0.67 0.88 0.82 0.76 0.85 0.86

BL 0.70 0.80 0.86 0.85 0.76 0.83 0.83

Phenotypic correlations between IT and disease SEV for Pacific Northwest (PNW) winter wheat within both the diversity panel (DP) lines and breeding lines (BL) phenotyped from 2013

to 2020 in Central Ferry, Lind, and Pullman, WA, USA.

Within individual years in the DP, the rrBLUP base model
reached an accuracy of 0.55 for IT (Supplementary Table 2)
and 0.64 for SEV in 2013 (Supplementary Table 3). Across
years, IT reached 0.56 in 2013–2016 (Supplementary Table 2)
and SEV reached 0.69 in 2013–2014 (Supplementary Table 3).
In the DP, the major rust markers had a less effect on the
prediction accuracy, with Yr10 being the only marker that
increased the accuracy from the base rrBLUP model and at a
maximum of 0.01. ForMAS, the combination of markers resulted

in the least reduction of accuracy with a maximum reduction
of 0.10 in 2015 for IT (Supplementary Table 4) and 0.07 in
2016 for SEV (Supplementary Table 5). Markers for Yr10 and
IWB12603 also had the largest effect on MASmodels. The largest
differences from the rrBLUP model within a single year in the
DP were seen in 2015 for GS models (Supplementary Figure 4).
In 2015, the Yr10 marker increased the accuracy by 0.01. There
were no increases in the accuracy across any combination of
environments in the DP. The results for RMSE were similar to
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FIGURE 1 | Comparison of infection type (IT) and disease severity (SEV) over years in the diversity panel (DP) lines and breeding lines (BL) training populations using

least significant differences. Models labeled with the same letter are not significantly different (p = 0.05). (A) Infection type for the diversity panel over years. (B)

Disease severity for the diversity panel over years. (C) Infection type for the breeding lines over years. (D) Disease severity for the breeding lines over years.

the BL, with SEV having a much higher RMSE for each model
than IT (Supplementary Tables 2, 3). Further, within SEV for
MAS, Lr68 had a higher RMSE compared to the other markers.
Yr17 did not display a lower RMSE than the other markers,
with Yr10 and ALL_M displaying the lowest RMSE in MAS
(Supplementary Figure 5; Supplementary Tables 4, 5).

De novo GWAS Markers
The de novo GWAS markers increased the prediction accuracy
in individual years and across years in the BL, but not in the
DP. Only the GWAS_B, GWAS_5, and GWAS_10 sets increased
the accuracy with GWAS_25, GWAS_50, and GWAS_100
decreasing the prediction accuracy (Figures 6, 7). The largest
increase in IT was for GWAS_5 in 2018 with an increase
of 0.02 for both IT and SEV (Supplementary Tables 1,
2; Supplementary Figure 6). Across years, GWAS_10
had the largest increase of 0.02 in 2016–2018 for SEV
(Supplementary Table 3; Supplementary Figure 7). The
MAS for the de novo GWAS markers had larger decreases
in MAS compared to the major markers in both the DP
and BL (Supplementary Tables 4, 5). The larger GWAS sets
(GWAS_25, GWAS_50, and GWAS_100) consistently had
lower prediction accuracies than the other GWAS sets and the
major rust gene markers. GWAS_B using significant markers
showed the similar accuracies to GWAS_5, displaying no
advantage compared to arbitrarily including markers based
on the value of p. The GWAS-GS models displayed a higher
RMSE for both GS and MAS in both population and traits
compared to the major markers (Supplementary Figures 8, 9).

The GWAS_100 sets displayed the highest RMSE out of all
models in the cross-validation scenarios with an RMSE of 43.02
(Supplementary Table 5).

Validation Sets
Major Markers
The validation sets were conducted by combining both training
populations and years and predicting the following year as
a forward prediction. In doing so, the validation sets were
evaluated to demonstrate real-world breeding scenarios wherein
all available information was used to create predictions. The first
3 years, 2013–2015, consisted exclusively of the DP, and from
2016 forward, the BL was included due to the availability of
training populations. The validation sets resulted in the highest
accuracy of all prediction scenarios using the rrBLUP base
model, and all major markers reached an accuracy of 0.72 in
the SEV for predicting 2014 using the 2013 data (Figures 8,
9; Supplementary Tables 6, 7). For the same year, the major
markers with the exception of Yr10 resulted in an increase of
the accuracy by 0.01. The major rust markers either performed
the same or increased the accuracy for the majority of validation
GS predictions.

As a number of environments and years were added to
the population, the general prediction accuracy decreased
presumably due to the prediction of multiple environments
within a year and the inclusion of different training populations.
However, as the accuracy decreased for the base rrBLUP model,
the effect of fixed markers increased. The largest increase
in both cross-validations and validation sets occurred using
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TABLE 4 | Frequency of rust-resistant genotypesa in both the breeding line (BL) and diversity panel (DP) line populations.

Population Marker (gene) Genotype Numbeb Frequency Major race

effectiveness

DP KASP (Yr17) 0 356 0.75 PSTv-322

PSTv-48

PSTv-79

PSTv-11

1 30 0.06

2 89 0.19

DP IWB12603 (Qyr.wpg-1B.1) 0 288 0.61 NAc

1 16 0.03

2 171 0.36

DP KASP (Lr68) 0 182 0.38 NA

1 55 0.12

2 238 0.50

DP Xpsp3000 (Yr10) 0 220 0.46 PSTv-37

PSTv-52

PSTv-322

PSTv-48

PSTv-79

PSTv-11

PSTv-73

1 4 0.01

2 251 0.53

BL KASP (Yr17) 0 1,491 0.57 PSTv-322

PSTv-48

PSTv-79

PSTv-11

1 131 0.05

2 1,008 0.38

BL IWB12603 (Qyr.wpg-1B.1) 0 2,244 0.85 NA

1 53 0.02

2 333 0.13

BL KASP (Lr68) 0 1,255 0.48 NA

1 166 0.06

2 1,209 0.46

BL Xpsp3000 (Yr10) 0 2,172 0.83 PSTv-37

PSTv-52

PSTv-322

PSTv-48

PSTv-79

PSTv-11

PSTv-73

1 11 0.00

2 447 0.17

aGenotype: Allele 0: homozygous wild-type allele; Allele 1: heterozygous with both alleles present; Allele 2: homozygous resistant allele.
bNumber, number of lines.
cNA, Data were not available.

2013–2017 to predict 2018, resulting in MAS models using
Yr17 and all markers with an increase of 0.17 and 0.16,
respectively, for IT and 0.13 and 0.10, respectively, for SEV
(Supplementary Tables 8, 9; Supplementary Figure 10). The
validation sets were the only prediction scenarios in which MAS
performed better than GS models. However, this was not the
case for all MAS models, with most major markers showing
similar decreases in the accuracy compared to cross-validations.

Additionally, the RMSE was similar to cross-validations with
low values for GS models compared to MAS across all markers
(Supplementary Figure 11). Further, for SEV, an RMSE for MAS
decreased with the addition of years.

De novo GWAS Markers
The de novo GWAS marker sets also increased the accuracy
when more environments were included. The increase in the
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FIGURE 2 | Heat map and hierarchical clustering for lines in the diversity panel (DP) lines and breeding lines (BL) populations for the major rust markers:

IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17). Genotype: 0, homozygous wild-type allele; 1, heterozygous with both alleles present; 2,

homozygous resistant allele.

FIGURE 3 | Principal component (PC) biplot and k-means clustering of single-nucleotide polymorphism (SNP) genotyped-by-sequencing (GBS) markers from the

diversity panel (DP) lines and breeding lines (BL) training populations.

prediction accuracy was not seen in the previous validation sets
as seen for the molecular markers for major rust genes. The de
novo GWAS markers had the largest prediction accuracies in
the last two validation sets with GWAS_5 having an accuracy
of 0.33 for IT and GWAS having an accuracy of 0.38 for SEV

using 2013–2017 to predict 2018 (Supplementary Tables 6,
7). In the last validation set, GWAS had the largest prediction
accuracy of 0.55 for IT. Similarly, the smaller GWAS sets had the
highest prediction accuracy. In contrast to the cross-validations,
the larger GWAS sets did not have a drastic decrease with
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FIGURE 4 | Difference in prediction accuracy from the base rrBLUP model for major markers in genomic selection (GS) and marker-assisted selection (MAS) using

cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17)

combined.

GWAS_100, and actually had the same prediction accuracy as
the base rrBLUP for IT and an increase of 0.01 for SEV in using
2013–2018 to predict 2020 (Supplementary Tables 6, 7). The
de novo GWAS marker sets had the largest increases in overall
scenarios with GWAS_5 having an increase of 0.19 with MAS
for IT (Supplementary Tables 8, 9; Supplementary Figure 12).
Further, MAS for GWAS_100 displayed a much higher
RMSE with the highest value for all scenarios reaching
an RMSE of 381.71 using 2013–2015 to predict 2016
(Supplementary Figure 13; Supplementary Table 9). This
prediction scenario was the only scenario using only the DP lines
to predict BLs. However, all of the other GS-GWAS sets had an
RMSE similar to the major markers for GS and MAS.

Overall Differences
When comparing the different models over all years within
each population, we found that the marker for Yr17 and the

combination of all markers had the largest prediction accuracies.
However, the increase was only statistically significant in the BL
population and in the validation sets. There was no statistical
increase in the prediction accuracy in the DP. The largest mean
accuracy in any population was the major rust markers and base
rrBLUP for SEV in theDPwith an accuracy of 0.64 across all years
(Table 5). There was also a statistical increase in the prediction
accuracy as we increased the combination of years over both IT
and SEV training populations with the accuracies of 0.57 and
0.63 for IT and SEV, respectively when years 1–4 were combined
(Table 6).

DISCUSSION

GS for Disease Resistance
The development of resistant cultivars is the most effective and
economical method for controlling diseases such as stripe rust
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FIGURE 5 | Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS using cross-validations in the diversity panel (DP) lines

phenotyped from 2013 to 2016. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17) combined.

(Chen and Kang, 2017). Due to the challenges of breeding
for both quantitative and qualitative disease resistance, it is
recommended to combine them. In addition to the challenges
for breeding both major gene qualitative disease resistance
and minor gene quantitative resistance are also the common
challenges of implementing and integrating any major gene or
QTL into new cultivars. These difficulties include inconsistent
effects of the QTL due to inconsistent QTL segregations in
mapping populations, QTL interaction with genetic background,
and QTL interaction with the environment (Bernardo, 2008).
However, in addition to the common challenges, qualitative
resistance also faces the disadvantage of new virulent races of a
pathogen that can overcome major gene resistance (Chen and
Kang, 2017). Breeding for minor gene quantitative resistance
tends to produce a more durable resistance in BLs because it
relies on multiple small-effect alleles. Similar to other agronomic
traits, breeding for quantitative resistance requires multiple
breeding cycles to gradually improve resistance (Poland and

Rutkoski, 2016). The lack of qualitative resistance durability
coupled with the challenge in identifying and breeding for
quantitative resistance creates a unique opportunity for GS to
identify quantitative resistance by accounting for minor-effect
genes in the presence of large-effect major genes.

The goal of this study was to identify the best GS method for
disease resistance in the presence of both major and minor genes.
In our study, we used stripe rust as an example of the disease with
both major and minor resistant genes. Previous studies on the
GS of stripe rust showed promising prediction accuracies. Muleta
et al. (2017) showed that accuracy increased with population
size and marker density and reached up to 0.80. Ornella et al.
(2012) reported accuracies in The InternationalMaize andWheat
Improvement Center (CIMMYT) wheat populations of values
greater than 0.50 for stripe rust, but showed a lower accuracy
when compared to stem rust. In our study, the prediction
accuracy for both IT and SEV reached an accuracy of up to
0.67 and 0.69 in cross-validations, respectively. Further, IT and
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FIGURE 6 | Difference in prediction accuracy from the base rrBLUP model for de novo genome-wide association study (GWAS) markers in GS and MAS using

cross-validations in the BLs phenotyped from 2016 to 2020. Adjustments: GWAS_B, genome-wide association study assisted GS (GWAS-GS) with Bonferonni

significant markers; GWAS_5, GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with

the top 25 significant markers; GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

SEV reached the accuracies of up to 0.66 and 0.72 in validation
sets, respectively. In comparison to other rust diseases, Rutkoski
et al. (2014, 2015) showed promising results to predict stem rust
with the accuracies of up to 0.50. Overall, our study showed
high prediction accuracies in comparison to most rust prediction
studies, and further displayed the feasibility for accurately
predicting disease resistance in the presence of major and minor
resistant genes.

Major Markers
When major genes are present, a large portion of the genetic
variance for a trait may be due to the unknown QTL with
minor effects (Bernardo, 2014). The other minor-effect QTL will
not necessarily be integrated when major genes are integrated
into cultivars. The lack of integration can be attributed to not
being able to use MAS and the difficulties outlined previously in

pyramiding major-effect genes. In contrast, GS simultaneously
models all QTL (Meuwissen et al., 2001). However, the use of
GS models such as rrBLUP will underestimate the effect of the
major QTL. Therefore, the inclusion of the major-effect QTL as
fixed effects can increase accuracy. According to Bernardo (2014),
major genes should be used in predictionmodels when only a few
major genes are present, and each gene accounts for more than
10% of the variation.

In this study, the major gene in both populations was Yr17.
In the BL, Yr17 accounted for up to 0.40 prediction accuracy
when used in MAS, and therefore accounts for a large amount of
variation. Themoderate accuracy of Yr17 supports that even with
the degradation of the ASR for Yr17, it still provides resistance
for APR as indicated in Liu et al. (2018). The other major rust
genes present in the BL would be considered as minor-effect
genes with a near-zero prediction accuracy within MAS or, in the
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FIGURE 7 | Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS using cross-validations in the diversity panel

(DP) lines phenotyped from 2013 to 2016. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5, GWAS-GS with the top five significant

markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers; GWAS_50, GWAS-GS with the top 50

significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

case of the marker for Yr10, only produced an accuracy greater
than 0.10 in a few prediction scenarios. The higher accuracy
in the BL for Yr17 also shows a lower RMSE compared to the
other markers. However, within the DP, all of the markers with
the exception of Lr68 produced accuracies greater than 0.20,
with IWB12603 reaching 0.34 and Yr10 reaching the highest
accuracies for MAS within cross-validations of 0.42, and could
be considered as major-effect markers. Additionally, the higher
accuracy for Yr10 was coupled with a lower RMSE than the
other markers.

Even with the moderate accuracies of the major rust markers
in MAS, we observed only a slight increase in the prediction
accuracy when the major markers were included in our GS
models, and relatively a lower RMSE than the MAS. The major
markers only increased the prediction accuracy at a maximum
of 0.06 within the cross-validation scenarios and 0.03 within

the validation sets. Interestingly, the validation sets resulted in
the highest accuracy of all scenarios with 0.72 for the base GS
model and the inclusion of the major markers when predicting
SEV in 2014 using 2013 with the small RMSE values for all
markers. These results are in direct contrast to previous studies
showing a higher accuracy in cross-validations (Lozada and
Carter, 2019; Merrick and Carter, 2021). Validation sets are a
more realistic approach for GS because it is comparable to how
GS would be implemented in breeding programs (Lozada and
Carter, 2019). However, the major markers only increased the
prediction accuracy as the overall prediction accuracy decreased.
For example, using 2013–2017 to predict 2018, all of the
major markers increased the prediction accuracy, but the base
prediction was only 0.27, and the markers increased the accuracy
by 0.03 maximum in all scenarios. Further, the major markers
hadmuch larger increases in theMAS scenarios with a maximum
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FIGURE 8 | Difference in prediction accuracy from the base rrBLUP model for major markers in GS and MAS in the validation set using the diversity panel (DP) lines

and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: ALL_M, IWB12603(Qyr.wpg-1B.1), KASP(Lr68), Xpsp3000(Yr10), and KASP(Yr17)

combined.

increase of 0.17, but resulted in a higher RMSE. Therefore, the
inclusion of the major markers provides an advantage in the
more realistic validation sets when the base GS model has poor
predictive ability.

In the context of GS models and breeding programs, a
small increase in the prediction accuracy would be considered
negligible in realistic breeding scenarios. The results in our
study are in contrast to previous studies showing that the major
markers had a large increase in prediction accuracies in GS
models for other diseases such as stem rust (Rutkoski et al., 2014)
and Fusarium head blight (Arruda et al., 2016). One hypothesis
for the lack of increase in the prediction accuracy may be due
to GS models accounting for a majority of variation in both
the major- and minor-effect markers for disease resistance, or
the major-effect markers may be accounted for in the models
of the GBS markers. However, the ridge regression penalty
reduces the effect of large-effect markers, hence the additional

variation would need to be accounted for by other small-effect
markers (Rice and Lipka, 2019). Additionally, the lack of increase
in the prediction accuracy may be due to the major markers
not accounting for enough phenotypic variation. Due to the
reduction in the effect of the major markers, Bernardo (2014)
suggested implementingmarkers that account for more than 10%
of the variation as mentioned previously. This theory may be
disproved by the major markers that display a moderate accuracy
in MAS models. However, this may be the case for Lr68, which
displayed a minimal effect in both MAS models and GS models.

Further, the lack of increase in the prediction accuracy may be
beneficial in demonstrating that other uncharacterized resistant
QTL can still provide a large amount of disease resistance
within the populations either alone or in conjunction with
major genes. In this case, our results would be beneficial in
confirming the presence of minor-effect QTL for quantitative
resistance and provide a more durable resistance within the
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FIGURE 9 | Difference in prediction accuracy from the base rrBLUP model for de novo GWAS markers in GS and MAS in the validation set using the diversity panel

(DP) lines and breeding lines (BL) phenotyped from 2013 to predict 2020. Adjustments: GWAS_B, GWAS-GS with Bonferonni significant markers; GWAS_5,

GWAS-GS with the top five significant markers; GWAS_10, GWAS-GS with the top 10 significant markers; GWAS_25, GWAS-GS with the top 25 significant markers;

GWAS_50, GWAS-GS with the top 50 significant markers; GWAS_100, GWAS-GS with the top 100 significant markers.

training populations. Therefore, we can conclude that genotyping
and selecting major genes for disease resistance may not be
necessary when the breeding programs can use more cost-
effective genome-wide markers to implement GS with more
consistent results.

De novo GWAS Markers
Frequently, the major markers for disease resistance are
either unknown or have an uncharacterized effect within the
populations. Therefore, GWAS can be performed to characterize
disease-resistant QTL within a population, and the significant
markers can be used as fixed-effect covariates (Rice and Lipka,
2019). In Zhang et al. (2014), publicly available GWAS markers
were integrated into prediction models but only increased the
accuracy by 0.01, similar to our results. In contrast, we used de
novoGWASmarkers dependent on the training population. This

approach has been used for FHB in which Arruda et al. (2016)
demonstrated an increase in the accuracy of up to 0.14. These
results were also demonstrated in Spindel et al. (2016), in which
de novo GWAS markers implemented into GS increased the
accuracies more than 0.10 in rice (Oryza sativa L.). However, in
our study, the de novo GWAS markers only marginally increased
the accuracy, or in the case of implementing more than 25
markers, decreased accuracy in the majority of cross-validation
scenarios and an increased RMSE. A reduction in the prediction
accuracy and an increase of RMSE with a larger set of de novo
GWAS markers may be attributed to an increase in the bias of
the model and an increase of RMSE due to overfitting as seen
in Raymond et al. (2018) or due to the difficulty experienced
by the model to simultaneously estimate all of the fixed effects
(Bernardo, 2014). A reduction in the prediction accuracy was also
shown in Rice and Lipka (2019).
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TABLE 6 | Comparison of the number of years in the training populations on

overall GS model accuracy and pairwise comparisons for stripe rust infection type

(IT) and disease severity (SEV) for PNW winter wheat over both the DP lines and

BLs phenotyped from 2013 to 2020 in Central Ferry, Lind, and Pullman, WA, USA

in the cross-validation sets.

Trait Year 1 Year 2 Year 3 Year 4 Year 1–2 Year 1–3 Year 1–4

IT 0.52d 0.43f 0.57a 0.54c 0.49e 0.56b 0.57a

SEV 0.53f 0.55e 0.61b 0.59c 0.58d 0.62a 0.63a

Models labeled with the same letter are not significantly different (P-value = 0.05).

Another hypothesis may be stated for why the de novo
GWAS markers failed to increase the prediction accuracy due
to the inclusion of false positives within GWAS models. To
mitigate this, we included a GWAS-GS model that only included
significant markers based on a Bonferroni correction of 0.05.
However, this model failed to self-differentiate from another
smaller set of GWAS-GS models. The lack of reduction was
mainly seen in our cross-validation sets. Within cross-validation,
the training population is divided. The division of the training
populations may be one cause of the lack of increase of the
prediction accuracy. The smaller validation fold within a cross-
validation may have a weak association with the markers found
in the larger training folds, as hinted at by Rice and Lipka (2019).
The weak association theory may be supported by the contrasting
results seen in the validation sets.

Similar to the inclusion of the major markers in the cross-
validations, the validation sets showed an increase in the
prediction accuracy when the de novo GWAS markers were
included and displayed the largest increases from GS models.
The GWAS model with significant markers only (GWAS_B)
displayed the largest increase of 0.06 in the SEV. Once again,
this increased prediction accuracy was observed as the prediction
accuracy of the base GSmodel decreased. This occurrence in both
the major and de novo GWAS markers demonstrates the ability
to increase and maintain a high accuracy as the GS model fails
in predicting lines. Therefore, we can conclude that even though
fixed-effect markers may not increase the accuracy in typical
cross-validation scenarios, they are beneficial in more realistic
validation set approaches similar to the major markers.

However, similar to the major markers, increased prediction
accuracy with the inclusion of de novo GWAS markers was
very small relative to the high accuracy for most scenarios.
Further, small sets of de novo GWAS markers were similar in
consistency to the major markers. Therefore, there is little benefit
in characterizing major-effect disease resistance markers for GS
over implementing the GWAS-GS methods that would use the
same sets of markers like GS models.

Training Population and Environment
We compared the effect of the major and de novoGWASmarkers
in different training populations that are commonly used in
breeding programs. The frequency and source of both major
disease- and minor disease-resistant genes vary. For instance,
the BL population consists of WSU BLs that have been selected
for resistance, specifically for P. striiformis f. sp. tritici races
in Washington, and therefore has a high level of resistance
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throughout the population. In comparison, the DP consists of
varieties from various breeding programs in the PNW. The
sources of resistance in the varieties are more similar within the
BL than in the DP, with the DP containing major genes different
from the major markers chosen in this study common in the
WSU germplasm or selected for resistance to races not present
in eastern Washington.

The differences in the frequency of major genes were observed
in the major rust markers used in this study. In the BL, the Yr17
marker showed an increase in the prediction accuracy for GS
models and a relatively high accuracy in MAS models compared
to the other markers. However, this was not consistently seen
in the DP. The inconsistent effect of Yr17 in different training
populations may be due to the higher frequency of Yr17 in the
BL compared to the DP. This may also be supported by the
higher accuracies for Yr10 and IWB12603 in the DP compared
to the BL, and both of these rust genes have a higher frequency
in the DP than in the BL. Our study showed that regardless of
the frequency of the rust-resistant genotypes, there was only a
small to nil increase in the prediction accuracy. Therefore, GS
would be more accurate than MAS regardless of the frequency
of the known rust-resistant genotypes in a breeding program
due to the ability to account for both major disease and minor
disease-resistant genes.

In addition to different frequencies of major genes, the general
composition of the training populations can affect GS prediction
accuracy (Asoro et al., 2011). The composition of the training
population affects the accuracy due to both population structure
and genetic relatedness (Habier et al., 2007; Asoro et al., 2011;
Mirdita et al., 2015). We compared the population structure
in our models by plotting principal components and identified
three clusters indicating distinct subpopulations. In addition,
the population structure was not taken into account in our GS
models. However, we can see the effect of genetic relatedness and
population in both our cross-validation and validation sets. The
BL had a statistically higher mean accuracy for both IT and SEV
than the DP in cross-validations, which could be attributed to
the closer genetic relatedness of the population and sources of
resistance as mentioned previously. A higher prediction accuracy
for the BL is advantageous for breeding programs because they
can use their existing breeding trials for GS without screening
a DP outside their breeding program. In the validation sets, we
see an initial increase in the accuracy due to the DP being the
only population in the training populations, but as we added in
BLs, the accuracy decreased. The accuracy was reduced when
the DP predicted the BL, but eventually increased as more BLs
were introduced into the training population. The decrease in
validation sets can also be attributed to GEI (Michel et al., 2016;
Huang et al., 2018; Lozada and Carter, 2019, 2020; Haile et al.,
2020).

Further, GEI is important for qualitative disease resistance.
Race-specific qualitative resistance is dependent on the race in the
environment and thus can lead to larger environmental effects
(Poland and Rutkoski, 2016). In contrast, GEI has a much smaller
effect on minor-gene quantitative resistance due to the lack of a
gene-for-gene interaction. In our study, the most frequent races
were similar from year to year, and therefore may not be a
significant factor in the differing prediction accuracy.

In this study, disease resistance screening was dependent on
the natural occurrence of stripe rust for disease pressure, and
therefore the overall effect of the environment is important.
Additionally, diseases such as stripe rust are affected by several
environmental factors, including moisture, temperature, and
wind. Further, disease SEV is affected by the other aspects of
the disease triangle, disease inoculum, and a susceptible host to
induce disease development (Chen, 2005). Disease development
and the quality of the phenotypic data obtained from the
unreplicated trials may also explain the differences in the
prediction accuracy from year to year, especially in the DP in
which the same lines are phenotyped every year. Meanwhile, BLs
are only phenotyped in a single year, and therefore the difference
from 1 year to the next can be either disease incidence as in the
DP or the changes occurred due to differing levels of resistance
within BLs. In addition, we see an increase in the prediction
accuracy for both the cross-validation and validation sets as
we increase the number of environments within our training
population. The increase in accuracy may be accounted for by
the inclusion of GEI within our phenotypic adjustments and GS
models as reported in previous studies, as well as the general
high heritability for disease resistance (Crossa et al., 2014; Jarquín
et al., 2014; Haile et al., 2020; Merrick and Carter, 2021). Overall,
our GSmodels accurately predicted disease resistance in different
training populations and environments, and therefore will be an
important strategy for selecting for disease resistance.

Applications in Breeding
Genome selection is beneficial for complex traits and can
outperform phenotypic selection and MAS for low heritable
traits. However, there may be little benefit in using GS for
selection purposes for highly heritable traits such as disease
resistance (Poland and Rutkoski, 2016). In the case of highly
heritable traits, GS can still outperform phenotypic selection
and MAS in terms of gain per unit time when implemented in
the early stages of the breeding cycle (Bernardo and Yu, 2007;
Rutkoski et al., 2011). In our study, a high prediction accuracy
would allow an increase in genetic gain by decreasing the cycle
time of the breeding program and rapidly accumulating favorable
alleles for disease resistance (Rutkoski et al., 2011).

Even though phenotypic selection has been successfully
implemented for disease resistance, without controlled
experiments, one cannot determine whether the resistance
is quantitative or qualitative. Therefore, we cannot conclude
whether the resistance will be durable in the long term.
Alternatively, we can implement MAS to select qualitative
and quantitative disease resistance within the BLs to bypass
the need for controlled experiments. However, as seen in our
study, MAS does not account for all of the resistance within
the lines in either of the training populations, as shown by
a decrease in the prediction accuracy for MAS models. MAS
also has limitations when it comes to pyramiding multiple
markers, as discussed previously, and is a form of tandem
selection (Bernardo, 2014). In contrast, GS is a form of selection
index and has been shown to be superior to tandem selection
(Hazel and Lush, 1942). Using GS, we can select for the
accumulation of all-resistant QTL to take advantage of the
quantitative and qualitative resistant genes within a population,
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even when they are uncharacterized. Furthermore, by using
fixed effects, we can select the lines that have a major marker
of interest (Poland and Rutkoski, 2016). Therefore, GS will
have a place in selecting for both quantitative and qualitative
disease resistance.

Another advantage in implementing GS is by reducing both
genotyping and phenotyping within a breeding program. GS
can remove the need for genotyping for major and minor
genes for selection purposes. This is further supported by the
similar accuracies between major and de novo GWAS markers.
By utilizing genome-wide markers, we can not only implement
GS or GWAS-GS but also utilize the markers for additional
traits, thus making the genome-wide markers more cost-effective
(Poland and Rutkoski, 2016). Likewise, with the help of GS,
breeding programs can reduce the need for phenotypic screening
in disease nurseries in multiple locations and free up resources
for screening more lines and increase genetic gain (Poland and
Rutkoski, 2016).

Furthermore, the challenges introduced by the environment
mentioned previously provide another advantage in using GS
for disease resistance. GS models will help select cultivars
with durable quantitative resistance with the accumulation of
favorable alleles and select for disease resistance in environments
not conducive to disease incidence needed for phenotypic
selection. Overall, the high accuracy of GS models in our study
displays the ability to predict durable disease resistance and
account for uncharacterized minor-effect QTL in the presence of
known major genes.

CONCLUSIONS

This study showed the ability to accurately predict disease
resistance using major and minor genes. The small to nil increase
in the prediction accuracy for the major markers indicates the
need for a careful selection of the major markers that account for
a large variation in the training and test populations. Further, a
comparison of the number of de novoGWASmarkers shows that
a small number of de novoGWASmarkers should be used instead
of a large set of markers to keep from overfitting the model.
Additionally, fixed-effect markers may not provide a benefit in
scenarios with already high prediction accuracy. However, in
prediction scenarios with low accuracies such as in more realistic
validation sets, the inclusion of both major markers and de novo
GWAS helps to account for a variation in case of the failure
of the base GS models. Moreover, we can increase the accuracy
with the inclusion of additional environments and by using the
populations that are genetically related such as the BL. Overall,
there were no disadvantages in the inclusion of the major or

de novo GWAS markers. The lack of increase of the prediction
accuracy with the inclusion of fixed effects coupled with a large
decrease in the accuracy using MAS indicates the presence of
minor-effect QTL for quantitative resistance and thus durable
resistance within the training populations. This study showed
the ability to predict disease resistance and accumulate favorable
alleles for durable disease resistance in the presence of major and
minor resistance genes.
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