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Abstract

We generalize the notions of centroids and barycen-
ters to the broad class of information-theoretic distor-
tion measures called Bregman divergences. Because
Bregman divergences are typically asymmetric, we con-
sider both the left-sided and right-sided centroids and
the symmetrized centroids, and prove that all three are
unique. We give closed-form solutions for the sided cen-
troids that are generalized means, and design a prov-
ably fast and efficient approximation algorithm for the
symmetrized centroid based on its exact geometric char-
acterization that requires solely to walk on the geodesic
linking the two sided centroids.

1. Introduction

Content-based multimedia retrieval applications
with their prominent image retrieval systems (CBIRs)
are very popular nowadays with the broad availability
of massive digital multimedia libraries. CBIR systems
spurred an intensive line of research for better ad-hoc
feature extractions and effective yet accurate geometric
clustering techniques. In a typical CBIR system [5],
database images are processed offline during a prepro-
cessing step by various feature extractors computing
image characteristics such as color histograms. These
features are aggregated into signature vectors that
represent handles to images. Then given an online
query image, the system first computes its signature,
and search for the first, say h, best matches in the
signature space. This requires to define an appropri-
ate similarity measure between pairs of signatures.
Designing an appropriate distance is tricky since the
signature space is often heterogeneous (ie., cartesian
product of feature spaces) and the usual Euclidean
distance or Lp-norms do not always make sense. For
example, it is better to use the information-theoretic

relative entropy, known as the Kullback-Leibler diver-
gence, to measure the oriented distance between image
histograms. Efficiency is another key issue of CBIR
systems since we do not want to compute the similarity
measure (query,image) for each image in the database.
We rather want to prealably cluster the signatures effi-
ciently during the preprocessing stage for fast retrieval
of the best matches given query signature points. A
first seminal work by Lloyd in 1957 [1] proposed
the k-means iterative clustering algorithm. In short,
k-means starts by choosing k seeds for cluster centers,
associate to each point its “closest” cluster “center,”
update the various cluster centers, and reiterate until
either convergence is met or the difference of the
“loss function” between any two sucessive iterations
goes below a prescribed threshold. Lloyd choosed the
squared Euclidean distance since the minimum average
intracluster distance yields centroids, the centers of
mass of the respective clusters, and further proved
that k-means monotonically converges to a local
optima. Cluster Ci’s center ci is defined by the min-
imization problem ci = arg minc

∑
pj∈Ci

||cpj ||2 =
1
|Ci|

∑
pj∈Ci

pj
def= arg minc AVGL2

2
(Ci, c), where

|Ci| denotes the cardinality of Ci. Half a century
later, Banerjee et al. [1] showed that the k-means
algorithm extends to and only works for a broad
family of distortion measures called Bregman diver-
gences. Bregman divergences DF are parameterized
families of distortion measures that are defined
by a strictly convex and differentiable generator
function F : X → R+ (with dim X = d) as
DF (p||q) = F (p) − F (q)− < p − q,∇F (q) >,
where < ·, · > denotes the inner product
(< p, q >=

∑d
i=1 p

(i)q(i) = pT q) and ∇F (q) the

gradient at point q (ie., ∇F (q) =
[
∂F (q)
∂x(1) , ...,

∂F (q)
∂x(d)

]
).

The fundamental underlying primitive for these center-
based clustering algorithms is to find the intrinsic
best single representative of a cluster. As mentionned
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above, the centroid of a point set P = {p1, ..., pn}
is defined as the optimizer of the minimum aver-
age distance: c = arg minc 1

n

∑
i d(c, pi). For

oriented distance functions such as Bregman di-
vergences that are not necessarily symmetric, we
thus distinguish sided and symmetrized centroids as
follows: cFR = arg minc∈X 1

n

∑n
i=1DF (pi|| c ),

cFL = arg minc∈X 1
n

∑n
i=1DF ( c ||pi), and

cF = arg minc∈X 1
n

∑n
i=1

DF (pi|| c )+DF ( c ||pi)

2 .
The first right-type and left-type centroids cFR and cFL
are called sided centroids, and the third type centroid cF

is called the symmetrized Bregman centroid. Except for
the class of generalized quadratic distances with gen-
erator FQ(x) = xTQx, SF (p; q) = DF (p||q)+DF (q||p)

2
is not a Bregman divergence, see [6]. Since the
three centroids coincide with the center of mass for
symmetric Bregman divergences, we consider in the
remainder asymmetric Bregman divergences. We
write for short AVGF (P||c) = 1

n

∑n
i=1DF (pi||c),

AVGF (c||P) = 1
n

∑n
i=1DF (c||pi) and

AVGF (c;P) = 1
n

∑n
i=1 SF (c; pi) , so that we get re-

spectively cFR = arg minc∈X AVGF (P||c), cFL =
arg minc∈X AVGF (c||P) and cF =
arg minc∈X AVGF (P; c). The symmetrized Kullback-
Leibler and COSH centroids(symmetrized Itakura-
Saito divergence obtained for F (x) = − log x, the Burg
entropy) are certainly the most famous symmetrized
Bregman centroids, widely used in image and sound
processing.

Prior work in the literature is sparse and disparate:
Ben-Tal et al. [3] studied entropic means as the mini-
mum average optimization for various distortion mea-
sures such as the f -divergences and Bregman diver-
gences. Their study is limited to the sided left-
type (generalized means) centroids. Basseville and
Cardoso [2] compared in the 1-page paper the gen-
eralized/entropic mean values for two entropy-based
classes of divergences: f -divergences and Jensen-
Shannon divergences [4]. The closest recent work to our
study is Veldhuis’ approximation method [8] for com-
puting the symmetrical Kullback-Leibler centroid.

2. Sided Bregman centroids

2.1. Right-type centroid

We first prove that the right-type centroid cFR is in-
dependent of the considered Bregman divergence DF :
cF (P) = p̄ = 1

n

∑n
i=1 pi is always the center of mass.

Although this result is well-known in disguise in infor-
mation geometry, it was again recently brought up to the
attention of the machine learning community by Baner-

jee et al. [1] who proved that Lloyd’s iterative k-means
“centroid” clustering algorithm generalizes to the class
of Bregman divergences. We state the result and give
the proof for completeness and familizaring us with no-
tations.

Theorem 2.1 The right-type sided Bregman centroid
cFR of a set P of n points p1, ...pn, defined as the
minimizer for the average right divergence cFR =
arg minc

∑n
i=1

1
nDF (pi||c) = arg minc AVGF (P||c),

is unique, independent of the selected divergence DF ,
and coincides with the center of mass cFR = cR = p̄ =
1
n

∑n
i=1 pi.

Proof: For a given point q, the right-type av-
erage divergence is defined as AVGF (P||q) =∑n
i=1

1
nDF (pi||q). Expanding the terms

DF (pi||q)’s using the definition of Breg-
man divergence, we get AVGF (P||q) =∑n
i=1

1
n (F (pi)− F (q)− < pi − q,∇F (q) >).

Subtracting and adding F (p̄) to the right-hand side
yields AVGF (P, q) =

(∑n
i=1

1
nF (pi)− F (p̄)

)
+(

F (p̄)− F (q)−
∑n
i=1

1
n < pi − q,∇F (q) >

)
=(∑n

i=1
1
nF (pi)− F (p̄)

)
+(

F (p̄)− F (q)−
〈∑n

i=1
1
n (pi − q),∇F (q)

〉)
=(

1
n

∑n
i=1 F (pi)− F (p̄)

)
+DF (p̄||q).

Observe that since
∑n
i=1

1
nF (pi) − F (p̄) is inde-

pendent of q, minimizing AVGF (P||q) is equivalent to
minimizing DF (p̄||q). Using the fact that Bregman di-
vergences DF (p||q) are non-negative, DF (p||q) ≥ 0,
and equal to zero if and only if p = q, we conclude
that cFR = arg minq AVGF (P||q) = p̄, namely the cen-
ter of mass of the point set. The minimization remain-
der, representing the “information radius” (by general-
izing the notion introduced by Sibson [7] for the rela-
tive entropy), is JSF (P) = 1

n

∑n
i=1 F (pi)−F (p̄) ≥ 0,

which bears the name of the F -Jensen difference1 [4].
For F = −H = x log x the negative Shannon en-
tropy, JF is known as the Jensen-Shannon divergence:
JS(P) = H(

∑n
i=1 pi) −

∑n
i=1

1
nH(pi). The Jensen-

Shannon divergence is also known as half of the Jeffreys
divergence (JD): JS(P ;Q) = 1

2JD(P ;Q), and can be
interpreted as the expected information gain when dis-
covering which probability distribution is drawn from
(either P or Q).

2.2 Dual divergence and left-type centroid

Before characterizing the left-type sided Bregman
centroid, we recall the fundamental duality of convex

1In the paper [4], it is used for strictly concave function
H = −F on a weight distribution vector π: Jπ(p1, ..., pn) =
H(

∑n
i=1 πipi) −

∑n
i=1 πiH(pi). Here, we consider uniform

weighting distribution π = u (with πi = 1
n

).
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analysis: convex conjugation by Legendre transforma-
tion. We refer to [6] for detailed explanations that we
concisely summarize here as follows: Any Bregman
generator function F admits a dual Bregman genera-
tor function G = F ∗ via the Legendre transformation
G(y) = supx∈X {< y, x > −F (x)}. The supre-
mum is reached at the unique point where the gradi-
ent of G(x) =< y, x > −F (x) vanishes, that is when
y = ∇F (x). Writing X ′F for the gradient space {x′ =
∇F (x)|x ∈ X}, the convex conjugate G = F ∗ of F
is the function X ′F ⊂ Rd → R defined by F ∗(x′) =<
x, x′ > −F (x). It follows from Legendre transforma-
tion that any Bregman divergence DF admits a dual
Bregman divergence DF∗ related to DF as follows:
DF (p||q) = F (p) + F ∗(∇F (q))− < p,∇F (q) >=
F (p) + F ∗(q′)− < p, q′ >= DF∗(q′||p′). Using the
convex conjugation twice, we get the following (dual)
theorem for the left-type Bregman centroid:

Theorem 2.2 The left-type sided Bregman centroid cFL ,
defined as the minimizer for the average left diver-
gence cFL = arg minc∈X AVGF

L(c||P), is the unique
point cFL ∈ X such that cFL = (∇F )−1(p̄′) =
(∇F )−1(

∑n
i=1∇F (pi)), where p̄′ = cF

∗

R (PF ′) is the
center of mass for the gradient point set PF ′ = {p′i =
∇F (pi) | pi ∈ P}.

Proof: Using the dual Bregman divergence DF∗ in-
duced by the convex conjugate F ∗ of F , we observe that
the left-type centroid cFL = arg minc∈X AVGF (c||P)
is obtained equivalently by minimizing the dual right-
type centroid problem on the gradient point set:
arg min′c′∈X AVGF∗(PF ′||c′), where we recall that
p′ = ∇F (p) and PF ′ = {∇F (p1), ...,∇F (pn)} de-
note the gradient point set. Thus the left-type Bregman
centroid cFL is computed as the reciprocal gradient of
the center of mass of the gradient point set cF

∗

R (PF ′) =
1
n

∑n
i=1∇F (pi) : cFL = (∇F )−1(

∑n
i=1

1
n∇F (pi)) =

(∇F )−1(p̄′). It follows that the left-type Bregman cen-
troid is unique.

Observe that the duality also proves that the infor-
mation radius for the left-type centroid is the same
F -Jensen difference (Jensen-Shannon divergence for
the convex entropic function F ). The information
radius equality AVGF (P||cFR) = AVGF (cFL ||P) =
JSF (P) = 1

n

∑n
i=1 F (pi)−F (p̄) > 0 is the F -Jensen-

Shannon divergence for the uniform weight distribu-
tion.

2.3 Generalized means and barycenters

We show that both sided centroids are generalized
means also called quasi-arithmetic or f -means. We
first recall the basic definition of generalized means that

generalizes the usual arithmetic and geometric means.
For a strictly continuous and monotonous function f ,
the generalized mean [6] of a sequence V of n real
numbers V = {v1, ..., vn} is defined as M(V; f) =
f−1( 1

n

∑n
i=1 f(vi)). The generalized means include

the Pythagoras’ arithmetic, geometric, and harmonic
means, obtained respectively for functions f(x) = x,
f(x) = log x and f(x) = 1

x . Note that since f is
injective, its reciprocal function f−1 is properly de-
fined. Further, since f is monotonous, it is noticed
that the generalized mean is necessarily bounded be-
tween the extremal set elements mini vi and maxi vi:
mini xi ≤ M(V; f) ≤ maxi xi. In fact, finding these
minimum and maximum set elements can be treated
themselves as a special generalized power mean, an-
other generalized mean for f(x) = xp in the limit case
p→ ±∞.

These generalized means highlight a bijection: Breg-
man divergence DF ↔ ∇F -means. The one-to-one
mapping holds because Bregman generator functions F
are strictly convex and differentiable functions chosen
up to an affine term [6]. This affine invariant property
transposes to generalized means as an offset/scaling in-
variant property: M(S; f) = M(S; af + b) ∀a ∈
R+
∗ and ∀b ∈ R. Although we have considered cen-

troids for simplicity (ie., uniform weight distribution on
the input set P), this approach generalizes straightfor-
wardly to barycenters defined as solutions of minimum
average optimization problems for arbitrary unit weight
vector w (∀i, wi ≥ 0 with ||w|| = 1).

3. Symmetrized Bregman centroid

For asymmetric Bregman divergences,
the symmetrized Bregman centroid is de-
fined by the following optimization problem
cF = arg minc∈X

∑n
i=1

DF (c||pi)+DF (pi||c)
2 =

arg minc∈X AVG(P; c). We simplify this optimization
problem to another constant-size system relying only
the right-type and left-type sided centroids, cFR and
cFL , respectively. This will prove that the symmetrized
Bregman centroid is uniquely defined as the zeroing
argument of a sided centroid function by generalizing
the approach of Veldhuis [8] that studied the special
case of the symmetrized discrete Kullback-Leibler
divergence, also known as J-divergence.

Theorem 3.1 (Proof in [6]) The symmetrized Breg-
man centroid cF is unique and obtained by min-
imizing minq∈X DF (cFR||q) + DF (q||cFL): cF =
arg minq∈X DF (cFR||q) +DF (q||cFL).

We now characterize the exact geometric location
of the symmetrized Bregman centroid by introducing a
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new type of bisector called the mixed-type bisector:

Theorem 3.2 (Proof in [6]) The symmetrized Bregman
centroid cF is uniquely defined as the minimizer of
DF (cFR||q) +DF (q||cFL). It is defined geometrically as
cF = ΓF (cFR, c

F
L)∩MF (cFR, c

F
L), where ΓF (cFR, c

F
L) =

{(∇F )−1((1 − λ)∇F (cFR) + λ∇F (cFL)) | λ ∈ [0, 1]}
is the geodesic linking cFR to cFL , and MF (cFR, c

F
L) is

the mixed-type Bregman bisector: MF (cFR, c
F
L) = {x ∈

X | DF (cFR||x) = DF (x||cFL)}.

The equation of the mixed-type bisector MF (p, q)
is neither linear in x nor in x′ = ∇F (x) (nor in x̃ =
(x, x′)) because of the term F (x), and can thus only be
manipulated implicitly in the remainder: MF (p, q) =
{x ∈ X | F (p) − F (q) − 2F (x)− < p, x′ > + <
x, x′ > + < x, q′ > − < q, q′ >= 0}. The mixed-
type bisector is not necessarily connected (eg., extended
Kullback-Leibler divergence), and yields the full space
X for symmetric Bregman divergences (ie., generalized
quadratic distances).

The exact geometric characterization of the sym-
metrized Bregman centroid provides us a simple
method to approximately converge to cF : Namely, we
perform a dichotomic walk on the geodesic linking the
sided centroids cFR and cFL . This dichotomic search
yields a novel efficient algorithm that enables us to
solve for arbitrary symmetrized Bregman centroids, be-
yond the former Kullback-Leibler case of Veldhuis [8]:
We initially consider λ ∈ [λm = 0, λM = 1] and repeat
the following steps until λM − λm ≤ ε, for ε > 0 a
prescribed precision threshold:

Geodesic walk. Compute interval midpoint
λh = λm+λM

2 and corresponding geodesic
point
qh = (∇F )−1((1− λh)∇F (cFR) + λh∇F (cFL)),

Mixed-type bisector side. Evaluate the sign of
DF (cFR||qh)−DF (qh||cRL), and

Dichotomy. Branch on [λh, λM ] if the sign is negative,
or on [λm, λh] otherwise.

Note that any point on the geodesic (including the
midpoint q 1

2
) or on the mixed-type bisector provides

an upperbound AVGF (P; qh) on the minimization task.
Although it was noted experimentally by Veldhuis [8]
for the Kullback-Leibler divergence that this midpoint
provides “experimentally” a good approximation, let us
emphasize that is not true in general [6].

Theorem 3.3 The symmetrized Bregman centroid can
be approximated within a prescribed precision by a sim-
ple dichotomic walk on the geodesic Γ(cFR, c

F
L) helped

by the mixed-type bisector MF (cFR, c
F
L). In general,

symmetrized Bregman centroids do not admit closed-
form solutions.

In practice, we can control the stopping criterion
ε by taking the difference WF (q) = DF (cFR||q) −
DF (q||cRL) between two successive iterations since it
monotonically decreases. The number of iterations
can also be theoretically upper-bounded as a func-
tion of ε using the maximum value of the Hessian
hF = maxx∈Γ(cF

R,c
F
L) ||HF (x)||2 along the geodesic

Γ(cFR, c
F
L), see [6]. In [6],we also consider en-

tropic centroids defined with respect to the Kullback-
Leibler divergence, and show how to compute the
sided and symmetrized entropic centroids for (1) a set
of histograms, and (2) for a set of multivariate nor-
mals. See www.sonycsl.co.jp/person/nielsen/
BregmanCentroids/
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