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Abstract

A specialized tissue type, the keratinizing epithelium,

protects terrestrial mammals from water loss and

noxious physical, chemical and mechanical insults.

This barrier between the body and the environment

is constantly maintained by reproduction of inner

living epidermal keratinocytes which undergo a

process of terminal differentiation and then migrate

to the surface as interlocking layers of dead stratum

corneum cells. These cells provide the bulwark of

mechanical and chemical protection, and together

with their intercellular lipid surroundings, confer

w a t e r - i m p e r m e a b i l i t y. Much of this barrier function

is provided by the cornified cell envelope (CE), an

extremely tough protein/lipid polymer structure

formed just below the cytoplasmic membrane and

subsequently resides on the exterior of the dead

cornified cells. It consists of two parts: a protein

envelope and a lipid envelope. The protein envelope

is thought to contribute to the biomechanical

properties of the CE as a result of cross-linking of

specialized CE structural proteins by both disulfide

bonds and N - ( -glutamyl)lysine isopeptide bonds

formed by transglutaminases. Some of the structural

proteins involved include involucrin, loricrin, small

proline rich proteins, keratin intermediate filaments,

elafin, cystatin A, and desmosomal proteins. The lipid

envelope is located on the exterior of and

covalently attached by ester bonds to the protein

envelope and consists of a monomolecular layer of

- h y d r o x y -ceramides. These not only serve of

provide a Te f l o n -like coating to the cell, but also

interdigitate with the intercellular lipid lamellae

perhaps in a Velcro-like fashion. In fact the CE is a

common feature of all stratified squamous epithelia,

although its precise composition, structure and

barrier function require-ments vary widely between

epithelia. Recent work has shown that a number of

diseases which display defective epidermal barrier

function, generically known as ichthyoses, are the

result of genetic defects of the synthesis of either CE

proteins, the transglutaminase 1 cross-linking

enzyme, or defective metabolism of skin lipids. 

Introduction

Protection of the body from dehydration and noxious

physical, mechanical and chemical insults from the

environment is essential for terrestrial life. All beings

from bacteria to plants and humans protect themselves

by some form of barrier. For mammals the outermost

bulwark of this defense-line are layers of terminally

differentiated dead cornified cells on the surface of the

epidermis of the skin.

Akin to a wall built from bricks and mortar, the cornified

layer also consists of hard building blocks (the individual

corneocytes) stuck together with space-filling mortar (inter-

corneocyte lipids). Barrier function of normal epidermis

depends on the quality of its bricks and mortar. The buil-

ding blocks of the epidermal barrier are formed during

the complex terminal differentiation program from inner

living dividing basal keratinocytes, culminating in the

formation flattened cornified cells (corneocytes) which,

as they are moved toward the surface, are eventually

sloughed by abrasion. Each individual corneocyte

consists largely of tightly bundled keratin filaments aligned

roughly parallel to the skin surface (80-90% of total mass)

encased in a sturdy bag termed the cornified cell envelope

(CE) (about 10% of total mass). The CE is extremely

insoluble, ~15 nm thick, and is composed of two major

parts. The protein envelope (~10 nm thick) is formed by

covalent cross-linking of specific structural proteins by

sulfhydryl oxidases and transglutaminases (TGases)

(Hohl, 1990; Polakowska and Goldsmith, 1991; Reichert

et al., 1993; Simon, 1994; Eckert et al., 1997). This is

coated by the lipid envelope which is a ~5 nm thick

layer of lipids that are covalently attached to exterior of

the protein envelope (Wertz and Downing, 1991). The

lipid envelope creates cohesion between the cornified

cells and the surrounding intercellular lipids, and may

be essential for alignment of these lipids into lamellae

(Swartzendruber et al., 1989; Wertz et al., 1989a).

This review describes our current knowledge and

models of the composition and formation of the stratum

corneum barrier. We also report current information on
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the molecular bases of certain inherited diseases aff e c t i n g

the barrier function.

The cornified cell envelope

For morphologists, the CE is an electron dense band

located just beneath the keratinocyte plasma membrane

that first appears in the most superficial granular or trans-

itional cells of terminally differentiating stratified squamous

epithelia (Brody, 1969; Hashimoto, 1969; Ishida-Ya m a m o t o

and Iizuka, 1995) and gradually increases in thickness and

density. Mature CEs cover and incorporate desmosomal

attachment plaques and utilize proteins of those for CE

assembly (Steinert and Marekov, 1995; Robinson et al.,

1997; Steinert and Marekov, 1997) forming a morpholo-

gically uniform layer about 15 nm thick in the terminally

differentiated dead cells (Jarnik et al., 1998).

The biochemist uses the term CE for the most insoluble

fraction from stratified squamous epithelia, referring to

the mass remaining after exhaustive removal of keratins,

lipids and other solubilizable components by detergents,

reducing agents (e.g. 2-mercaptoethanol), and concentrated

chaotropic agents (urea, guanindine-HCl) (Steinert and

Marekov, 1995). The extreme insolubility of CE in vivo is

a result of macromolecular polymerization of various

keratinocyte proteins by both disulfide and isopeptide

bond formation. However, the disulfide bonds created

by sulfhydryl oxidase (Yamada et al., 1987) are lost

during CE isolation procedures in order to remove the

quantita-tively overwhelming keratin mass (Hohl et al. ,

1991a). Therefore, the in vitro analyzed CE means in

practice a highly insoluble macromolecular protein

polymer held together by isopeptide bonds (Hohl, 1990;

Polakowska and Goldsmith, 1991; Reichert et al., 1993;

Simon, 1994; Eckert et al., 1997), and may thus diff e r

somewhat in structure and composition from the in vivo

structure. Nevertheless isolated CE fragments from

many types of epithelia appear as sheets uniformly 15

nm thick (Jarnik et al., 1998). The isopeptide bonds are

formed by TGases which release ammonia from

glutamine residues of substrate proteins to create a

thioester acyl-enzyme intermediate, and consecutively

transfer the acyl residue to primary amines (Folk and

Finlayson, 1977). In biological systems the primary amine

is either provided by the ε-amino group of a protein-

bound lysine thereby creating an N - (γ- g l u t a m y l ) l y s i n e

isopeptide bond, or by a diamine (most commonly

spermidine) thereby forming an N1 ,N8- b i s (γ-

glutamyl)spermidine bond (Lorand and Conrad., 1984).

Although the abundance of spermidine cross-linking is

minuscule in CE formation, and has been poorly

investigated, this pathway might be more significant in

certain pathological conditions such as psoriasis (Martinet

et al., 1990).

The TGases

Human TGases constitute an evolutionarily related family

of Ca2 + dependent enzymes. Seven members of the

TGase family have been identified in the human genome

so far, which are listed in Table 1. Four of these,

Table 1. Human transglutaminases.

Size Proteolytic
Enzyme Gene locus Expression Functions

(kDa) processing?

TGase 1
14q11.2 92 epidermis CE formation Yes

(keratinocyte TGase) 

TGase 2
20q11.2 77 ubiquitous Apoptosis? No

(tissue TGase)

TGase 3
20q11.2 77 epidermis CE formation Yes

(epidermal TGase)

TGase 4 clotting of the
3p21-22 75 prostate Yes

(prostate TGase) seminal plasma

platelets,

Factor XIII 6p24-25 80 histiocytes, blood clotting Yes

megakaryocyts

erythroblasts structural
Band 4.2 15q15 72 Inactive

erythrocytes protein

TGase X ? 81? keratinocytes? ? ?
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TGases 1, 2, 3 and ✕ are commonly expressed in

epithelia such as the epidermis (Kim et al. , 1991;

Aeschlimann et al., 1998), although to date only TGases

1 and 3 have proven importance in CE assembly (Candi

et al., 1995; Tarcsa et al., 1997; Tarcsa et al., 1998

Candi et al., 1999). It has also been proposed that the

cross-linking by these enzymes coordinates

mechanically the association between the CE and the

underlying intracellular keratin intermediate filaments

(Candi et al., 1998a), and perhaps also in the bundling of

keratin filaments (Clement et al., 1998).

The T G M 1 gene encoding the TGase 1 enzyme is

located on chromosome 14q11.2 (Yaminishi et al., 1990;

Kim et al., 1992). The synthesis of TGase 1 is regulated

in cultured keratinocytes by various stimuli, including

phorbol esters, retinoids and corticosteroids (Floyd and

Jetten, 1989; Liew and Yamanishi, 1992; Yamada et al.,

1994) and by intercellular Ca 2 + c o n c e n t r a t i o n s ,

presumably by AP-1 mediated gene regulatory signals

(Dlugosz and Yuspa, 1994; Mariniello et al., 1995). In

epithelia such as the epidermis, TGase 1 expression is

induced shortly after commitment to terminal

d i fferentiation (Michel et al., 1992), although a minor

degree of  TGase 1 expression is detectable in

u n d i fferentiated basal keratinocytes (Schroeder et al. ,

1992; Kim et al., 1995a). The bulk of the TGase 1

enzyme is bound to the plasma membranes by its

constitutively N- and S-fatty acylated 10 kDa amino

terminal part (Rice et al., 1990; Phillips et al., 1993;

Steinert et al., 1996a). During terminal diff e r e n t i a t i o n ,

some of the full-length TGase 1 enzyme undergoes

proteolytic cleavage into fragments of apparent electro-

phoretic mobility of 10/67/33 kDa which are held together

by secondary forces and thus remain membrane-bound

(Steinert et al., 1996b). This 10/67/33 kDa complex shows

a 200-fold higher specific activity in standard in vitro

TGase assays (Kim et al., 1994; Kim et al., 1995b). Also,

some of the 67 kDa fragment harboring the catalytic

activity may cycle off the membranes and thus might

contribute to cross-linking at sites remote from the plasma

membrane. However, the mechanisms by which the

TGase 1 enzyme is proteolytically activated remain

unexplored.

The TGM2 and TGM3 genes encoding the TGase 2

and 3 enzymes are located close to each other on

chromosome 20q11.2 (Wang et al., 1994). Expression of

TGase 3 in cultured keratinocytes is triggered by

elevated extracellular Ca++ presumably through

adjacent cooper-ating Ets and Sp1 transcription factors

(Lee et al., 1996). TGase 3 is translated as a soluble

inactive proenzyme of 77 kDa, and is subsequently

activated by proteolysis at a flexible loop sequence into

an amino-terminal 50 kDa domain harboring the active

site and the carboxy-terminal 27 kDa portion (Negi et al.,

1985; Kim et al., 1990; Kim et al., 1993). No diseases

have yet been linked to muta-tions in the TGM3 gene.

Structural protein components of CEs

Table 2 lists proven CE protein constituents.

Involucrin is ubiquitously expressed in stratified

squa-mous epithelia, thus suggesting it is commonly

involved in CE formation. The involucrin gene is located in

a cluster with the genes for numerous other CE proteins

in the so-called epidermal differentiation complex (EDC)

region on chromosome 1q21 (Volz et al., 1993; Mischke

et al., 1996). The involucrin gene has a single exon

encoding the entire protein (Eckert and Green, 1986)

and shows astonishing polymorphism in humans (Simon

et al ., 1991; Djian et al., 1995). Mammalian involucrins

evolved from a common ancestor gene by tandem

duplications of a 45-60 base pair sequence in prosimians

Table 2. CE precursor proteins

Relative abundance Cross-linking

Name Gene locus                 Size (kDa) in human foreskin sites identified

CE in vivo?

Involucrin 1q21 (EDC) 65 2-5% Yes

Loricrin 1q21 (EDC) 26 80% Yes

SPRs 1q21 (EDC) 6-26 3-5% Yes

Cystatin A 3cen-q21 12 2-5% Yes

Proelafin 20q12-q13 10 <1% Yes

(Pro)filaggrin 1q21 (EDC) >400 <1% Yes

Type II keratins 12q13 56-60 <1% Yes

Desmoplakin 6p21-ter 330/250 <1% Yes

Envoplakin 17q25 210 <1% Yes

Periplakin 16p13.3 195 <1% Yes

S100 proteins 1q21 (EDC) 12 <1% No

Annexin I 9q12-q21.2 36 <1% No
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and which changed to a 30 base pair sequence in

higher monkeys (Tseng and Green, 1988; Green and

Djian, 1992). For example, pig involucrin has 13 repeats

of 16 amino acids, of which seven are glutamine and

three are glutamic acid residues. Human involucrin has

37 repeats of 10 residues of which three are glutamines

and two are glutamates. Thus the whole human

involucrin protein contains ~25% glutamine and ~20%

glutamate residues (Eckert and Green, 1986).

Presumably, the expansion of these repeat sequences

was driven by the evolutionary benefit of increasing the

number of potential TGase substrate glutamine residues

for cross-linking, and perhaps of lengthening the molecule.

This repeat region is flanked on both the amino and

carboxy termini by domains which have been

remarkably conserved throughout mammalian evolution

and indeed show significant sequence homology to

similar regions on other EDC-encoded CE structural

proteins such as loricrin and the small proline rich

proteins (Gibbs et al., 1993). Involucrin is a rod-like,

elongated protein of ~45 nm long and 1.5 nm in

d i a m e t e r. Thus involucrin is ideally suited for cross-

bridging widely separated CE components ( Ya ffe et al. ,

1992), al though only a small  f ract ion of i ts 150

glutamines appear to be utilized in vivo (Steinert a n d

M a r e k o v, 1997). The repeat region is mostly α-helical in

humans but other secondary structures have also been

proposed for the prosimian repeats (Downing, 1992).

Expression of involucrin appears at the onset of terminal

d i fferentiation in epithelia (Eckert et al., 1993). In cultured

keratinocytes in vitro, involucrin expression is induced

Figure 1.Schematic model of the structure of the CE and the lipid barrier. Modified from

ref. 27. An initial scaffold 2-3 nm thick is built at the cell periphery by deposition of

involucrin (long green rods) onto periplakin, envoplakin and perhaps desmosomal

components such as desmoplakin. In the CE of the epidermis as shown, the subsequent

reinforcement proteins are composed mostly of loricrin and interconnecting SPRs. In the

CEs of the forestomach, trichohyalin is also used (Steinert et al., 1998b). In the CEs of

other internal stratified squamous epithelia, the reinforcement proteins are mostly SPRs.

In the hair fiber cuticle, other so far uncharacterized cysteine-rich proteins are used

(Zahn et al., 1997). The KIF cytoskeleton is thought to be directly crosslinked to the

cytoplasmic surface of the CE in order to mechanically integrate cornified cell structure

(Candi et al., 1998a). In all cases examined so far, the protein envelope of the CE is

uniformly 10 nm thick (Jarnik et al., 1998). In the epidermal CE, a lipid envelope of

about 5 nm thick is also present, which is formed from a monomolecular layer of

unusually large ceramides (vertical yellow rods). These may serve to interdigitate with

other intercellular corneocyte lipids to complete the skin barrier.
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9Bricks and mortar of the epidermal barrier

by calcitriol (Su et al ., 1994), corticosteroids (Cline and

Rice, 1983), phorbol esters (Takahashi and Iizuka, 1993),

and Ca2 + ( Younus and Gilchrest, 1992), by regulatory

elements located within about the first 2.5 kb upstream

of the cap site (Welter et al., 1995; Lopez-Bayghen e t

a l., 1996; Welter et al., 1996; Crish et al., 1998). CEs

from ‘dry’ epithelia such as human foreskin epidermis

contain about 5% involucrin (Steinert and Marekov, 1997).

H o w e v e r,  i t  is  much more abundant in the CEs

recovered from cultured keratinocytes (Rice et al., 1979;

Ya ffe et al., 1993; Steven and Steinert, 1994; Robinson

et al . ,  1996) or internal  ‘wet ’  epi thel ia [P. M . S . ,

unpublished].

Loricrin accounts for >70% of the protein mass of

epidermal CEs, but rather less (30-50%) in the CEs of

certain internal epithelia such as the esophagus, palate,

buccal mucosa (Hohl et al., 1991a; Yoneda and Steinert,

1993), and is not expressed in many other internal epithelia.

Expression of loricrin is induced by phorbol esters, cell

confluence, and Ca2+ (Hohl et al ., 1991b; Dlugosz and

Yuspa, 1993), presumably through signals acting through

an AP1 site (DiSepio et al., 1995; Rossi et al., 1998),

and occurs very late during the terminal diff e r e n t i a t i o n

program of these tissues. Loricrin is an insoluble protein

under physiological conditions, apparently due to its high

content of glycine, serine and cysteine: indeed it has the

highest glycine content of any protein known in biology

(Mehrel et al., 1990; Hohl et al., 1991a; Yoneda et al., 1992).

Owing to its high rate of expression and low solubility,

loricrin forms spherical inclusions, called L-bodies in

newborn mouse skin, human foreskin and acrosyringium,

but it is diffusely distributed in the cytoplasm of adult

epithelia (Steven et al., 1990; Ishida-Yamamoto et al. ,

1993; Ishida-Yamamoto et al., 1996). Loricrin contains

three glycine rich domains which are thought to form

uniquely flexible glycine loops (Steinert et al., 1991),

interspersed by glutamine-rich motifs and flanked by

lysine- and glutamine-rich amino and carboxy terminal

domains (Mehrel et al., 1990; Hohl et al., 1991a). In vitro

cross-linking experiments using recombinant human loricrin

have demonstrated that the TGase 1 and 3 enzymes

utilize different glutamine and lysine residues, implying

that both enzymes have distinctly complementary and

essential functions in the utilization of loricrin for CE

assembly in vivo (Candi et al., 1995).

Small proline rich proteins (SPRs, cornifins, pancornulins)

are a family of 11-14 closely related proteins. Three

classes of SPRs have been identified: SPR1 (two mem-

bers), SPR2 (8-11 members) and SPR3 (1 member)

(Kartasova and van de Putte, 1988; Kartasova et al. ,

1988a; Marvin et al., 1992; An et al., 1993; Gibbs et al.,

1993; Greco et al., 1995; Hohl et al., 1995; Austin et al.,

1996; Kartasova et al., 1996; Steinert et al., 1998a; Song

et al., 1999). The various members of the SPR classes

display wide variations of expression in different epithelia.

For example, SPR1a (cornifin α) and certain SPR2 proteins

are expressed in dry epithelia such as the epidermis;

distinctly different members of the SPR2 class are

expressed in internal epithelia; and SPR3 is abundantly

expressed in mucosal epithelia exposed to mechanical

stress, such as the esophagus and rodent forestomach,

while it is absent in the epidermis (Fujimoto et al., 1993;

Hohl et al., 1995; Steinert et al., 1998b; Song et al., 1999).

However, most members are induced in response to UV

damage and phorbol esters (Kartasova and van de

Putte, 1988; Kartasova et al., 1988b; Gibbs et al., 1990) or

malignancy (Yaar et al., 1995). SPR1 and 2 transcription

is induced by Ca2 + through a complex array of interacting

AP1, Sp1, ets and other transcription factors (Fischer et

a l., 1996; Sak et al., 1998). All SPRs are built from a

variable number of eight (in SPR1 and SPR3) or nine

(in SPR2) amino acid residue proline-rich repeats. The

number of repeats ranges from three in human SPR2 to

23 in human SPR3, so that the mass of SPRs varies

between 6 kDa to 25 kDa (Fujimoto et al., 1993; Gibbs

et al., 1993; Austin et al., 1996; Kartasova et al., 1996;

Steinert et al., 1998b; Song et al., 1999). The repeats

are flanked by short glutamine-, lysine- and proline-rich

amino and carboxy terminal domains showing distant

homology to the head and tail regions in involucrin and

loricrin (Gibbs et al., 1993). Recombinant human SPR2

(Candi et al., 1999) and SPR1 (Tarcsa et al., 1998) proteins

have been studied in vitro. Circular dichroism measure-

ments indicate a random coil secondary structure for

the termini, but a limited protein turn conformation for

the repeat motifs. Both are powerful TGase substrates,

and many adjacent glutamine and lysine residues become

cross-linked in vitro and in vivo (Steinert et al ., 1998a).

Interestingly different residues on the amino termini are

used by the two enzymes, indicating that both enzymes

are also required for the appropriate assimilation of SPRs

into the CE in vivo. In addition, double cross-linking

experiments have shown that the TGase 3 enzyme first

cross-links the SPRs into short oligomers, which are later

affixed to the CE by the TGase 1 enzyme (Candi et al.,

1999). We have noted a correlation between the amount

of SPRs present in CEs and the presumed requirements

of epithelia for resistance to physical trauma. For

example, trunk epidermis contains only traces of SPRs;

foreskin epidermis contains about 5% SPRs; human

palm/sole or rodent footpad and lip epidermis contain

10-15% SPRs; rodent esophagus and forestomach

epithelia contain >20% SPRs; and human buccal and

gingiva epithelia contain near 50% SPRs. We have

proposed the SPRs serve as cross-bridging proteins

and in this way directly modulate the biomechanical

properties of the CE and the entire epithelium in which

they are expressed (Steinert et al., 1998a; Steinert e t

al., 1998b). 

Cystatin A (keratolinin) expression is inducible in

cultured keratinocytes by Ca2 +, phorbol esters and

forskolin (Takahashi et al ., 1997). In epidermis it is
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expressed in the spinous layer (Jarvinen et al., 1987).

Cystatin A is a substrate for epidermal TGases and has

been identified as a minor cross-linked component of

CEs (Zettergren et a l., 1984; Takahashi et al., 1992;

Steinert and Marekov, 1997). The protein is a known

cysteine protease inhibitor (Jarvinen et al ., 1987;

Takahashi et al., 1994; Shibuya et al., 1995) and it has

been suggested that this feature might be relevant for

the bacteriostatic properties of the skin (Takahashi e t

al., 1994).

Elafin (elastase specific inhibitor, SKALP; skin derived

anti-leukopeptidase) is a minor component of CEs from

normal adult epidermis, is transiently expressed in fetal

and neonatal epidermis, but is highly expressed in

wounded or psoriatic skin and in cultured keratinocytes

(Molhuizen et al., 1993; Schalkwijk et al., 1993; Alkemade

et al., 1994; Nonomura et al., 1994; Pfundt et al., 1996).

The protein is translated as preproelafin, which is curtailed

to proelafin after the removal of the 25 amino acid

signal peptide. Proelafin is composed of an amino

terminal 34 amino acid proline-rich sequence

(“cementoin”) and the 57 amino acid long elafin (Wi e d o w

et al., 1990; Schalkwijk et al., 1991; Saheki et al., 1992;

Sallenave et al., 1993; Wiedow et al., 1993). Though

elafin has potent elastase and proteinase-3 inhibitory

properties (Wiedow et al., 1990; Wiedow et al., 1993),

the biological relevance of this is unknown in

keratinocytes. The fate of proelafin after synthesis is

somewhat obscure, as the protein is stored in secretory

granules and is later extruded from the cells (Pfundt et

al., 1996). However, TGases utilize glutamine residues

in the cementoin sequence as sub-strates (Molhuizen et

al., 1993), and proelafin has been identified as a cross-

linked component of epidermal CEs (Steinert and

M a r e k o v, 1995; Steinert and Marekov, 1997).

Profilaggrin is a major differentiation product of ortho-

keratinizing epithelia such as the epidermis (Gan et al.,

1990), and its gene is encoded in the EDC (McKinley-

Grant et al., 1989). Profilaggrin is a polyprotein consisting

of numerous filaggrin units flanked by distinctive amino

and carboxy terminal domains (Presland et al., 1992;

Markova et al., 1993). Interestingly, the amino terminus

of profilaggrin contains two functional calcium binding

EF hand motifs (Presland et al., 1992; Markova et al.,

1993). Filaggrin is released by proteolysis from profilaggrin

(Presland et al., 1997), and functions to bind keratin

intermediate filaments into tight arrays typically seen in

corneocytes (Dale et al., 1978; Mack et al., 1993). Some

filaggrin becomes cross-linked to CE proteins (Richards

et al ., 1988; Steinert and Marekov, 1995; Simon et al .,

1996), presumably together with and at the same time

as the keratins. It has also been proposed that the

amino terminal parts of profilaggrin are also

incorporated into CEs after proteolytic cleavage from

the filaggrin units (Presland et al., 1997).

Keratin intermediate filaments (KIF) are of course the

major protein of the corneocyte, and some keratin p r o t e i n s

become cross-linked to the peripheral CE during terminal

differentiation (Steinert and Marekov, 1995; Steinert and

Marekov, 1997; Candi et al., 1998a). KIF and their roles

in health and disease have been reviewed in detail else-

where (Parry and Steinert, 1995; Steinert, 1996). In

living nucleated epithelial cells the KIF cytoskeleton is

attached to the cell periphery at desmosomal junctions,

which provides mechanical stability throughout the epi-

thelium (Holbrook and Wolff, 1993; Garrod et al., 1996).

Although the exact details are unknown, the connection

of the KIF to desmosomes occurs through several desmo-

somal proteins, including desmoplakin and envoplakin

(Garrod et al ., 1996; Green and Jones, 1996; Fuchs et

a l., 1997). In the course of terminal differentiation and

CE formation, the structural integrity of desmosomes is

destroyed at the same time as many normal house

keeping cellular constituents are absorbed. During this

process, KIF become cross-linked to the CE primarily

through a single lysine residue located in the amino-

terminal head domain of the type II keratins 1, 2e, 5, 6,

typically expressed in stratified squamous epithelia (Candi

et al., 1998a). In this way, the KIF cytoskeleton becomes

integrated mechanically with the CE to form a stable

insoluble structure for the corneocyte.

Desmoplakin is a major intracellular desmosomal plaque

protein. Two isoforms, DPI and DPII, result from alternative

splicing. In stratified squamous epithelia both isoforms

are expressed (Virata et al., 1992). A large body of

evidence indicates that the KIF meet at the site of the

desmosome where they may interact directly or

indirectly through various other intermediary proteins,

with the terminal domains of desmoplakin (Green et al.,

1990; Virata et al., 1992; Kouklis et al., 1994; Garrod et

a l., 1996; Green and Jones, 1996; Fuchs et al ., 1997).

There is direct evidence from protein sequencing that

desmo-plakin becomes crosslinked to a variety of other

CE proteins, although interestingly, the crosslink

connection with the type II keratins seems to be

indirectly through other proteins (Steinert and Marekov,

1995; Steinert and Marekov, 1997; Candi et al., 1998a).

Several other desmosomal proteins including

desmoglein 3, desmo-collins 3A/3B, plakoglobin, and

plakophilin were found among proteolyzed CE fragments

(Robinson et al., 1997). However, the sites of isopeptide

bond formation were not identified in them, and the

conclusion that they are in fact integral CE components

awaits verification. Two other proteins, envoplakin and

periplakin, which are structural homologues of

desmoplakin, are located at or between the desmosome

junctions of stratified squamous epithelia (Ruhrberg e t

al., 1996; Ruhrberg et al., 1997). These become cross-

l inked components of mature CEs, and indeed,

envoplakin seems to mediate l inkages between

desmoplakin and KIF (Steinert and Marekov, 1997;

Candi et al., 1998a).
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The S100 proteins are akin to the amino-terminal

domain of profilaggrin in that they contain two calcium

binding EF hand motifs (Engelkamp et al., 1993; Volz et

al., 1993; Moog-Lutz et al., 1995; Mischke et al., 1996).

Many of their genes are located in the EDC region of

chromosome 1q21. Among these, S100A10 (calpactin,

light chain) and S100A11 (S100C, calgizzardin) are

expressed and incorporated into CE in cultured keratino-

cytes (Robinson et al., 1997). On binding calcium, these

proteins expose hydrophobic domains on their surface and

bind to several proteins, including annexin I (Seemann

et al., 1996). 

Annexin I (lipocortin 1) is a member of the multigene

family of annexins expressed in all eukaryotic kingdoms

except fungi (Morgan and Fernandez, 1997). Annexins

are structurally defined by an ancient conserved domain

of four homologous repeats responsible for ion channel

activity and calcium dependent binding to anionic phos-

pholipids, the cytoskeleton and extracellular matrix proteins

(Liemann and Lewit-Bentley, 1995). Annexin I is abundantly

expressed in most tissues, although its precise role

remains to be elucidated. Annexin I was found to be a

component of CEs from cultured keratinocytes (Moore

and Sartorelli, 1992; Robinson et al., 1997), a finding

not yet corroborated by in vivo data. As annexins I and

II were shown to associate with S100 proteins on

calcium binding (Mailliard et al ., 1996; Seemann et al . ,

1996), this mechanism may play a role in docking

certain early CE protein components to the plasma

membrane (Robinson and Eckert, 1998).

The order of CE assembly

As CEs consist of many different proteins, the relative

ratios of which vary widely between different epithelia, it

would be parsimonious to assume that these proteins are

cross-linked to one another in a random fashion, when

keratinocyte Ca2+ concentrations reach sufficiently high

levels to activate TGases (Michel et al., 1987; Reichert e t

a l ., 1993). This random copolymerization, or so-called

‘dustbin’ hypothesis, does not explain the structure of

CE, and moreover, seems inconsistent with the known

orderly expression of the various protein components.

Several studies indicate that the CE is formed by sequen-

tial deposition of consecutively-expressed proteins,

apparently starting with the fixation of involucrin on the

intracellular surface of the plasma membrane (Eckert et

al., 1993; Steinert, 1995; Steinert and Marekov, 1997).

Initially the CE appears as a thickened electron dense

band between the desmosomes, which later overlayers

the desmosomal attachment plaques, which

presumably are not only masked but also degraded during

the terminal d i fferentiation process (Green and Jones,

1996). Expres-sion studies have shown that involucrin

deposition at the cell periphery precedes that of most

other CE proteins (Rice et al., 1979; Watt and Green,

1981; Simon and Green, 1984; Crish et al., 1993; Murthy

et al. , 1993; Ya ffe et al., 1993; de Viragh et al., 1994;

Jarnik et al. ,  1998; Song et al. , 1999). Further,

immunogold labeling and ultrastructural data have

suggested that a monomolecular layer of involucrin is

first deposited as a scaffold (Steinert and Marekov,

1997; Jarnik et al. , 1998). In addition, sequential

digestion and protein sequencing of foreskin CEs has

revealed that involucrin is cross-l inked to other

peripheral CE proteins including desmoplakin, envoplakin,

and perhaps periplakin. Finally, we have shown that

involucrin is covalently bound to ω- h y d r o x y c e r a m i d e s

from the exterior surface of the CE, indicating that

involucrin must have been deposited in the intimate

vicinity of the cell membrane at an early time (Marekov

and Steinert, 1998). A transporting system has been

proposed for positioning involucrin to the cell membrane

(Robinson and Eckert, 1998). This model hypothesizes

cross-l inking of CE building blocks f irst to S100

proteins, which then dock to annexins to attach to the

inner memb-rane surface in a calcium and phospholipid

dependent manner. An alternative model has been

proposed. We (Nemes et al., 1999) have shown that

involucrin can bind to the plasma membrane in a

calcium and phosphatidyl-serine dependent manner

and serve as substrate for membrane-bound TGase 1.

Thus involucrin and TGase 1 might form the initial

s c a ffold of the CE without the need for any other

transporter or organizer proteins.

Current models suggest that a monomolecular layer of

involucrin is then used as a scaffold for the subsequent

attachment of other ‘reinforcement’ proteins (Hohl, 1990;

Reichert et al., 1993; Eckert et al., 1997; Steinert and

Marekov, 1997; Jarnik et al., 1998). In the case of the

epidermis, these reinforcement proteins include loricrin

and SPRs, which together comprise about 85% of the total

mass of the CE (Steinert and Marekov, 1997; Steinert et

a l., 1998b). The forestomach also includes significant

amount of trichohyalin (Steinert et al., 1998b). The CEs

from other internal epithelia which do not express loricrin

have much higher contents of SPRs instead [P. M . S . ,

u n -published]. The CEs of the hair cuticle use as yet

unknown cysteine-rich proteins (Zahn et al., 1997).

These differ-ences presumably reflect the diff e r e n t

barrier function requirements of different epithelia

(Steinert et al., 1998b). In addition, there is considerable

funct ional redundancy in CE proteins and their

subsequent cross-linking. For example, the complete

lack of loricrin in the knock out mouse model resulted in

a surprisingly mild phenotype: newborns had an

abnormal epidermis with diminished barrier function, but

this improved by five days after birth. This improvement

was concurrent with increased expression of SPRs (de

Viragh et al., 1997).
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The mortar

Terminal differentiation of keratinocytes is accompanied

by vigorous lipid metabolism and synthesis of

k e r a t i n i z a t i o n -specific l ipids in the granular layer

(Swartzendruber et a l ., 1989; Wertz et al., 1989a;

Schurer et al. , 1991; Wertz and Downing , 1 9 9 1 ;

Downing et al., 1993; Elias, 1996). Newly synthesized

lipids are accumulated and temporarily stored in small

cytoplasmic inclusions known as lamellar bodies, in

which the lipids are arranged as multilayered s t a c k s

(Landmann, 1980). These layers are held together by

extremely long ω-acylceramides spanning over several

lipid layers (Abraham et al., 1988). The lamellar body lipids

consist predominantly of acylated/glucosylated/hydroxy-

lated ceramides, cholesterol and its acyl and sulfate esters,

and free fatty acids (Schurer et al., 1991; Downing et al.,

1993; Elias, 1996). In the upper granular layer the lamellar

bodies are extruded into the intercellular space, forming

broad multilamellar lipid sheets (Landmann, 1986). Ultra-

structural examination of lamellar bodies as well as inter-

corneocyte lipids display a parallel pattern of electron

dense and lucent bands (Madison et al., 1988; Swartzen-

druber et al., 1995). The dense bands correspond to the

polar head groups of the lipid layers, while lucent bands

are occupied by the apolar hydrocarbon chains (Swar-

tzendruber et al., 1989). On extrusion, the bounding

membrane of the lamellar bodies is fused with the plasma

membrane of the keratinocytes (Ricardo Martinez and

Peters, 1971). This process apparently coincides with

the initiation of CE assembly inside the cells. One minor

but important component of the extruded lipids are the

ω-hydroxyceramides, which become covalently

attached to the outer surface of the protein envelope of

the CE forming an ~5 nm thick lipid envelope coat

surrounding each corneocyte (Swartzendruber et al.,

1987; Wertz and Downing, 1987a; Wertz et al. , 1989b).

The ceramides are attached by way of ester bonds to

glutamic acid and glutamine residues of several CE

proteins, including involucrin, envoplakin and periplakin

( Wertz et al., 1989b; Marekov and Steinert, 1998). The

protein-bound ω-hydroxyceramides are built from

sphingosine coupled to highly saturated, uniquely long

( C3 0 - 3 6) chain fatty acids having a chain terminal (“ω” )

hydroxyl group (Wertz and Downing , 1991). This

functional group is presumably involved in the ester

bond formation, although incomplete conversion of

protein-bound ceramides to their acetonides by acidic

acetone indicated that sphingosine hydroxyls may also

be used (Wertz and Downing, 1987a).

Isolation and sequencing of ceramide-peptide ester

adducts from proteolyzed foreskin epidermal CEs located

possible lipid attachment sites in involucrin and desmosomal

proteins. These included both glutamate and glutamine

residues (Marekov and Steinert, 1998). Thermodynamic

considerations necessitate high-energy intermediate

formation to drive formation of ester bonds in biology.

Ester formation on glutamate residues presumably involves

transferases using nucleotide triphosphate as the energy

source, and indeed many transferases are present in

lamellar body exudate (Downing et al., 1993; Elias, 1996).

H o w e v e r, glutamines are an intrinsically activated

derivative of glutamic acid and the release of ammonia

from its carboxamido groups provides sufficient entropy

increase to drive ester formation. TGases (precisely:

glutamine-amine aminotransferases) are known to utilize

the lysis of glutamine carboxamido moieties to drive

thermodynamically difficult reactions, including activation

of alcohol moieties to form esters (Gross and Folk, 1974;

Folk and Finlayson, 1977; Lorand and Conrad., 1984).

Thus we propose that TGases may also participate in

lipid envelope formation by covalent attachment by

esterification of ω-hydroxyceramides to glutamines of

the protein envelope. 

The long chain ceramides comprising the lipid envelope

attached covalently to the surface of the CE function in

large part by interdigitation with the intercorneocyte lipids

in a Velcro-like fashion. As part of its obviously important

water barrier function, this attachment presumably permits

‘fixation’ of the cornified cells after disappearance of

desmosomal linkages, and may have a role in inhibiting

the clumping, vacuolization or other derangement of the

lipid lamellae (Wertz et al., 1989a; Wertz, 1997), especially

in hair cuticle cells (Zahn et al., 1997).

Defects of the skin barrier

Broken bricks

More than 10 different diseases involving the genes

encoding KIF (which comprise the bulk of epithelial

cells) are now known and have been described in detail

elsewhere (Parry and Steinert, 1995; Steinert, 1996).

Included in these is a novel mutation involving the loss

by mutation of a single lysine residue in the head

domain of the kerat in 1 gene, result ing in non-

epidermolytic palmar-plantar keratoderma (Unna-Thost

disease). This disease is characterized by pathological

thickening of the stratum corneum of the palms and soles

(tylosis) (Kimonis et al., 1994). The lysine residue has

been shown to be essential for the crosslinking of KIF to

CE structural pro-teins, and its loss appears to interfere

with the orderly structure of the corneocyte (Candi et al.,

1998a).

In addition, a few genetic diseases caused by

defects in the genes encoding either CE structural

proteins or TGase 1 are now known. Defective forms of

loricrin dis-rupt the terminal differentiation program of

keratinocytes and cause skin diseases. Frameshift

mutations, resulting in loss of key glutamine and lysine
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residues for cross-l inking, and expression of an

aberrantly highly positively charged protein which

accumulates in the nucleus instead, cause the autosomal

dominant diseases Vo h w i n k e l ’s k e r a t o d e r m a

(keratoderma hereditaria mutilans (Vohwinkel, 1929; Gibbs

and Frank, 1966; Korge et al., 1997; Lam et al., 1997) or

progressive symmetric erythrokeratoderma ( I s h i d a -

Yamamoto et al., 1997). In these diseases the CE i s

thinner than normal and contains less loricrin (Ishida-

Yamamoto et al., 1997; Korge et al., 1997; Lam et al.,

1997). Patients with Vohwinkel's keratoderma have diff u s e

palmoplantar hyperkeratosis with small “honeycomb”

depressions and progressively develop constricting bands

on their fingers. Irregularly shaped keratoses on the

backs of feet and hands, elbows and knees and

variable deafness are also part of the syndrome.

Progressive symmetric erythrokeratoderma is

characterized by wide-spread erythematous keratotic

plaques (Ishida-Yamamoto et al., 1998).

Genetic defects of the TGM1 gene encoding TGase

1 cause the devastating life threatening disease

lamellar ichthyosis, which manifests as large brown

plate-like scaling throughout the body, accompanied by

ectropion and/or eclabium, scarring alopecia and

diminished skin barrier function (Huber et al., 1995a;

Russell et al ., 1995). Several mutations have been

identified which cause non-sense, frameshift or splice

site changes affecting either the active site of the

enzyme (Parmentier et al., 1995; Huber et al., 1997;

Petit et al ., 1997; Candi et al ., 1998b) or its

posttranslational proteolytic processing (Candi et al. ,

1998b). In all of these cases, the amount of TGase 1

activity is greatly diminished or lost (Hohl et al., 1998;

Raghunath et al., 1998). Several of these phenotypic

changes are also apparent in the mouse T G M 1 g e n e

knock-out model (Matsuki et al., 1998). Thus the TGase

2, 3 and X enzymes also co-expressed in the epidermis

are unable to replace the missing TGase 1 activity. Inter-

e s t i n g l y, however, other internal epithelia which also

express TGase 1 and other TGases are not affected in

lamellar ichthyosis. Thus it is possible that debilitating

epidermal involvement may be due to the inability of

TGase 1 to attach ceramide lipids to the CE. In addition,

there are a variety of other autosomal recessive ichthyoses

that are unlinked to the T G M 1 locus, indicating that defects

in other genes cause a phenotype similar to lamellar

ichthyosis (Huber et al ., 1995b; Bale et al ., 1996;

Hennies et al., 1998). One possibility is that these

genes encode proteins involved in the posttranslational

proteolytic activation of the TGase 1 enzyme (Candi et

al., 1998b). Finally, to date, no disease has been linked

to any of the other TGase genes expressed in epithelia. 

Weak mortar

Production of an effective lipid barrier in the skin (and

other epithelia) involves an extraordinarily complex set

of machinery and a very large (indeed, unknown) number

of genes. Generally, deficiencies in barrier function result

in an ichthyosiform disease. Even minor depletion of the

lipid barrier causes dry skin, a common manifestation of

which is the scaling caused by exaggerated application

of hygienic detergents. Essential fatty acid deficiency

causes excess scaling in rats (Wertz et al. , 1987b) and

also in humans on long-term intravenous alimentation

lacking linolate (Friedman, 1986). The systemic application

of HMG-CoA reductase inhibitors impedes epidermal

cholesterol synthesis and might cause ichthyosiform

symptoms (Williams, 1992). Excessive depletion of the

cornified layer triggers hyperproliferation often leading

to abnormal scaling (Fartasch, 1997).

Many subtypes of ichthyoses have been distinguished on

the basis of ultrastructural (Anton-Lamprecht, 1994) or

other criteria based on abnormal intercellular deposition

of apolar lipids, cholesterol, polar lipids, etc (Wi l l i a m s

and Elias, 1987; Traupe, 1989). The exact genetic defect

in the vast majority of these classified diseases is not yet

known, although some have been identified. As discussed

above, lamellar ichthyosis is caused by mutations in the

TGM1 gene encoding the TGase 1 enzyme; the disease

may result from the inability to both crosslink structural

proteins and attach ceramides. X-linked ichthyosis is

due to cholesterol sulfate accumulation owing to a

deficiency of the arylsulfatase C/cholesterol sulfatase

gene (Shapiro et al ., 1978; Kubilus et al ., 1979; Baden

et al., 1980). How abnormally high levels of cholesterol

sulfate cause barrier dysfunction has not yet been

clearly elucidated (Zettersten et al., 1998), although the

T G M 1 gene may be involved (Kawabe et al., 1998).

Some ichthyoses are the direct result of genetic defects

of lipid metabolism, as exemplified by Refsum’s disease

(phytanic acid accumul-ation owing to phytanoyl-CoA

hydroxylase deficiency) (Steinberg et al ., 1978; Jansen

et al ., 1997), and Sjogren-L a r s s o n ’s syndrome

(pathological lipid metabolism owing to fatty aldehyde

dehydrogenase deficiency (De Laurenzi et al., 1996; De

Laurenzi et al ., 1997). Similarly, maple syrup urine

disease in cattle is caused by an inherited deficiency in

the enzyme branched chain alpha-ketoacid

dehydrogenase, which leads to accumulated branched

chain amino acids (valine and isoleucine). A hair fiber

barrier defect is also evident because of loss of a key

lipid, 18-methyleicosanoic acid, which is a downstream

metabolite of the enzyme (Zhang et al., 1990).

Conclusion

In recent years substantial progress has been made to

identify the protein and lipid components involved in skin

barrier function. Nevertheless, several major problems

still await resolution in order to provide a complete

understanding of the biochemical mechanisms of barrier

*EM M  31- 1   6 / 6 / 00  2 : 21  PM   Pag e 13



14 Exp. Mol. Med.

formation as well as the temporal and geometric interac-

tions of the individual components. Thus, much additional

basic research is essential to understand the bases of

genetic diseases barrier function before rational therapy

procedures can be developed.
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