
 1 

Bridge health monitoring system based on vibration 

measurements 
 

Evaggelos Ntotsios1, Costas Papadimitriou2*, Panagiotis Panetsos3, 

Grigorios Karaiskos1, Kyriakos Perros1, Filippos Perdikaris4  

 

 

 

Abstract: A bridge health monitoring system is presented based on 

vibration measurements collected from a network of acceleration sensors. 

Sophisticated structural identification methods, combining information 

from the sensor network with the theoretical information built into a 

finite element model for simulating bridge behaviour, are incorporated 

into the system in order to monitor structural condition, track structural 

changes and identify the location, type and extent of damage. This work 

starts with a brief overview of the modal and model identification 

algorithms and software incorporated into the monitoring system and 

then presents details on a Bayesian inference framework for the 

identification of the location and the severity of damage using measured 

modal characteristics. The methodology for damage detection combines 

the information contained in a set of measurement modal data with the 

information provided by a family of competitive, parameterized, finite 

element model classes simulating plausible damage scenarios in the 

structure. The effectiveness of the damage detection algorithm is 

demonstrated and validated using simulated modal data from an 

instrumented R/C bridge of the Egnatia Odos motorway, as well as using 

experimental vibration data from a laboratory small-scaled bridge 

section.  
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1 Introduction 

Successful health monitoring of structural systems depends to a large 

extent on the integration of cost-effective intelligent sensing techniques, 

accurate physics-based computational models simulating structural 

behavior, effective system identification methods, sophisticated health 

diagnosis algorithms, as well as decision-making expert systems to guide 

management in planning optimal cost-effective strategies for system 

maintenance, inspection and repair/replacement. Structural integrity 

assessment of highway bridges can in principle be accomplished using 

continuous structural monitoring based on vibration measurements. 

Taking advantage of modern technological capabilities, vibration data 

can be obtained remotely, allowing for a near real-time assessment of the 

bridge condition. Using these measurements, it is possible to identify the 

dynamic modal characteristics of the bridge and update a theoretical 

finite element model. The results from the identification and updating 

procedures are useful to examine structural integrity after severe loading 

events (strong winds and earthquakes), as well as bridge condition 

deterioration due to long-term corrosion, fatigue and water scouring.  

Algorithms and graphical user interface (GUI) software has been 

developed for monitoring the bridges of the Egnatia Odos highway 

system. The bridge structural health monitoring system combines 

information from finite element structural models representing the 

behavior of bridges and vibration measurements recorded using an array 

of sensors. It incorporates algorithms related to (1) optimal experimental 

design, (2) experimental modal analysis from ambient and earthquake-

induced vibrations, (3) finite element model updating, and (4) structural 

damage detection based on finite element model updating.  

Optimal experimental design methods refer to algorithms for 

optimizing the location and number of sensors in the structure such that 

the measure data contain the most important information for structural 

identification purposes. Algorithms based on information theory and 

using a nominal finite element model of the structure, have been 

proposed to address this problem (Kirkegaard and Brincker 1994; 

Papadimitriou 2004). Effective heuristic optimization tools have also 

been developed and implemented into software for efficiently solving the 

resulting nonlinear single- and multi-objective optimization problems 

involving discrete-valued variables. It has been demonstrated that 

optimal sensor configurations depend on several factors, including the 
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purpose of the analysis (modal analysis, model updating or damage 

detection), parameterization schemes used in model updating, probable 

damage scenarios that are monitored, as well as the type and number of 

modes identified from the data.  

Experimental modal analysis algorithms for bridge structures process 

either ambient or earthquake-induced vibrations in order to identify the 

modal characteristics. A brief overview with references of modal 

identification methods was given in the companion paper (Ntotsios et al. 

2008). Recent efforts have been concentrated on developing algorithms 

and graphical user interface (GUI) software for automated modal 

analysis based on ambient vibrations with minimum user interference 

(e.g. Goursat et al. 2000; Verboven et al. 2004; Peeters et al 1999, 

Reynders and De Roeck 2007). As part of the proposed bridge 

monitoring system, GUI software has also been developed from the 

University of Thessaly group for computing the modal properties by 

processing either ambient or earthquake acceleration recordings (Ntotsios 

et al 2008).  

Finite element model updating methods based on modal data are 

often used to develop high fidelity models so that predictions are 

consistent with measured data. The need for model updating arises 

because there are always assumptions and numerical errors associated 

with the process of constructing a theoretical model of a structure and 

predicting its response using the underlined model. Reviews of model 

updating methodologies based on modal data can be found in the 

Mottershead and Friswell (1993). Moreover, model updating 

methodologies are useful in predicting the structural damage by 

continually updating the structural model using vibration data (Sohn and 

Law 1997; Fritzen et al. 1998; Teughels and De Roeck 2005; Vanik et al. 

2000; Papadimitriou 2004; Lam et al. 2004). Such updated models 

obtained periodically throughout the lifetime of the structure can be 

further used to update the response predictions and lifetime structural 

reliability based on available data (Papadimitriou et al. 2001). Graphical 

user interface software has been developed from the University of 

Thessaly group as part of the bridge monitoring system for automating 

the model updating process using various modal-based model updating 

methodologies (Christodoulou and Papadimitriou 2007). The software 

interfaces with the commercial COMSOL Multiphysics (COMSOL AB 

2005) software that provides the necessary finite element modeling tools.  
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This work presents details for the damage detection algorithm used in 

the monitoring system. The damage detection algorithm is based on 

reconciling finite element models with data collected before and after 

damage using a Bayesian methodology (Yuen 2002; Beck and Yuen 

2004; Papadimitriou and Katafygiotis 2004) for selecting a model class 

from a family of competitive parameterized model classes. The Bayesian 

methodology is outlined in Section 2, based on measured modal 

characteristics. The structural damage identification, outlined in Section 

3, is accomplished by associating each parameterized model class in the 

family to a damage pattern in the structure, indicative of the location of 

damage. Using the Bayesian model selection framework, the probable 

damage locations are ranked according to the posterior probabilities of 

the corresponding model classes. The severity of damage is then inferred 

from the posterior probability of the model parameters derived for the 

most probable model class. Based on asymptotic approximations, the 

damage diagnosis involves solving a series of model updating problems 

for each model class in the family. Examples illustrating the applicability 

of the proposed method are presented in Section 4 using simulated modal 

data for the Polymylos bridge, as well as measured data from a 

laboratory small-scale section of a bridge.  

 

2 Bayesian method for finite element model class selection 

Let 0ˆ{ˆ , , 1, , }N

r rD R r mw= Î = Lf  be the available measured data 

consisting of modal frequencies ˆ
r  and modeshape components ˆ

rf  at 

0N  measured DOFs, where m  is the number of observed modes. 

Consider a family of   alternative, competing, parameterized finite 

element model classes, designated by iΜ , 1, ,i  , and let i
N

i R qÎq  

be the free parameters of the model class iΜ . Let 

0( ; ) { ( ; ),  ( ; ) ,N

i i r i i r i i RwP = Îq q f qΜ Μ Μ 1, , }r m= L  be the 

predictions of the modal frequencies and modeshapes from a particular 

model in the model class iΜ  corresponding to a particular value of the 

parameter set iq .  

A Bayesian probabilistic framework is next briefly presented which is 

attractive to address the problem of comparing two or more competing 

model classes and selecting the optimal model class based on the 

available data. The Bayesian approach to statistical modeling uses 
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probability as a way of quantifying the plausibilities associated with the 

various model classes 
iΜ  and the parameters iq  of these model classes 

given the observed data D . Before the selection of data, each model 

class iΜ  is assigned a probability ( )iP Μ  of being the appropriate class 

of models for modeling the structural behavior. Using Bayes’ theorem, 

the posterior probabilities ( | )iP DΜ  of the various model classes given 

the data D  is 

 
( | ) ( )

( | ) i i
i

p D P
P D

d
=

Μ Μ
Μ  (1) 

where d  is selected so that the sum of all model probabilities equals to 

one, and  ( | )ip D Μ  is the probability of observing the data from the 

model class iΜ , given by  

 ( | ) ( | , , ) ( , | )i i i i i i i ip D p D d dp= ò q s q s s qΜ Μ Μ  (2) 

In (2), ( | , , )i i ip D q s M  is the likelihood of observing the data from a 
given model in the model class iΜ . This likelihood is obtained using 
predictions ( ; )i iP q Μ  from the model class iΜ  and the associated 
probability models for the vector of prediction errors  ( ) ( ) ( )

1[ , , ]i i i

me e= Le  
defined as the difference between the measured modal properties 
involved in D  for all modes 1, ,r m= L  and the corresponding modal 
properties predicted by a model in the model class iΜ . Specifically, the 
model error ( ) ( ) ( )[  ]i i i

r r r
ew f=e e  for the model class iΜ  is given separately 

for the modal frequencies and modeshapes from the prediction error 
equations:  

 ( )ˆ ( ; ) ˆ 1, ,
r

i

r r i i re r mww w w= + = Kq Μ  (3) 

 ( ) ( )ˆ ˆ( ; ) 1, ,i i

r r r i i r r
r mb= + = Kff f q fΜ e  (4) 

where ( ) ( ) ( ) ( )ˆ /i T i i T i

r r r r rb = f f f f , with ( ) ( ; )i

r r i iºf f q Μ , is a 

normalization constant that accounts for the different scaling between the 

measured and the predicted modeshape. The model prediction errors are 

due to modeling error and measurement noise. Herein, they are modeled 

as independent Gaussian zero-mean random variables with variance 2

is . 

Also, given the model class iΜ , the prior probability distribution 
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( , | )i i ip q s Μ , involved in (2), of the model and the prediction error 

parameters [ , ]i iq s  of the model class 
iΜ  are assumed to be independent 

and of the form ( , | ) ( ) ( )i i i iq sp p p=q s q sΜ .  

Under the assumption that the prior distributions ( )iqp q  are non-

informative uniform distributions over the range of variation of iq , and 

using asymptotic approximations valid for large number of data to 

approximate the integral (2), the probability of the model class 
iΜ  is 

given by (Papadimitriou and Katafygiotis 2004) 

 ˆ ˆlog ( | ) log ( ; , ) ( ; , ) ( )i J i i i i iP D N J D D P dbé ù= - + + +ê úë û
q qM Μ Μ M (5) 

where  

 

2
2

2

1 1

ˆ( ; )1 ( ; ) ˆ 1
( ; , )

ˆ ˆ

m m
r r i i r

r i i r
i i

r rr
r

J D
m m

aw w

w= =

-é ù-
ê ú= +
ê ú
ë û

å å
f q fq

q
f

ΜΜ
Μ  (6) 

represents the measure of fit between the measured modal data and the 

modal data predicted by a particular model in the class iM ,   is the 

usual Euclidian norm, ˆiq  is the value that minimizes the measure of fit 

( ; , )i iJ Dq Μ  in (6), d  is constant independent of the model class iM , 

0( 1)/ 2JN mN= - , and the factor ˆ( ; , )i i Db q Μ  in (5), known as the 

Ockham factor, simplifies for large number of data JN  to (Yuen 2002, 

Beck and Yuen 2004)  

 ˆ( ; , ) log
2

i

i i i J

N
D N

q
b b= = -q Μ  (7) 

where it is evident that it depends from the number of model parameters 

involved in the model class iM . It should be pointed out that the 

optimisation problem for finding ˆ
iq  for each model class are solved 

using efficient hybrid optimization techniques that guarantee the 

estimation of the global optimum (Christodoulou and Papadimitriou 

2007). 

The optimal model class bestM  is selected as the model class that 

maximizes the probability ( | )iP DM  given by (5). It is evident that the 

selection of the optimal model class depends on the measure of fit 
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ˆ( ; , )i iJ Dq Μ  between the measured modal characteristics and the modal 

characteristics predicted by the optimal model of a model class iM . 

Thus, the first term in (5) gives the dependence of the probability of a 

model class iM  from how well the model class predicts the 

measurements. The smaller the value of ˆ( ; , )i iJ Dq Μ , the higher the 

probability ( | )iP DM  of the model class iM . Based on the Ockham 

factor ib  simplified in (7), the ordering of the model classes in (5) also 

depends on the number 
i

N q  of the structural model parameters that are 

involved in each model class. Specifically, model classes with large 

number of parameters are penalized in the selection of the optimal model 

class.  

Finally, the probability distribution ( | , )i ip D Mq  quantifying the 

uncertainty in the parameters iq  of a model class iM  given the data is 

obtained by applying Bayes’ theorem (Beck and Katafygiotis 1998) and 

then finding the marginal distribution of the structural model parameters. 

For the model class iM , this yields (Katafygiotis et al. 1998)  

 [ ]( | , ) ( ; , ) ( )JN

i i i i i ip D c J D qp
-

=q q qM Μ  (8) 

where ic  is a normalizing constant guaranteeing that the PDF integrates 

to one.  It is evident from (8) that the most probable model that 

maximizes the probability distribution ( | , )i ip Dq M  of the structural 

parameters of the model class iM  is the ˆ
iq  that also minimizes the 

measure of fit function ( ; , )i iJ Dq Μ  in (6) with respect to iq , provided 

that ( )i iqp p=q  is selected to be constant. The most probable value of the 

parameter set that corresponds to the most probable model class bestΜ  is 

denoted by ˆbestq .   

 

3 Damage detection methodology  

The Bayesian inference methodology for model class selection based on 
measured modal data is next applied to detect the location and severity of 
damage in a structure. A substructure approach is followed where it is 
considered that the structure is comprised of a number of substructures. It 
is assumed that damage in the structure causes stiffness reduction in one 
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of the substructures. In order to identify which substructure contains the 
damage and predict the level of damage, a family of   model classes 

1, , mLM M  is introduced, and the damage identification is accomplished 
by associating each model class to damage contained within a 
substructure. For this, each model class iM  is assumed to be 
parameterized by a number of structural model parameters i  controlling 
the stiffness distribution in the substructure i , while all other 
substructures are assumed to have fixed stiffness distributions equal to 
those corresponding to the undamaged structure. Damage in the 
substructure i  will cause stiffness reduction which will alter the 
measured modal characteristics of the structure. The model class iM  that 
“contains” the damaged substructure i  will be the most likely model 
class to observe the modal data since the parameter values i  can adjust 
to the modified stiffness distribution of the substructure i , while the 
other modal classes that do not contain the substructure i  will provide a 
poor fit to the modal data. Thus, the model class iM  can predict damage 
that occurs in the substructure i  and provide the best fit to the data.  

Using the Bayesian model selection framework, the model classes 
are ranked according to the posterior probabilities based on the modal 
data. The most probable model class bestM  that maximizes ( | )ip DM  in 
(5), through its association with a damage scenario on a specific 
substructure, will be indicative of the substructure that is damaged, while 
the most probable value ˆ

bestq  of the model parameters of the 
corresponding most probable model class bestM , compared to the 
parameter values of the undamaged structure, will be indicative of the 
severity of damage in the identified damaged substructure. For this, the 
percentage change iDq  between the best estimates of the model 
parameters ˆiq  of each model class and the values ,

ˆ
i undq  of the reference 

(undamaged) structure is used as a measure of the severity (magnitude) 
of damage computed by each model class , 1, ,i i m= KM .  

The selection of the competitive model classes depends on the type 

and number of alternative damage scenarios that are expected to occur or 

desired to be monitored in the structure. The m model classes can be 

introduced by a user experienced with the type of structure monitored. 

The prior distribution ( )iP M  in (5) of each model class or associated 

damage scenario is selected based on the previous experience for the type 

of bridge that is studied. For the case where no prior information is 

available, the prior probabilities are assumed to be equal, ( ) 1/iP m=M , 

for all introduced damage scenarios.  



 9 

left 

section  

central 

section 

right 

section 

4 Applications 

4.1 Damage detection for Polymylos bridge using simulated modal 

data  

The effectiveness of the damage detection methodology is first validated 

using simulated modal data from the Polymylos bridge of the Egnatia 

Odos motorway. The description of the Polymylos bridge along with the 

1350-DOF finite element model used to represent its behavior is 

presented in the companion paper (Ntotsios et al. 2008). Two damage 

cases were considered as shown schematically in Figure 1. The damages 

correspond to stiffness reduction of particular substructures of the bridge 

and are simulated by reducing the modulus of elasticity of these 

substructures. The first damage case (Figure 1a) corresponds to damage 

in the left-support elastomeric bearing simulated by reducing the stiffness 

of the bearing by 50% in the two horizontal directions, longitudinal x  

and transverse y . The second damage case (Figure 1b) corresponds to 

damage in the top right section of the central pier which is simulated by 

reducing the modulus of elasticity of the top right pier by 50%. 

Simulated modal data are generated from the finite element models of the 

undamaged and damaged structure. To simulate the effects of 

measurement noise and modeling error, 2% and 5% Gaussian noise are 

respectively added to the modal frequencies and modeshapes simulated 

by the finite element models. These simulated, noisy contaminated, 

modal data ˆ
r  and ˆ

r  are then used in the methodology to predict the 

location and severity of damage.   

 

  

(a) (b) 

Figure 1: (α) First damage case at left bearing, (β) Second damage case 

in the top right section of the pier 

 

50% damage in 

the left bearings  

50% damage in 

the right section 

of the pier. 

bearings 
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Following the proposed damage detection methodology, a family of 

12 alternative model classes 1 12{ , , }LM M  is introduced to monitor 

different plausible damage scenarios. All competitive finite element 

model classes are generated from the nominal 1350-DOF finite element 

model and differ by the parameterization scheme. Each model class is 

parameterized by one or more stiffness-related parameters, shown in 

Table 1, accounting for the stiffness properties of various substructures 

of the bridge. The properties of the stiffness elements that are not 

parameterized in each model class are equal to the nominal values of the 

reference finite element model of the bridge in its undamaged state. It 

can be observed that one or more of the introduced model classes 

“contain” other model classes. For example, the model class 3M  

“contains” the model classes 1M  and 2M  in the sense that the model 

class 3M  can predict the damage scenarios that can be predicted by the 

model classes 1M  and 2M . In particular, the model class 12M  contains 

all other model classes 1M  to 11M .  

 

Table 1: Family of model classes iM , 1, ,i  , with parameterization 
 Left 

Bearing 

Long. 

Left 

Bearing 

Trans. 

Right 

Bearing 

Long. 

Right 

Bearing 

Trans. 

Deck Top 

Right 

Pier 

Top 

Left 

Pier 

Central 

Pier 

1M  
1         

2M   1        

3M  
1  2        

4M    1       

5M     2      

6M    1  2      

7M      1     

8M  
1  2  3  4      

9M  
1  1  2  2      

10M       1  2  3  

11M       1  
1  

1  

12M  
1  2  3  4  5  6  7  8  

Long=Longitudinal direction, Trans=Transverse direction 
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For each damage case introduced in Figure 1, Table 2 gives the 

results of the probability ( | )iP DM  of each model class, indicative of 

the location of damage, and the percentage change iDq , indicative of the 

severity of damage. Results are presented for three cases corresponding 

to different number m  10, 6 and 3 of contributing modes and three 

different number 
0N  of sensors involving respectively 

0N  14, 6 and 3 

sensors with locations and directions of sensors as shown in Figure 2.  

 
 

Figure 2: Sensor configurations for (a) 14 sensors, (b) 6 sensors and (c) 3 

sensors.  

 

Table 2 gives the results only for the model classes that contain or 

partially contain the damage. All other model classes are found to have 

zero probability and so results are not given in Table 2. For the first 

damage case it is expected that the methodology will give as the most 

probable model class one of the 3M , 8M , 9M  και 12M  that  contain the 

damaged substructure. Comparing the probability of each model class 

and also the corresponding magnitude of damage predicted by each 

model class it is evident that the proposed methodology correctly predicts 

the location of damage, while the prediction of the magnitude of damage 

is considered satisfactory. Indeed the most probable model class is one of 

the 3M , 8M , 12M , depending on the number of modes and the number of 

sensors. From the iDq  values predicted by the most probable model 

classes 3M , 8M  και 12M , but also for the model class 9M  that contains 

the damaged substructure although it is not favored by the method, it 

results that the damage is concentrated in the left bearing along the x  

and y  directions. Specifically, in the case of 10m   and 0 14N  , the 

magnitude of damage is predicted correctly from the most probable 

model class 8M  with 8( | ) 0.83P D =M , to be approximately 52% along 

the x  direction and 49% along the y  direction. In the case of 6m   and  

(a) (b) (c) 
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Table 2: Damage detection results for the two damage scenarios 

Model  

Class 

   

First Damage Scenario Second Damage Scenario 

10m   6m   3m   10m   6m   3m   

0 14N   
0 6N   

0 3N   0 14N   
0 6N   

0 3N   

Probability ( )iP M  of each model class 

3M  0.12 0.49 0 - - - 

8M  0.83 0.49 0 - - - 

9M  0 0 0 - - - 

10M  - - - 0 0.2 0 

11M  - - - 1 0 0 

12M  0 0 1 0 0.8 1 

Predicted Magnitude of Damage 1 2 mD - D - - DLq q q  (%) 

3M  53-50 51-50 50-50 - - - 

8M  52-49-0-

0 

51-50-

0-0 

59-50-

0-13 
- - - 

9M  49-0 50-0 50-1 - - - 

10M  - - - 33-13-6 54-0-0 33-17-24 

11M  - - - 22 21 25 

12M  52-49-0-

0-0-0-0-

0 

51-49-

3-0-0-

0-0-7 

68-48-

0-0-0-

0-0-75 

0-0-0-0-

0-31-

10-22 

0-0-0-

0-0-54-

0-7 

4-0-0-7-

0-23-38-

38 

 

0 6N  , the methodology predicts with equal probability the two model 

classes 3M  and 8M  that contain the damage with probabilities 

3 8( | ) ( | ) 0.49P D P D= =M M . For any of these model classes, the 

magnitude of damage is correctly predicted to be approximately 50% to 

51% in the left bearing along the x  and y  directions, respectively. In the 

case 3m =  and 0 3N = , the method favors the model class 12M  that 

correctly predicts with 12( | ) 1P D =M  the location of damage to be in 

the left bearing, but it overestimates a severity of 68% damage in the x  

direction, and it also predicts significant damage of the order of 75% in 

the central segment of the pier. The failure of the methodology to give 
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accurate results for the location and the magnitude of damage is due to 

the inadequate information contained in the 3 lowest modal 

characteristics ( 3m = ) for the particular configuration of only three 

sensors ( 0 3N = ). 

For the second damage case, it is expected that the methodology will 

give as the most probable model class one of the 10M  and 12M  that 

contain the damaged substructure. Results are also presented for the 

model class 11M  which partially contains the damage in the sense that 

damage in the top right section of the pier can be partially monitored by 

this model class. From Table 2 results, it is observed in this damage case 

that the methodology correctly predicts the general area of damage to be 

at the pier, but it fails to identify exactly which of the three sections of 

the pier is damaged. Indeed, comparing the probability of each model 

class, it is evident that the most probable model class is one of 11M  and 

12M  depending on the number m  of models and the number 0N  of 

sensors. In the case of 10m   and 0 14N  , the methodology favors 11M  

that correctly predicts only the general area of damage to be at the pier, 

but it is unable to predict the particular section that contains the damage. 

Specifically, the inflicted damage of 50% in the right to section of the 

pier is shared by the three sections in an amount of 22%. Also, the model 

classes 10M  and 12M  that fully contain the damaged substructure, fail to 

accurately predict the actual magnitude of damage, sharing the damage 

among the three section of the pier. In the case 6m   and 0 6N  , the 

methodology favors 12M  with probability 12( | ) 0.8P D =M  that 

correctly predicts the location of damage in the right top section of the 

pier. Also, it predicts with satisfactory accuracy the magnitude of damage 

to be 54% instead of the inflicted 50%. In the case 3m   and 0 3N   of 

small number of data, the methodology also favors 12M  that correctly 

predicts the general area of damage, but the magnitude of damage is 

shared among the 3 sections of the pier, 23% in the right top section, 

38% in the left top section and 38% in the central section of the pier. The 

failure of the methodology to accurately detect the section that is 

damaged is partly due to the fact that the measurements do not contain 

enough spatially-distributed information for distinguishing and localizing 

damage within the three sections of the pier, and partly due to inadequate 

information contained in the measurements with small number of sensors 
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and limited number of contributing modes. A more effective localization 

of damage in one of the three sections can be achieved only if 

measurements are obtained from sensors that are located along the height 

of the pier.  

For given size of model and measurement error, the effectiveness of 

the methodology in predicting the location and magnitude of damage 

depends on the number of contributing modes, as well as the number and 

location of sensors. It should be pointed out, however, that in the absence 

of modeling and measurements errors, the proposed methodology using 

model updating tools capable of finding the global optimal structural 

models (Christodoulou and Papadimitriou 2007), can reliably predict the 

exact locations and provide accurate estimates of the magnitude of 

damages, provided that one of the model classes contains the damaged 

substructure.  

 

4.2 Damage detection for a small-scaled laboratory bridge section 

The methodology is next validated using measured modal data from a 

laboratory small-scaled section of a bridge shown in Figure 3a. The 

laboratory structure is made of steel and simulates a simply supported 

section of a bridge resting on rigid foundation through bearings. In order 

to avoid nonlinear phenomena due to sliding of the bearings during the 

vibration of the bridge, the faces of the bearings are glued to the 

foundation and the bridge deck. The bearings are simulated using square 

sections of White Nylon 66 material of edge size 14mm. Damage is 

simulated at the bearings by changing the size of the left and right 

bearings. This change is achieved by replacing the bearings with smaller 

ones of edge size 10mm.  

 

 
 (a) (b) 

Figure 3: (a) Small scale section of bridge with sensors, (b) Finite 

element model 

z 

x 
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The section of the beam at its undamaged and its damaged state was 

instrumented with 14 accelerometers, measuring along the longitudinal 

(2 sensors), vertical (8 sensors) and transverse (4 sensors) directions. The 

modal characteristics of the undamaged and damaged structure were 

obtained by analysing measured acceleration response time histories 

from several impulse hammer tests using conventional modal analysis 

software that processes simultaneously the transfer functions at the 

measured locations. The damage detection methodology make use of the 

following five modal frequencies and modeshapes of the undamaged and 

damaged structure: 1st longitudinal, 1st and 2nd bending, 1st transverse and 

1st torsional. The corresponding identified values of the modal 

frequencies are (in Hz): 108.7, 18.52, 60.08, 31.10 and 46.65 for the 

undamaged structure, and 69.74, 17.08, 59.22, 29.98 and 42.96 for the 

damaged one. 

A finite element model was also constructed using beam elements to 

describe the behaviour of the bridge in its undamaged and damaged 

states. The deck and the bearings were modeled using three-dimensional 

two-node elements. The total number of DOF is 350. The finite element 

model was first calibrated to fit the modal characteristics of the 

undamaged structure using the model updating methodologies presented 

in the companion paper (Ntotsios et al. 2008). The modal characteristics 

of the damaged structure which contain significant information about the 

damaged state at the bearings were then used to predict the damage 

location and severity based on the proposed damage detection 

methodology. 

Based on the damaged detection methodology, nine (9) competitive 

model classes 1 9{ , , }LM M , given in Table 3, were introduced to monitor 

various probable damage scenarios corresponding to single and multiple 

damages at different substructures. The stiffness related parameters used 

in each model class involve the modulus of elasticity E  of the deck, the 

modulus of elasticity E  of the bearings and the cross-sectional moment 

of inertia xxI  and yyI  of the bearings with respect to the global 

coordinate system shown in Figure 3b. All model classes are generated 

from the updated finite element model of the undamaged structure. Based 

on the parameterization shown in Table 3, it is expected that the 

methodology will give as the most probable model class one of 4M , 5M , 

7M  and 9M  that contain the actual damage. The results for the 

probability of each model class and the value of the measure of fit 
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( ; , )i i iJ J D q Μ , given in (6), between the measured and the optimal 

model predicted modal characteristics for all model classes, are also 

reported in Table 3.   

 

Table 3: Probability ( )iP M  of each model class and predicted 

magnitude of damage Dq  (%) 

Model 

 Class 
i

N q

 

Prob. 

( )iP M  
Fit iJ  Parameters 

Damage 

Dq  (%) 

1M  1 0 0.1444 E  deck -14.1 

2M  1 0.029 0.0223 E  left bearing -68.4 

3M  1 0.003 0.0241 E  right bearing -67.7 

4M  1 0.708 0.0202 
E  left & right 

bearings 
-55.2 

5M  

 
2 0.239 0.0184 

E deck +6.93 

E  left & right 

bearings 
-54.3 

6M  2 0.000 0.0299 
xxI  bearings -52.1 

yyI  bearings -53.3 

7M  2 0.014 0.0201 

E  left bearings -58.4 

E  right 

bearings 
-51.8 

8M  3 0 0.0280 

E  deck -3.31 

xxI  bearings -52.6 

yyI  bearings -54.2 

9M  3 0.007 0.0180 

E  deck +7.13 

E  left bearings -58.9 

E  right 

bearings 
-49.3 

 

Comparing the probability ( )iP M  of each model class and also the 

corresponding magnitude of damages iDq  predicted by each model 

class it is evident that the proposed methodology correctly predicts the 

location and magnitude of damage. Among all alternative model classes 
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4M , 5M , 7M  and 9M  that contain the actual damage, although the 

model classes 5M  and 9M  predict the smallest measure of fit J , the 

proposed methodology favors with probability 0.708 the model class 4M  

with the least number of parameters, which is consistent with theoretical 

results available for Bayesian model class selection (Beck and Yuen 

2004). The reduction of 55.2% of the modulus of elasticity at the left and 

right bearings, predicted by the most probable model class 4M , is an 

indication of the severity of damage caused by reducing the edge length 

of the bearings from 14mm to 10 mm. The model class 5M  is the second 

most probable model class, involving two parameters, favored with 

probability 5( | ) 0.239P D =M  and correctly predicts the magnitude of 

damage to be 54.3%, at approximately the same level as that predicted by 

the most probable model class 4M . The third most probable model class 

2M , although it does not contained the damage, it is favored by the 

methodology in relation to the other two model classes 7M  and 9M  that 

contain the damage. The model class 2M  predicts damage of magnitude 

68.4% at the left bearing, while by construction it fails to predict damage 

at the right bearing since there are no parameters in this model class to 

monitor changes in the right bearings. The model classes 7M  and 9M , 

involving two and three parameters, respectively, also correctly predict 

the magnitude of damage to be at the same levels (approximately 59% at 

the left bearing and 49% to 52% at the right bearing) as that predicted by 

the most probable model class 4M . The slight differences in the 

predictions from the model classes that contain the damage and the slight 

increase of the stiffness for the deck, of the order of 7%, predicted from 

model classes 5M  and 9M  are due to the measurement and model errors.  

 

5 Conclusions 

A bridge health monitoring system using vibration measurements was 

outlined in this work. In particular, a Bayesian inference methodology 

was presented for the identification of the location and the magnitude of 

damage using measured modal characteristics. The effectiveness of the 

damage detection methodology was illustrated using simulated modal 

data from the Polymylos bridge and measured data from a small scaled 

laboratory section of a bridge. Results provided useful information on the 
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strength and limitations of the methodology. Specifically, the 

effectiveness of the methodology depends on several factors, including 

 Model classes and parameterization (number and type of parameters) 

that are introduced to simulate the possible damage scenarios. At 

least one member in the family of model classes should contain, 

partially or fully, the actual damage scenario, otherwise the damage 

prediction from the methodology is ineffective.   

 Type, location and magnitude of damage or damages in relation to 

the sensor network configuration (number and location of sensors). 

Measurements should contain adequate information for 

simultaneously identifying all model classes introduced for 

monitoring possible damage scenarios, as well as estimating their 

parameter values.  

 Model and measurement errors in relation to the magnitude of 

damage. Damages of small magnitude in relation to model error and 

measurement noise may be hidden and difficult to be identified. 

Damage predictions can be improved by introducing high fidelity 

finite element model classes and estimation algorithms that provide 

more accurate values of the modal characteristics.  

The proposed framework can be used by highway managing authorities 

as a part of an intelligent bridge management system to provide a useful 

tool for the continuous monitoring of bridges and assessment of 

structural integrity.  
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