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Abstract 

Unmanned Aerial Systems (UASs) have become of considerable private and commercial interest for a variety of 

jobs and entertainment in the past 10 years. This paper is a literature review of the state of practice for the United 

States bridge inspection programs and outlines how automated and unmanned bridge inspections can be made 

suitable for present and future needs. At its best, current technology limits UAS use to an assistive tool for the 

inspector to perform a bridge inspection faster, safer, and without traffic closure. The major challenges for UASs 

are satisfying restrictive Federal Aviation Administration regulations, control issues in a GPS denied environment, 

pilot expenses and availability, time and cost allocated to tuning, maintenance, post-processing time, and 

acceptance of the collected data by bridge owners. Using UASs with self-navigation abilities and improving image-

processing algorithms to provide results near real-time could revolutionize the bridge inspection industry by 

providing accurate, multi-use, autonomous three-dimensional models and damage identification. 
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1 Introduction to Bridge Inspection 
According to the Federal Highway Administration’s (FHWA) annual report, the number of deficient bridges in 

the United States was 142,915 in 2015, which is more than 23% of the of the total number of bridges in the United 

States [1]. The deficiency ratio, defined as the ratio of structurally and non-structurally deficient bridges, to total 

number of bridges, has decreased significantly from 38% in 1992 to 23% in 2015. Fig.1 shows the deficiency ratio 

of the United States’ bridges based on the latest annual report from FHWA from 1992 through 2015. This trend 

suggests gradual, but consistent improvement of bridge inventory conditions over the past 21 years. However, the 

American Society of Civil Engineers (ASCE) gives a grade of C+ for the United States infrastructure [2]. 

Improvements in inspection efficiency may allow bridge maintenance engineers and managers to do more 

inspections at a lower cost. The FHWA stopped tracking non-structurally deficient bridges effective with the 2016 

archived data. The number of structurally deficient bridges in 2016 was 54,365 which was 9% of the total number of 

bridges.  

 
Fig.1 Gradual decrease in deficiency ratio of the bridges in United States since 1992 to the last published 

data in 2015 
 

Every bridge deteriorates as it ages and is managed by a Bridge Management System (BMS) that often takes into 

account stochastic processes based on routine bridge inspection information [3,4]. The evolution of bridge 

inspections in the United States is tied to high profile collapses. Currently, inspections are performed periodically, 

usually on a 24-month cycle, allowing the inspectors to monitor the defects and deterioration.   

1.1 Bridge Inspection Program Evolution 
The West Virginia bridge failure, also known as the Silver Bridge collapse, occurred at 5 p.m. on December 15, 

1967, when an eyebar-to-pin connection fractured, causing a 445 m portion of the bridge to collapse and resulted in 

46 casualties [5]. After this incident, federal authorities decided to coordinate bridge management programs 

throughout the United States by introducing the Federal Highway Act of 1968. The National Bridge Inspection 

(NBI) program was initiated to enforce periodic inspections of bridges in 1968 as a direct result of this act. This 

program was expanded to the National Bridge Inspection Standards (NBIS) in 1971 to prescribe the proper 

inspection process and frequency and to designate official bridge inspectors [6]. 

The Mianus River bridge collapse on I-95 in 1983, which was due to hanger assemblies, and the Schoharie 

Creek bridge failure in 1987, which was due pier scour, heightened concerns over bridge inspection procedures [7]. 

After these incidents, federal authorities provided guidelines regarding inspection of fracture critical and underwater 

members. The NBIS was constantly being revised but was the only reference for inspectors in the United States until 
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1991 when congress mandated that the state Departments of Transportation (state DOTs) come up with a 

comprehensive state-specific BMS [8]. Part of this program included development of a rigorous software package 

called “PONTIS” which is a decision-making tool bridge managers use for bridge evaluations and is constantly 

updated with reports, pictures, core logs, and other relevant bridge data [9,10]. At the same time, the National 

Cooperative Highway Research Program (NCHRP) developed a BMS software termed “BRIDGIT.” The goal of 

BRIDGIT was to provide guidelines to manage decisions for either local or state bridge inspection agencies [11].  

FHWA has been in charge of preparing and updating a national inspection procedure manual since 1990 called 

the Bridge Inspector’s Reference Manual (BIRM) [12]. This manual has also been updated several times and 

includes different methods, technologies, and procedures for inspection. In addition, the National Bridge Inventory 

(NBI) has gathered more than 14 million inspection data since 1983, which is accessible to the public on the FHWA 

website [13]. Dekelbab et al. called this database the most comprehensive source of information on bridges in the 

United States [14]. Fig.2 summarizes the history of bridge inspection manuals and programs since 1968. 

 
Fig.2 A time-line review on bridge inspection regulations in the United States since 1968 to the last published 

data in 2018 

 

1.2  Visual and Physical Inspections 
Visual inspections are the oldest and most frequent type of bridge inspection. Visual inspections can involve 

walking on the deck, using binoculars to see a point of interest, or using either scaffolding or an Under Bridge 

Inspection Truck (UBIT) for regions that are difficult to access. BIRM defines two types of methods for hard-to-

reach areas: access equipment and access vehicles. The equipment includes ladders, rigging, scaffolding, boats, 

climbers, floats, boatswain chairs, free climbing, etc. The most common access vehicles used in bridge inspection 

practice are man-lifts, scissor lifts, bucket trucks, and UBIT [12]. UBITs provide a proper view of hard to reach 

areas for inspectors, but they have high capital and maintenance costs. UBITs are difficult to schedule since only a 

small number of them are in service in any given region. Other issues with UBIT inspections are potentially 

endangering the public and inspectors, adding additional weight to the bridge, congesting traffic lanes, and most 

important, UBIT inspections require skilled and qualified workers to operate them [15]. These indirect costs often 

result in considerably more burden to inspection agencies than the direct costs, making UBIT-free inspections very 

attractive to many DOTs.  

Physical inspections are recommended when visual inspections are not sufficient for rating a certain region, in 

other words, uncertainty of defect presence or measurement requirements of a member or a defect. The most 

common practice for physical inspections of bridge slabs uses a sounding hammer and chain drag to locate 

delaminated regions by comparing the resonating sounds of the defected and undamaged areas [12]. Physical 

inspection of steel members includes finding under-paint defects to detect fatigue cracks, rust, and corrosion using 

wire brushes, grinding, and sand blasting. More comprehensive information on physical inspections can be found in 

the BIRM.  
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1.3 Advanced Inspections (NDE) 
Practitioners and researchers recognized the shortcomings of visual and physical inspections in the 1990’s. Rens 

et al. suggested the following demands for more accurate bridge assessments [16]: 

• In-situ structural characteristic determinations 

• Accurate evaluation of the current serviceability level 

• Economic efficiency 

• Degree of dependency on inspector skill or experience 

To address these recommendations, Non-Destructive Evaluation (NDE) methods may be applied for bridge 

inspections. Based on the construction material, there are several NDE inspection methods suggested by BIRM for 

concrete bridges: Ultrasonic Testing (UT), Ground Penetration Radar (GPR), Impact Echo (IE), Infrared 

Thermography, Radiography Testing (RT), and Half-cell method; and for steel bridges: Acoustic Emission (AE), 

Dye Penetrant Testing (PT), Magnetic Testing (MT), Computed Tomography (CT), Eddy Current Testing (ET), and 

UT. The NDE methods provide essential information for bridge engineers and inspectors; however, these methods 

have not been practiced widely.  

Rolander et al. conducted a survey to determine the state of the practice for high bridge inspection in the United 

States [17]. One of the questions on this survey was the type and frequency of NDE methods practiced by each DOT 

at the time of the survey. Forty-one DOTs responded to this question. Chain drag, pachometers, rebound hammers, 

the half-cell method, GPR, and IE were used for concrete bridges by more than 10 DOTs. NDE methods were 

utilized more for steel bridges, most likely because most of them are related to fatigue inspections, which are 

difficult without some form of NDE. Thirty-four, thirty-four, and twenty-seven DOTs used PT, UT, and MT, 

respectively. This study concluded that DOTs used NDE methods more often than before (California DOT 

unpublished survey in 1993 was the base), but there was no information about the frequency of using these methods 

in bridge inspection. A more recent survey by Lee et al. indicated that out of thirty states with their own bridge 

inspection manuals only eight of them addressed using NDE methods in 2014 [8]. The most practiced NDE method 

for concrete bridge inspection was GPR, which was used at least once by 77.5% of surveyed state DOTs, while half 

of the surveyed states used AE during their inspections. All surveyed states used PT at least once for steel bridges. 

MT and UT were the second most frequently used NDE methods in steel bridges with a 95% exposure rate. The 

remaining NDE methods for steel bridges either were not used or were reported to be “very difficult” to use, 

suggesting that major changes in current NDE methods are necessary to minimize human involvement [18].  

State DOTs considered visual inspection as the most frequent inspection method in the surveys [8,17]. As it will 

be explained later in the paper, UASs, an assistive tool for inspectors to perform visual inspections, can save time 

and money in DOTs. However, with the exception of visual sensors, the non-contact NDE techniques available for 

UASs, like various spectra cameras, may require time and effort for state DOT acceptance. 

There is always a need for cost reductions and improvement to bridge inspection procedures as funding is always 

a constraint for bridge managers. This section has identified several techniques that can arguably provide more 

detailed data than traditional visual and physical inspections but may not be worth the time, effort, post-processing, 

and associated cost. This section also illustrated inspectors’ reluctance to adopt new techniques. There is a need to 

reduce the inspection time and increase inspector and public safety all while decreasing inspection costs, which 

indicates a need for automated inspection. If unmanned inspection processes are going to replace current standard 

practices, then they must be robust and require similar time and effort to current practices. The following sections 

will investigate recent efforts to do so.  

1.4 Unmanned/Automated Inspections  
Visual and physical inspections are still considered the most reliable and common bridge inspection methods. In 

other industries (e.g., aerospace and automotive), the role of human errors in inspection have been scrutinized, 

evaluated, and limited for decades. Automated inspection devices equipped with software packages are now the 

routine inspection protocol in aviation industry [19]. Unmanned/Automated inspection and maintenance approaches 

in high-tech industries are the best choice to achieve minimum failure and optimum maintenance level [20]. 

However, as discussed in the previous section, few inspection agencies are interested in routine NDE use outside of 

a handful of fatigue crack detection techniques, which essentially augment the inspector’s ability to visually identify 

cracks. 

Unmanned/automated methods have the potential to improve and automate the bridge inspection practice. On a 

small scale, these methods have been performed using either ground or airborne vehicles in the past. The first of 

robotic vehicles for bridge inspection were ground vehicles and were used for deck inspections. For example, the 

RABIT Bridge Deck Assessment Tool [21], is a multi-sensor robot used to detect surface and subsurface defects in a 

bridge deck. The onboard sensors mounted on RABIT were: impact echo, ultrasonic surface wave testing, GPR, 
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electrical resistivity, and a high-resolution digital camera. The RABIT was able to collect data of bridge decks at a 

rate of 372 square meter per hour, longer than a typical visual inspection, but acquiring considerably more data [22]. 

RABIT was able to successfully characterize and detect the most common deterioration types in concrete decks 

including rebar corrosion, delamination, and concrete degradation [23].  

Another example is a climbing robot to monitor reinforced concrete structures (under bridge). This robot is 

capable of detecting corrosion at early stages using electron bombardment [24]. The robot’s movement is facilitated 

through movable suction cups, allowing inspection in hard-to-reach regions.  

Lim et al. claimed that visual bridge deck inspections can be performed more accurately if they are performed 

autonomously [25]. A Robotic Crack Inspection and Mapping (ROCIM) robot was designed to replace human 

inspections and was capable of autonomous crack detection using a visual mounted camera and integrated edge 

detector software. In addition, a genetic-based path-planning algorithm was developed to locate turns and determine 

the traveling distance.  

La et al. equipped the RABIT with an autonomous system for deck inspection using impact-echo, ultrasonic, and 

electrical resistivity [26]. The system was able to navigate autonomously on a bridge deck, detecting cracks and 

delamination and evaluating the concrete modulus.  

The above examples are the first generation of automated or semi-automated inspections with ground vehicles. 

Within the last decade, UASs have evolved and have obtained unprecedented capabilities and near ubiquity. Many 

sectors are taking advantage of these new capabilities to transform their industries. The capabilities of UASs and 

how they relate to bridge inspection are outlined in the following section. A recent review of the robotic 

infrastructure inspection can be found in [27] 

2 UASs and Their Applications 
Before moving on to current research on UAS based bridge inspections, a review of UAS definitions and 

applications is necessary. This review also includes a summary of UAS control and sensors. 

2.1 UAS Definition 
According to the Unmanned Aerial Vehicle System Association (UAVSA), a UAS is a combination of an 

Unmanned Aerial Vehicle (UAV), either fixed-wing aircraft, a multi-copter aircraft, the payload (what it is 

carrying), and the ground control system which is controlled by a human to some degree. UASs are generally 

defined as any aircraft or aerial device which is able to fly without an onboard human pilot. They are also known as 

remotely piloted aircrafts, remotely operated aircrafts, remotely piloted vehicles, drones, and remote controlled 

helicopters. Depending on the purpose for which the UAS is being used, their properties vary, including the number 

and weight of the mounted sensors, maximum flight altitude, maximum flight duration, etc. UAVs can be fixed wing 

or vertical take-off and landing (VTOL) platforms.  

2.2 Brief UAV History 
The very first appearance of UASs in the United States goes back a century ago. Shortly after the first successful 

development of man-operated aircrafts as the United States entered World War I (WWI), automated unmanned 

aircrafts were designed to bomb enemy targets. However, this operation was canceled because of engine failure and 

consecutive setbacks. Also during WWI, the Germans developed an unmanned aircraft that performed one-way 

missions at a maximum speed of 650 km/h and an altitude of 300 m. At the beginning of the modern era, from 1959 

to the present, the main use of UASs was exclusively military. UASs have played an important role in United States’ 

victories and air superiority in different missions and threats [28]. The dominant market for UASs has been and still 

is military applications.  

Within the last 20 years, UASs have found their way into civilian applications. Fig.3 shows an overview of UAS 

civilian applications and predicts the financial investments in this market until 2017 for each category in Europe 

[29]. Government applications were predicted to become the major market from 2014 onwards. The fire fighting and 

agriculture applications will be the second dominant market followed by the energy sector and earth observation 

until 2017. In addition, the government applications of UASs have been the most progressive market during the past 

five years of this study. Infrastructure maintenance programs (e.g. bridge inspections) are considered a sub-category 

of the government market and are just now beginning to be explored as an option for inspections.  

UAS applications for civilian purposes have expanded significantly over the past decade and seem to be rising 

dramatically due to their low cost and tangible scientific improvements. Table 1 demonstrates the recent UAS 

applications in various fields. For each application, references have been provided for further reading.  



5 

 

 
Fig.3 The rising market of UASs for civilian application (Adapted from [29]) 

 
Table 1. Variety of UASs applications 

Application Purpose Reference 

Military 

Warfare [28] 

Reconnaissance [131] 

Intelligence [28] 

Surveillance [132] 

Anti-Terrorism  [133] 

Civilian 

Agriculture and Forestry 

Crop Condition Monitoring [134] 

Fertilization of Trails [135] 

Properties of Plants  [136] 

Crops Treatment  [137] 

Nitrogen Emission [138] 

Plant Detection [139] 

Measurement of Tree Locations [140] 

3D Mapping of Forest [141] 

Disaster Monitoring and Management 

Hurricane, Typhoons, and Tornados  [142] 

Earthquakes-Damage Evaluation With 3D Model  [143] 

Fire Detection [144] 

Nuclear Leaks  [145]  

Oil Spill Detection  [146] 

Floods and Avalanches  [147] 

Rescue Missions [148] 

Surveillance Prevention of Un-Authorized Entry [149] 

Environmental Monitoring 
Soil Erosion  [150] 

Ground Surveys  [151] 

3D Mapping 

Terrain Models  [152] 

Topographic Maps [153] 

Mapping Landfill [63] 

Building Models [154,155] 

Shaded Objects Models  [156] 

Structure Models  [157] 

Archeologic Sites [158] 

Atmospheric Temperature Monitoring  [159] 

Wildlife Monitoring Animal Behavior [160] 
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2.3 UAS Sensors 
The type and number of sensors mounted on a UAS depends on the mission requirements. In most cases, the 

sensors on a UAS must be non-contact, significantly limiting the possible NDE techniques. The most popular 

sensors for evaluating the structure are visual and thermal cameras. There is also a suite of sensors available that are 

necessary to perform autopilot functions. This section introduces the most common sensors mounted on UASs and 

their applications.  

2.3.1 Visual Cameras (Video/Image) 
Visual sensors are the most common sensors and are widely used on UASs for remote sensing purposes. The 

spectral range of these sensors is in the visible range, in other words, from wavelengths of 390 nanometers to 700 

nanometers. Adverse temperatures, lighting conditions, high frequency engines and motors, significant vibrations, 

and sudden rotation of the UAS can affect the data acquisition process.  

2.3.2 Thermal Infrared (TIR) Sensors 
Thermal sensors are able to measure the emitted energy of a surface and convert that into temperature. There are 

two approaches used in infrared thermography: passive and active. The passive approach relies on the thermal 

properties of just the material and structures, which have a different temperature than the ambient temperature of the 

specimen. In active thermography, an external heat/cooling source is used to excite the material surface, allowing 

the TIR sensors to find the difference in thermal signature of specimens in different locations. However, in a bridge 

inspection situation, passive thermography using only the ambient heat generated by the sun is probably the only 

feasible option. Thermography is an established method for subsurface defect detection in concrete bridge decks and 

girders and can be used to generate a comprehensive thermal map [30,31].  

2.3.3 Other Sensors  
There are several other sensors available that a UAS could employ, which are currently limited due to sensors’ 

weights and UASs’ capabilities: 

• Light Detection and Ranging (LiDAR) sensors: Measures distances and explores the scene by projecting 

light to the object of interest. These sensors can be used to reconstruct 3D models and maps from the object 

of interest or provide information to the UAS regarding obstacle avoidance [32]. 

• Multispectral and Hyperspectral Sensors: The spectral bands visible to multispectral and hyperspectral 

sensors are greater than visual or thermal cameras because they cover a wider range of wavelengths [33].  

• Radio Detection and Ranging (RADAR)/Synthetic Aperture RADAR (SAR): The installation of SAR 

on UASs was reported in several resources related or unrelated to bridge inspection [34-35]. The main 

application of RADAR and SAR is for underwater measurements, which could possibly provide 

information regarding bridge scour [36].  

• Sound Navigation and Ranging (SONAR): In the past, these sensors have been used for surface mapping 

while flying UASs [37]. The current application for SONAR sensors is obstacle detection; however, 

SONAR use might be limited in a confined under-bridge space because of hard surfaces and bouncing 

sound waves.  

• Magnetic sensors: These sensors can generate magnetic maps in great detail, identify various ferrous 

objects in the soil, and with enough power and accuracy could potentially generate defect maps in ferrous 

materials like steel girders [38].  

• Multi-sensors and Data Fusion: Data acquired from different sensors can be combined using data fusion 

techniques. For instance, with the combination of a radiometer, visual camera, chemical sensor, and 

thermal infrared sensors, it is possible to measure relative humidity and temperature, CO2, luminosity, and 

wind speed [39,40].  

 

2.4 UAS Navigation 
The purpose of this section is to introduce the basics of UAS navigation and the associated sensors. The section 

explains the role of vital components of a UAS with related references for a reader in the field of structural 

engineering. Using UASs for infrastructure inspection and maintenance is a fast growing trend, but is often outside 

the scope of most civil and infrastructure engineers’ training, so the information provided herein is intended to aid in 

comprehension of UAS navigation and limitations.  

Nearly every UAS, through its autopilot computer and external sensors, comes with some sort of autonomous 

control. Control and navigation are important issues in all UAS applications, and most pilots are heavily reliant on 

basic stabilization routines and GPS signals to maintain position. A 3D hold allows for safe control of a UAS in 

harsh environmental conditions as well as stabilization for obtaining adequate images. In the realm of bridge 
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inspection, control and navigation issues have been reported to be exceptionally problematic because of the 

challenges of bridge environments [41]. Several algorithms and methods have been studied for UAS semi-

autonomous control and navigation.  

UAS control and navigation is commonly carried out by GPS, Inertial Navigation Sensors (INS), Inertial 

Measurement Units (IMU), Micro-Electro-Mechanical Systems (MEMs), gyroscopes, accelerometers, and Altitude 

Sensors (AS) that are onboard the UAS and used by the autopilot system [42]. GPS is a radio navigation system that 

allows land, sea, and airborne users to determine their location and velocity [43]. INS is a navigation aid device that 

uses a computer, a set of motion sensors, and a set of rotation sensors that continuously calculate the position, 

orientation, and velocity (direction and speed of movement) of a moving object through IMU without external 

references. MEMs are the technology used in microscopic devices, particularly those with moving parts [44]. 

The most common sensors employed for semi-autonomous UAS control are visual cameras due to their 

availability, ubiquity, and low-cost [45]. Image processing techniques can be employed to generate algorithms that 

identify certain points or objects, like key points, in a set of images as reference to either make a navigable map or 

hold a position. More information regarding cameras and algorithms used for this purpose are discussed in the 

following sections. 

LiDAR, laser rangefinders, and ultrasonic sensors are often used by the autopilot to estimate the distance from 

the UAS to the ground or to close objects, allow mapping, and vertically or 3D hold the UAS. Other common 

sensors that can provide some help, but tend to be less accurate are magnetometers (i.e., compass [41]) and 

barometers, which sense the air pressure to estimate vertical position. Many of these sensors are highly valuable for 

navigation and control, but also have significant limitations, especially when used without GPS. For instance, 

barometers are affected by wind speed and can cause the UAS to drift and stereo vison systems can cause the UAS 

to follow the current and drift with the waves when used over water [46].  

2.5 Autonomous Navigation  
It may be possible to remove humans from routine inspection techniques in several years with the convergence 

of UAS platforms, sensors, and control improvements. The potential for automated inspections will improve when a 

combination of sensors outlined in the previous section are used along with various types of navigation algorithms 

that often involve data fusion techniques [47,48]. For autonomous bridge or infrastructure inspections using self-

navigated UASs, three fundamental problems need to be solved: mapping, localization, and path planning.  

Mapping is the process where a UAS makes a map of its surroundings for navigational purposes using its 

onboard sensors [49]. Localization is the process of estimating a UAS’s position based on a self-generated map, and 

path planning is the process of going from point A to B while avoiding obstacles [50,51]. When flying UASs near or 

under a bridge, GPS signals (an integral part of UAS control for most pilots) will be lost, likely resulting in loss of 

control and poor image quality. In such scenarios, a combination of IMU, cameras, and laser range finders can be 

used to simultaneously build a map of the environment and localize itself, however this has not yet been 

demonstrated as possible [46].  

In recent navigational studies, a low-cost 5 MP monochrome or color visual camera set at 14-30 fps was found to 

be functional for navigational purposes [52,53]. Lemaire et al. proposed use of a monochrome camera that is able to 

operate at least at 60 fps and a 90-degree gimbal [54]. For proper controlling and navigation, a velocity of 30 fps 

was proposed to be sufficient in recent studies [45]. As a general rule, images larger than 0.3 Mega Pixel (MP) in 

size are not appropriate for image-processing techniques, like mapping and localization, because of excessive 

computational time for current on-board computer configurations [45]. 

One solution for localization and mapping in a GPS denied environment is called Simultaneous Localization and 

Mapping (SLAM). SLAM is a style of autonomous navigation, which allows UASs to be controlled in a GPS-

denied environment. During the SLAM process, a UAS makes observations and measurements of the surrounding 

environment using mounted sensors, then landmark recognition and positioning allows the UAS to create a map of 

the structure and its surroundings [55]. SLAM has different implementations depending on the integrated sensors on 

the UAS [56]. Implementation of visual SLAM in absence of the GPS signals has drawn the attention of researchers 

in recent years; however, most of them rely on data fusion acquired from several sensors, such as monocular vision 

and barometer, and RGB-D cameras by providing color image and per-pixel depth, and etc. [57,58]. Despite the 

successful implementation, none of these methodologies have been used to navigate autonomously around complex 

structures such as bridges.  

This section discussed the potential for autonomous flights in GPS-denied environments. Using just visual 

cameras for autonomous navigation and realtime mapping is still an open problem. No actual bridge inspections 

have been carried out using autonomous navigation and, as such, are severely limited by weather and pilot skill. 

With current theoretical and software development, sensor technology, and commercial availability, UASs cannot 
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inspect a bridge without mostly manual control and therefore UAS-assisted bridge inspections require skilled pilots 

[46].  

2.6 3D Model Reconstruction 
Useful 3D models of bridges could provide a permanent record of condition and dimensions from one inspection 

to another and could also be used for navigation and control purposes. Most of the work in this area has been on 

building inspection; however, it should directly relate to bridge and infrastructure inspection.  

A two dimensional (2D) image loses the scene depth during photography, but using the line of sight and camera 

positions from each image, depth can be restored and a 3D model can be constructed. Comparing features together 

can determine the correspondence level of each image. Development of robust feature detection algorithms is a fast 

moving research area in the computer science. There are several popular approaches for 3D image reconstruction, 

such as Structure-From-Motion (SFM) [59], and multi-view-stereo (MVS) [60]. All of which use some form of 

feature detection, which must be efficient enough to compare each of the images in a set made of possibly hundreds 

– or thousands in the case of infrastructure inspection – of images, which is computationally expensive. The features 

are traced back to a sequence of images to form the skeleton of the 3D model based on the feature movements.  

To familiarize the reader with common terms in the computer vision area, some of the feature detectors are 

introduced along with references for further reading. One of the most popular feature detection algorithms is Scale-

Invariant Feature Transform, or SIFT, which detects the maxima of Differences of Gaussian (DoG) [61]. SIFT also 

describes the detected feature, and for this reason it is more commonly called “feature descriptor.” Speed Up Robust 

Features, or SURF, is another powerful feature detector and descriptor in the field of 3D model reconstruction [62]. 

Table 2 demonstrates some of the most important feature detectors used in image based 3D model reconstruction. 

 
Table 2. Popular feature detectors and descriptors in 3D model reconstruction from 2D images 

Feature 
Detector type 

Name of the Method Reference 

Edge Detection Canny, Sobel, Deriche, Differential, Prewitt, Cross [73] 

Corner Detection Harris operator, Shi and Tomasi, Level curve curvature, Hessian, SUSAN, FAST  [161] 

Blob Detection Laplacian of Gaussian (LOG), DOG, Determinant of Hessian (DOH),   [162] 

Ridge Detection Hough Transformation, Structure Tensor [163] 

Feature 
Description 

SIFT,SURF, Histogram of Oriented Gradient (HOG), Gradient Location and Orientation 
Histogram (GLOH) 

[164] 

 

A comprehensive summary of 3D model reconstruction studies that applies to structural inspections is shown in 

Table 3. This table demonstrates the evolution of 3D image reconstruction in civil infrastructure from 2004 (manual 

reconstruction) to 2017 (automated reconstruction). Furthermore, this table can be used as a starting point for future 

researchers to select methodologies and sensors for different applications. Useful visual cameras for 3D model 

reconstruction depend on the level of detail the model will require, and model accuracy can be improved through the 

use of LiDAR.  

Generation of a detailed model for a bridge could be very tedious because of the complexity of the geometry. 

However, 3D models of bridges can be used for semi-autonomous inspections conducted by UASs [46]. Ideally, the 

3D model can provide a virtual map for the UAS to navigate around the bridge and avoid obstacles. 

There are off-the-shelf or open-source programs available, either free or commercial, that can reconstruct 3D 

models. Microsoft Photosynth and Automatic Reconstruction Conduit (ARC3D) are free web services that can 

reconstruct 3D models from color images. Agisoft Photoscan is a popular commercial software product used to 

generate 3D models and has been used with some success by the authors [46]. However, generating a model of a 3 

m long bridge mock-up autonomously using this software took nearly 8 hours, and the model’s accuracy was 

unsuitable for navigation and inspection. Improvements could be made to that model, but not without considerable 

additional effort which state DOTs may not desire. As discussed in the NDE section, these advanced techniques 

need to be easy-to-implement if state DOTs are to use them routinely. Neitzel and Klonowski generated 3D models 

based on 2D images acquired by UAS using several of these programs and compared the results of these and other 

programs and also found mixed results [63]. It seems that more developments need to be made in this area for 3D 

models to be a truly feasible infrastructure inspection option. 
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Table 3. 3D model reconstruction studies using UAS imagery for buildings 

Ref. Year 
Reconstructed 

Object 
Sensor’s Type 

Approach or 
Detector 

Achievements Shortcomings 

[154] 2004 Buildings Nikon D 100 Camera 

Oblique 
Photogrammetry  

Camera 
Calibration 

3D Model 
Reconstruction of 
Regular Buildings 
from single UAS 

image 

Insufficent inspection 
detail, minimal potential 
for complex geometry 

 [165] 2009 Buildings 
Integrated LiDAR 

Line Scan 

Laser Scanner To 
Obtain The 

Depths 

Regenerating 3D 
Model from LiDAR 

Insufficent inspection 
detail, no details provided 
on computational time or 

accuracy 

[97] 2009 Bridges Visual Manual Stitching 
Generating Models for 

Under Bridge 
Elements 

no details provided on 
computational time or 

accuracy 

[156] 2010 
Buildings, 
mapping 

Video Camera 
MVS 

Clustering 

MVS Reconstruction 
at City Level of 

Several Buildings 

Seven hour Run-time, 
insufficient inspection 

detail 

 [155] 2011 Mapping 
Amateur or SLR 

Camera 

Patch-Based 
MVS Software 

PCMS 

3D surface mapping, 
possible use for 

birdge decks 

Not applicable for under 
bridge inspection. No 
details provided on 

computational time or 
accuracy 

[166] 2011 Buildings 

High Resolution 
Panasoic Lumix GF1 

camera 
LiDAR 

SFM 
SIFT 

3D Model of 
Buildings, Equal Level 
of Accuracy as LiDAR 
Model, accuracy was 
evaluated (1-3 cm) 

No details provided on 
computational time. The 
accuracy of the model 

was not desirable for fine 
defect detection. 

[167] 2012 Mapping 
Digital SLR Camera-

Canon 550D 
MVS 

Georeferencing 

3D Scene Modeling. 
Compared the Result 
of MSV to Terrestrial 

Data. 

No details provided on 
computational time, not 

suitable for defect 
detection, 

[168] 2012 Pavement 
Canon EOS Digital 
Rebel Xti Camera 

MVS 
SIFT 

Pavement Damage 
Detection From 3D 

Model, 0.5 cm 
accuracy 

No details provided on 
computational time, the 

accuracy computed based 
not on the defects but on 

targets 

[63] 2012 Mapping 

MK Hisight II 
Camera, Canon 

Digital Ixus 100 IS 
Camera 

Off-The-Shelf 
Programs 

SIFT, PVMS, 
CMVS 

A Comparison 
Between Available 

Software Packs for 3D 
Reconstruction 

Position accuracy was not 
suitable for many defects 

(10-20 cm), No details 
provided on computational 

time 

[169] 2013 Buildings 
Canon SX230 

Camera 
Manual Stitching 

UAS Review on 
Structural Health 

Monitoring and 2D 
Stitching 

Manual model 
construciton  

[65] 2014 Concrete Decks 
DSLR Digital 

Camera 
SFM 

85% accuracy of 
crack detection, 3D 

model construction of 
the deck, max 0.3 cm 
difference in the 3D 

model (deck 
dimensions), 3 mm 

difference in detected 
cracks’ width 

No field experiment, 10 
hours of computational 

time to create the model, 
manual model 

development, noted 
sensitivity to lighting.  

[64] 2014 
Post-disater 
montoritng 

Visual Camera SFM 

3D model of Concrete 
specimens, small and 
full-scale, report the 

cracking area, 1 hour 
to create the model, 6 

cm difference in 
specimen dimensions 

Controleld lab experiment, 
manual model generation, 

no detection on cracks 
finer than 0.5 cm, no 
detection on vertical 

cracks (with respect to the 
camera), 0.15 cm 

difference in crack width  

[66] 2014 

Mapping, 
Complex 

Structures 
(Electrical 

Transformers) 

12.3MP Olympus E-
P1, 

Laser 

SIFT 
ASIFT 
MVS 

Georreferencing 

PW software 
development. 

Comparison between 
SIFT and ASIFT, 2 cm 
maximum difference, 

Five hour processing time, 
not suitable for defect 

detection. 
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Detailed 3D model of a bridge for purpose of damage identification has not been constructed successfully yet. 

The proposed method by Torok et al. and Zheng have the potential to be used for defect detection in bridges but 

neither of them had been examined in the field [64,65]. Weather, sunlight, temperature, wind and other 

environmental incidents would change the accuracy of the obtained model. In addition, the images used in those 

studies were not from UASs. The models constructed from UAS images, in other studies in Table 3, were not 

detailed enough for defect detection. The other issue with 3D model construction is the required time to create it. 

Five to 10 hours of model construction time can be very long for bridge inspectors, especially when the goal of the 

UAS inspection is replace visual inspection. Torok et al., stated the model was created in 1 hour [64]. However, the 

inspected object was small: 140 cm long column with a cross section of 53 cm by 23 cm. A single pier in a small 

bridge would be considerably larger and more complex, model reconstruction would likely take much longer. 

LiDAR seems to be the best option to construct 3D models quickly, although the studies do not mention the cost of 

using UAS equipped with a LiDAR sensor, which are typically heavy, requiring a larger UAS. In addition, for the 

output data from LiDAR to become a 3D model, skilled operators are required, which will add to the cost. Recent 

studies provided their models’ accuracy to the ground truth which ranged from 0.5 cm to 10 cm. For these models to 

be effective in defect detection, an accuracy of a tenth of millimeter is required, which was not provided by any of 

the investigated studies [46]. Therefore, at this time, the application of UASs for 3D model reconstruction of bridges 

is limited for navigation purposes rather than defect detection. For the modeling to be of use to navigation, 

processing times need to be decreased considerably, to near real time. In addition, either free or commercially 

available 3D software can only construct objects with simple geometries and does so without proper details and are 

time consuming. Recently developed methods can have better performances than the off-the-shelf software in 

construction of complex objects, such as Rodriguez-Gonzalvez et al. [66]. 

 

2.7 Automated Damage Detection 
In order for automated inspections to become a reality, automated damage detection must also work with real 

time navigation and be able to obtain a condition assessment in a reasonable amount of time. Currently, the most 

promising bridge and infrastructure inspection method is visual image-based damage detection, which can be used 

with modified thermal or multi-spectral images. The requirements for these sensors are specific to their application, 

but sensor resolution needs to be fine enough to capture enough pixels of the defect and sound regions, and in the 

case of visual crack detection, the pixel intensity gradient must be large enough to distinguish the cracking from 

sound regions [67]. Thermal imaging has similar requirements, but camera sensitivity is paramount, especially since 

thermal UAS inspection is limited to passive thermography. Dorafshan et al., was able to detect fatigue cracks in the 

laboratory with a thermal camera, but only with a 0.2ºC sensitivity camera and a 1ºC sensitivity camera indicated 

nothing [46].  

Image processing techniques are used to detect cracks, which are basically semi-linear objects, such as Canny, 

Sobel, Fourier transform, and Haar transform edge detectors [68]. Image segmentation techniques, percolation 

algorithms, and filtering operations are also common for concrete crack detection [69-71]. Sometimes, a 

combination of several image processing techniques are required for damage identification [72]. Vision based 

training can further improve defect detection using techniques such as neural networks, wavelet transforms, and 

fuzzy C-means clustering [73-76]. Mohan and Poobal wrote a critical review on concrete crack detection using 

image processing methods using visual, thermal, ultrasonic, and laser based images [77]. Autonomous image-based 

crack detection in steel members (fatigue cracks) is challenging because of their size (0.01-0.1 mm width) [67]. Xu 

et al. introduced an image-based fatigue crack identification framework using a restricted Boltzmann machine 

algorithm [78]. The authors proposed an image-based algorithm to find two known fatigue cracks on a steel bridge 

from UAS images in multiple controlled and uncontrolled conditions [67].  

Subsurface defects, like reinforced concrete delaminations, can be identified through thermal imagery [79,80]. 

Other proven applications of infrared thermography for flaw detection are air blisters and crack propagation in FRP, 

voids in masonry and concrete members, flaws on painted steel members, rebar corrosion detection, and weld defect 

detections including lack of fusion, crack, nugget, expulsion, and porosity [81-86]. Two recent successful examples 

of using UAS-based thermography to find concrete delamination on bridge decks can be find in Omar and Nehdi 

and Wells and Lovelace [87,88]. Another promising area of use for automated inspections would be post-disaster 

inspections where damage detection is necessary and many successful inspections have been carried out [89-95].  

The above studies indicate the vast opportunities of visual and thermal data for defect detection using common 

UAS sensors, and many studies have been attempted in the past using UASs or other vehicles. Metni and Hammel 

developed some of the first real-time concrete crack detection algorithms [96]. In addition, Oh et al., was able to 

identify reinforced concrete cracks, aided by user input on a bridge in combination with image with an average error 
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of 0.02 mm from a distance of 2.3 m with 96.7% accuracy [97]. Inspired by this robotic system proposed in [97], a 

semi-autonomous robotic system was proposed to inspect road and train bridges [98].  

Recently, a combination of a 3D optical evaluation system and thermal infrared imagery was used to detect 

spalling and delamination in bridge decks, successfully detecting 4/7 defected areas when comparing to cores, but 

detected delamination in three sound regions (false positive) [99,100]. For comparison, chain drag reported 5 true 

positives (5/7) and 3 true negatives (3/3) for the same regions [31]. A canny edge detector combined with a 

Gaussian smoothing filter as part of pre-processing was programmed into the ROCIM robot (see Section 2.4) and 

was reported to be successful but not applicable on UASs [101]. Zheng proposed a bridge deck crack detection and 

measurement technique based on the different normal vector orientation between sound and cracked surfaces, and 

crack dimensions could be detected within a 10% error from a reconstructed model [65].  

Morgenthal and Hallermann assessed the quality of UAS-based structural inspections in different weather 

conditions on a 44 m tall church structure, a 100 m tall turbine machine house, and a 225 m high chimney [102]. 

Cracks, rust, spalling, and surface degradation were detectable in the captured images; however, motion of the UAS 

and wind speed affected the quality of images. Sankarasrinivasan et.al. proposed a top hat transform and HSV 

threshold operation to identify concrete cracks in UAS images and investigate the feasibility of real-time inspections 

[103]. Regions with spalls and cracks were said to be successfully detected by this algorithm; however, the number 

of examined images and number of true positives were not provided or compared to other algorithms. Ellenberg et 

al., designed an experiment to assess UAS’s image ability for structural monitoring and damage quantification using 

digital image correlation and other imaging, [104], techniques. Using a common 12 MP camera, deflection was 

estimated within 0.1 mm, and simulated corrosion measurements using a K-means algorithm were measured within 

10-13% of error [105]. In addition, a combination of edge detectors, filtering, threshold, and morphological 

operations were used to detect cracks with 88% true positive and 69% true negative. Dorafshan et al., compared an 

algorithm based on threshold morphological operations to another image-based crack detection method suitable for 

UAS real-time detection [72,106]. The comparison showed an improved crack detection accuracy of 41% and 48% 

and an increase in true negative rates of 46% and 49% for defected and sound datasets. The proposed segmentation 

method was examined on challenging datasets with irrelevant features in the images such as edges of concrete 

members, surface clutter, paint stains, and background scenery lines that could be confused with cracks by many 

image-processing techniques. Implementing Deep Learning Convolutional Neural Networks (DLCNNs) in UAS-

assisted inspections showed promising results for concrete deck crack detection without human intervention. The 

network was trained on a set annotated images (manually labeled as cracked or un-cracked) taken by a point and 

shoot camera of several bridge decks (98% validation accuracy). The trained network was then used to label new 

images taken by UAS of other concrete structures autonomously with 88% accuracy [107].   

Table 4 shows the summary of the above studies in addition to several new research efforts from 2007 to 2017. 

Reviewing the literature shows that the largest hurdles are probably a lack of a uniform assessment of accuracy and 

a baseline dataset for easy comparisons among the different methods.  

In this section a review of possible applications of UASs for autonomous damage identification is provided. Past 

studies showed promising results in terms of finding concrete surface cracks and delamination in an autonomous 

manner. The performance of the implemented methods in terms of accuracy and time was tied to the cameras used 

in the inspection and the type of defects. Even though a few studies offered realtime defect detection, but the 

required framework and software, for bridge inspectors to actually use them, were not discussed. Another gap in the 

past studies was the lack of comparing visual inspections performed by the inspectors to the ones performed using 

UASs and damage detection algorithms. However, there are studies comparing UAS to manned inspection (refer to 

section 5.1), but the performance of the two methods was not compared to each other. The accuracy, cost, and time 

associated with autonomous defect detection may not be well-analyzed in the reviewed studies. Using these methods 

requires an extra personnel, familiar with how the algorithms were programmed, which will add costs to the 

inspections. Human inspection can be superior to autonomous defect detection in their current state since a trained 

inspector can detect variety of defects. Autonomous defect detection for fatigue cracks using UASs have either 

failed or had limited success in the past [46]. Performing certain inspections, such as in-depth inspection using some 

sort of NDE method or under-water inspection, can be either very challenging or impossible using UASs. Despite all 

the shortcomings, the autonomous defect detection can be helpful during a typical bridge inspection by providing an 

unbiased approach for conventional concrete defect [67]. 
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Table 4. UASs and damage identification 

Ref. Year Defect Sensor Type Method Achievements Shortcomings 

[96] 2007 
Concrete Deck 

Crack 
10MP 

camera 
Manual detection Autonomous flight used 

No autonomous damage detection. 
Success only on planar objects 

perpendicular to camera. 

[97] 2009 
Concrete Deck 

Crack 

Visual 
camera, 
Laser, 

Gyroscope 

Noise removal, 
edge detection 

(Seed point 
method) 

Integrated machine vision, and 
human aid, compares to Canny 

and Sobel edge detectors 

Manual detection, no true positive and 
true negative reports. 

[31] 2013 

Concrete Spall  
12.3MP 
DSLR 

camera,  

3D optical bridge 
evaluation system 

(3DOBS) 
Combining chain drag with 

infrared thermography, thermal 
and visual data fusion, 

destructive testing 

3DOBS required close proximity to 
generate the 3D model, Chain drag 

more consistent and still requires lane 
closure. 3D model required surface 

preparation. 
Concrete 

Delamination 

FLIR SC640 
thermal 
camera 

Passive 
thermography, 

pattern 
recognition 

 [65] 2014 
Bridge Deck 
Cracking, 3D 

model of crack 

DSLR 
Camera 

Oriented 
thresholding 

operation 

Crack detection and 
measurement on 3D model 

Thresholding value was user-defined, 
no field experiments  

[101] 2014 Bridge Deck 
High 

resolution 
visual 

LoG 
Autonomous crack detection 
and mapping, realtime crack 

detection. 

No under-bridge inspections, no 
true/false positive reports. 

[102] 2014 

Concrete Wall 
Cracks/Spalls, 

Steel Rust 

Panasonic 
Lumix DMC 

TZ 22, 
14.1MP and 
Sony NEX 5 

14.2MP 

Manual  
Discussion of wind effect on 

UAS performance 

Motion blur weakened the visual 
damage detection, no autonomous 
defect detection, no comparison to 

human inspection 

Concrete Wall 
Crack 

Sony NEX 5 
14.2MP 

Automated 
computer-vision 

probability of detection with clear 
and blurry images 

Less successful crack detection in 
blurry images due to adverse weather 

[103] 2015 

Concrete 
Member Crack, 
Efflorescence, 

Surface Erosion  

PAL 762*572 
camera 

Hat 
transformation, 
HSV and grey-

scale thresholding 

Detection of Concrete cracks 
and degradation 

Accuracy not reported, user-defined 
parameters required, no comparison 

to human inspection. 

[104] 2016 

Concrete 
Member Crack, 

Beam 
Deformation, 

Steel Corrosion  

10MP GoPro 
Hero 3 

Median filtering, 
morphological 

operation, shape 
filtering, K-means 

segmentation. 

Deflection measurement, crack 
detection, corrosion detection 

Lab test, stationary camera, no 
comparison to human performance, 

accuracy not reported 

[72] 2016 
Concrete 

Pavement Crack 
12MP Nikon 

camera 

Median filtering, 
Sobel, HSV 
thresholding, 
morphological 

operations 

Crack detection with 90% 
accuracy in less than 1 s per 
image, image segmentation 
using shape, UAS inspection 

31% of false positive reports, user-
defined values in the algorithm, no 
comparison to human inspection 

 [87] 2017 
Concrete 

Delamination 

FLIR Vue Pro 
Thermal 
Camera 

Histogram 
Equalization, 

Image 
Segmentation (K-
mean clustering)  

Delamination detection 
comparable to hammer 

sounding and half-cell potential, 
two full-scale inspections 

No discussion on the effect of 
temperature, UAS’s small payload, 

sensitive to weather 

 [46] 2017 
Bridge Deck 
Cracks, Steel 

Fatigue Cracks 

12MP Nikon, 
12MP DJI 

Mavic, 
12Mp GoPro 

Hero 4 

Manual Detection, 
LoG Edge 
Detector 

90% accuracy, 
Successful fatigue crack 
detection visually in UAS 

images, human comparison. Lab 
and outdoor detection. 

Only two (movable) fatigue cracks in 
the dataset, cracks’ size and location 

were know before inspection 

[130] 2017 
Bridge Deck 

Cracks 
12MP Nikon 

Sobel,  
Roberts, 

Gaussian Filter 

Comparison between three edge 
detectors, 

Wide variety of images. 

Images in the datasets had no 
irrelevant objects, shadows, etc., No 

filed test or UAS information. 

[67] 2017 

Bridge Deck 
Cracks,  

Steel Fatigue 
Cracks 

12Mp Nikon, 
12MP DJI 

Mavic 

LoG and 
Statistical 

Thresholding  

92% accuracy, less than 1 
second per image run time. 

Images in concrete dataset were 
without irrelevant objects, 

The fatigue crack algorithm only 
tested on 2 images. 

[76] 2017 Concrete cracks 4k Camera  
Fuzzy C-means 

clustering 

Detection fine cracks (0.3 mm 
width) from UAS Images, 90% 

true crack detection  

No information about the camera,  
highly sensitive to image noise, 80% 
true negative reports, no comparison 

to human inspection. 

[78] 2017 
Steel fatigue 

cracks 
4K Nikon 
D7000 

Restricted 
Boltzmann 
machine  

Detection of fatigue cracks with 
90% accuracy 

No UAS inspection,no field tests, 
user-defined parameters in the 

algorithm 

[77] 2017 Concrete cracks 

Visual, 
thermal, 

ultrasonic, 
laser. 

Review  

Comprehensive review on 
different methodologies and 
sensors for concrete crack 

detection 

No discussion on the dataset, no 
output images for verification.  

[107] 2018 Concrte cracks 

12Mp Nikon, 
GoPro Hero 

4, 
12MP DJI 

Mavic  

Deep Learning 
Convolutional 

Neural Networks 
(DLCNNs) 

Successful implementation of 
DLCNNs trained on high quality 

images to detect concrete 
cracks in UAS images 

autonomously 

Limited testing dataset, relative poor 
performance of the network on UAS 

images 



13 

 

3 UASs and Bridge Inspections  
This chapter is dedicated to published studies and research about using UASs for DOT missions and is organized 

into two categories: bridge inspection and other applications. UAS applications in bridge inspection have become 

widespread with state DOTs. According to a survey performed by the American Association of State Highways and 

Transportation Officials (AASHTO) in 2016, seventeen state DOTs had researched and/or used UASs for certain 

transportation purposes [108]. 

The survey also indicated a growing number of state DOTs, either independently or with the aid of one or more 

academic institutions, are studying UASs and developing policies. Based on a literature search, there are more states 

involved in UAS research for various purposes since the writing of Dorsey, including but not limited to North 

Carolina and Utah. Fig.4 shows the states with current or past involvement with UASs for different DOT missions 

[46].  

 
Fig.4 US Map with 34 red shaded states indicating current or past involvement with UAS research and 

applications (Adapted [46]) 

 

3.1 UASs and State DOTs  
UASs have been used by departments of transportation for almost two decades [46]. However, state DOTs have 

used UASs for different reasons. Currently, no DOTs are using UASs for routine bridge inspections, but many are 

performing investigations in this area. Many states are not investigating UAS assisted bridge inspections at all but 

are performing some sort of feasibility investigations for evaluation of other infrastructure like traffic, stockpile, and 

construction monitoring. 

3.1.1 DOTs and UAS Bridge Inspections 
California DOT 

In 2008, California DOT and University of California at Davis published a report on aerial robot bridge 

inspection [41]. A custom UAS was designed to be tethered to the ground, and therefore was easier to control and 

conform to Federal Aviation Administration (FAA) regulations at the time. The onboard flight control computer was 

developed to provide a redundant high-speed communications link to manage the platform stability. However, the 

project was terminated because it did not result in a fully-deployable aerial vehicle due to the following problems: 

unreliable heading (compass), instability, especially in wind, and unsuccessful implementation of the altitude hold 

sensor. The California research project was one of the first research reports published by a DOT on utilizing UASs 

for bridge inspections. 

Georgia DOT 
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As part of a joint research project with Georgia Institute of Technology in 2014, Georgia DOT published the 

results of twenty-four interviews with GDOT personnel in order to evaluate the economic and operational 

advantages and drawbacks of UASs within traffic management, transportation, and construction [109]. Five 

different UASs configurations, A through E, were investigated in the GDOT study. System A was a quad-motor 

UAS having FPV, VTOL, and a video camera suitable for monitoring operations such as and not limited to traffic 

monitoring. System B was an enhanced version of System A, equipped with LiDAR. This system was recommended 

for any mission that involved mapping. System C also expanded upon System A with emphasis on prolonged 

environment/region monitoring, for example, construction sites. System D was proposed as a platform for county-

sized missions, whereas Systems A through C were for regional missions. System D was a fixed winged aircraft 

with wingspan size of 2-6 m and capable of high-quality aerial photogrammetry. This system was suggested as the 

proper candidate for post-disaster response missions and traffic monitoring. Finally, System E configuration, which 

was recommended for bridge inspections, consisted of a multi-rotor copter with 8 or more motors, potentially 

tethered, capable of VTOL, and equipped with LiDAR and safety pilot mode. 

Michigan DOT 

Michigan DOT published the results of experiments on five main UAS platforms with different sensors [100]. 

These UASs were equipped with a combination of visual, thermal, and LiDAR sensors to assess critical 

infrastructures and their defects, for example, bridges, confined spaces, traffic flow, and roadway assets. They 

concluded that UASs are low-cost, flexible, and time-efficient tools that can be used for multiple purposes: traffic 

control, infrastructure inspections, and 3D modeling of bridges and terrain. Each platform was reported to be 

suitable for a certain task in Michigan DOT. A VTOL, equipped with a thermal and a visual camera, proved to be 

the most appropriate for high-resolution imaging of a bridge decks, but obtained mixed results when compared to 

hammer sounding due to the poor surface quality of the deck. With regard to UAS controls for bridge assessment, 

SLAM was proposed as a topic for future study with the major challenge being UAS position accuracy. 

Minnesota DOT (Phase 1) 

Minnesota DOT initiated investigations into benefits and potentials of UAS bridge inspection [15]. In this study, 

four bridges in Minnesota were inspected using UASs to study the effectiveness of VTOL UASs. The first bridge 

inspection was a 26 m long single span prestressted concrete bridge, and the UAS could not perform an under bridge 

inspection due to low-clearance and lack of GPS signals. The human inspection and the UAS inspection detected 

defects on a bridge deck such as spalls and cracking, but the inspector detected missing anchor bolt nuts during the 

under-bridge inspection while the UAS was unable to detect this defect. However, mild scour was only detectable in 

the UAS images. The second bridge inspection was done on a 100 m long open spandrel concrete arch bridge. The 

UAS was unable to survey the top of the bridge deck due to traffic.  Zoom lens provided reasonable visibility for 

some under-bridge items. In this case, mild scour was not detectable in the UAS images, but the UAS inspection 

images showed bearing deterioration that the human inspection report missed. On the third structure, a five span 

steel underdeck truss, the UAS could investigate the truss superstructure and substructure and excellent agreement 

was found between the human and UAS inspection. The final bridge was approximately 850 m long with five truss 

arch spans, and a UAS inspection was carried out on this bridge but was not compared to a human inspection. It was 

concluded that UASs can be used in the field of bridge inspection while posing minimum risk to the public and 

inspection personnel. In some cases, UAS images provided a cost-effective way to obtain detailed information that 

may not normally be obtained during routine inspections. FAA regulations prevented the UAS from flying over 

traffic, negating the benefits of UAS inspections for the deck. 

Florida DOT 

In 2015, Florida DOT published a research report investigating the feasibility of UAS-assisted inspection of 

bridges and high mast luminaires [110]. A UAS, equipped with high-definition cameras was used in lieu of 

experienced inspectors to achieve the following goals: reduce the cost of inspection, reduce the hazards to the 

inspector, increase the public safety, and increase the inspection effectiveness through more comprehensive data 

acquisition. Limitations were also identified, such as allowable payloads, control and navigation in severe winds, 

and image quality in low-light conditions. One aspect of this study was to select the main UAS components based 

on the demands of the project. Weighted factor analyses were developed to provide a systematic decision-making 

toolbox for each component, which led to the selection of three VTOL UASs, four ground viewing stations, and 

three visual cameras. Finally, a dual camera setup, and remote control gimbal were selected to perform the 

inspections. The selected UAS was tested against wind to determine the required clearance from an object. This 

clearance was estimated to be 0.3 m for wind speeds less than 11 km/h and wind gusts less than 16 km/h; however, 

the required clearance is only valid for the tested UAS. UASs were able to inspect a high mast luminaire in 8.5 

minutes while providing adequate pictures in acceptable details. Additionally, two preliminary field tests were 

performed under controlled conditions where a pedestrian bridge and a wooden bridge were inspected under 15 
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minutes and 10 minutes, respectively. The inspections indicated moderate and severe rust and fine cracks. A field 

test with FDOT inspectors performed the inspection in 10 minutes under 20 km/h wind speeds and 29 km/h wind 

gusts, respectively. Rust, cracks through epoxy, bearing deformation, and deck and girder separation were among 

the detected flaws. The other field test was performed on a steel railroad drawbridge with wind speeds of 11 km/h 

and the wind gusts equal to 27 km/h. Missing nuts and severely rusted bolts were detected. The third field inspection 

was performed on a concrete and steel superstructure bridge in 10 minutes while the wind speed was 27 km/h and 

the wind gusts were 40 km/h This inspection showed mild to severe corrosion regions on a transverse girder bracing 

and a separation between the girder and the deck in the images. A service and maintenance schedule was proposed 

for UASs with a 25 hour of operation interval. 

Idaho DOT 

Idaho Transportation Department (ITD) in corporation with Utah State University conducted a UAS bridge 

inspection with emphasis on damage detection in bridges with Fracture Critical Members (FCM) [46]. Two aspects 

of remote sensing in bridge inspections were investigated in this study: visual inspections and autonomous defect 

detection, both using inspection data gathered by UASs. Several inspections conducted on a lab made bridge using a 

3DR Iris platform showing UASs can be used for deck inspections and concrete crack detection in real time. An 

image processing algorithm was also used to detect cracks automatically with 90% accuracy. The next phase of this 

study was to determine the feasibility of fatigue crack detection using three UAS platforms: 3DR Iris, DJI Mavic, 

and a custom-made VTOL. A set of indoor and outdoor experiments in GPS denied environments were carried out. 

The target of the inspections was to visually detect a real fatigue crack on a test-piece from UAS images in various 

situations to determine the minimum requirements in terms of clearance and lighting condition. The crack was not 

visible in the images captured by the 3DR Iris (with a GoPro Hero 4 camera) in any condition. DJI Mavic images 

were acquired without GPS and in dark lighting conditions (i.e., similar to that under a bridge), showing the fatigue 

crack. The custom VTOL struggled in GPS denied situations, but the optical zoom on its camera allowed for 

somewhat successful fatigue crack detection. An image-processing method for autonomous fatigue crack detection 

was developed which detected more than 80% of the crack length in DJI Mavic images. The DJI Mavic was 

recommended as a potentially suitable platform for under-bridge inspections due to reliance on a stereo-vision 

positioning system in absence of the GPS signals, a good quality camera, its small size for maneuvering between 

girders, and the camera’s ability to function in low light conditions (manual exposure adjustment). This platform 

however did not perform properly over running water during inspection of an in-service fracture critical bridge in 

Idaho. Due to the absence of GPS signals under the bridge, the DJI Mavic relied mainly on its downward stereo 

vision positioning system for control and navigation. Therefore, the UAS did not hold neither did its altitude or its 

position when it was flown over the current. The performed field study was inconclusive with respect to fatigue 

crack detection, but was successful in detecting concrete and steel surface deterioration.  

Minnesota (Phase 2) 

Phase 2 of the Minnesota DOT study was completed in 2017 by inspecting 4 other bridges throughout Minnesota 

[88]. The inspected bridges were longer than the ones studied in the phase 1 [15]. The UAS performance for bridge 

inspection was compared to standard hands-on inspection in terms of cost and time, access methods, and data 

collection. Unlike the phase 1, UAS-based structural condition assessment of the bridges was not compared to the 

hands-on results. A Sensefly Albris UAS, equipped with a thermal and a visual camera, was used for the inspection. 

The platform was designed for GPS-denied operation, inspection, and mapping. First, a 2,400 m long multi-span 

steel bridge constructed in 1961 was inspected. The inspection of this bridge proved that the UASs can successfully 

be used to navigate around large-scale bridges in severe weather condition. However, the report does not define the 

severe weather. The UAS provided data from under-bridge members yet, there was no actual indication of defect 

detection in the report. With $20,000, UAS inspection was claimed to be 66% cheaper than the traditional inspection 

($59,000) which included four inspection vehicles, and a 25 m man lift. However, the traditional inspection took 8 

days to inspect the bridge while the UAS finished the inspection in 5 days. The second inspected bridge was a 110 m 

long steel high truss built in 1939. The main objective of this inspection was to detect deck delamination using the 

integrated thermal camera on the UAS and compare the results to chain dragging and handheld FLIR thermal 

camera. It was stated that “the onboard thermal sensor was able to detect the deck delaminations with good 

accuracy”, but this was not quantified. A 3D model of this bridge was also constructed by processing UAS images 

with Pix4D mapping software, however, no information regarding the quality/accuracy of the model is presented. 

An 80 m long corrugated steel culvert was the subject of the third inspection. The integrated headlight provided 

enough illumination to capture usable images; however, UAS thrust kicked up dust, making the images not useful 

for inspection. The final inspection was done on an 86 years old 10-spanthrough truss bridge, one movable span, and 

three concrete spans. Reportedly this inspection helped the managers to decide to replace the railing based on the 

images captured by the UAS.  
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3.1.2 DOTs and Other UAS Applications 
Virginia DOT 

Virginia DOT cooperated with the National Consortium on Remote Sensing in Transportation to prove that it is 

possible to use UASs for traffic surveillance and monitoring [111]. The result of this cooperation showed that the 

UASs can reduce costs associated with traffic control by 50%. 

Ohio DOT 

Ohio DOT, in collaboration with Ohio State University in 2005, performed field experiments in Columbus, OH 

to collect data about freeway intersection movement, network paths, and parking lot monitoring. The outcome of the 

project provided quasi real-time space planning and distribution from the collected information by UASs to help 

travelers [112]. 

Florida DOT 

Florida DOT (FDOT) began to investigate the applications of UASs in 2005 with the main focus on traffic 

management and road monitoring [113].  

Washington State DOT 

Washington State DOT and the University of Washington investigated the merits and challenges of using UASs 

to perform traffic surveillance and avalanche control [114]. They conducted experiments on two types of UASs: A 

fixed-wing aircraft and a VTOL rotary-wing aircraft (helicopter). The fixed-wing UAS was able to collect data from 

mountain slopes next to highways in case of an avalanche. The VTOL was found to be more suitable for urban area 

and traffic surveillance.  

Utah DOT 

Utah DOT in association with Utah State University studied the application of UASs for monitoring and 

documenting state roadway structures during a highway construction project [115]. Images were also taken to 

identify the species of wetland plant at Utah Lake wetland mitigation bank. The result of the inspection, after post-

processing, was a mosaic model of the scene. 

Idaho DOT 

ITD initiated a preliminary investigation into UAS in 2014 to look into construction and stockpile monitoring. In 

this first investigation, visual and thermal images of bridge structures were taken, but were of limited use [46].  

3.2 Summary of DOT investigations 
Table 5 summarizes goals, achievements, and obstacles in each state DOT research project, organized 

chronologically by bridge inspection mission or non-bridge related. This table includes all state DOT studies on 

UASs that have been published or cited by an article in research done between 2002 and 2017. Table 6 presents a 

summary of the UAS platform and sensor specifications used in state DOTs and is organized chronologically by 

bridge inspection mission or non-bridge related. 

 
Table 5. UAS’s progress and obstacles in state DOTs 

Bridge Inspection 

State DOT Ref. Goals Achievements Shortcomings 

California [41] 
Routine Bridge 

Inspection 
Vertical takeoff, wind resistance up to 37 

kmh, inspection images 
Instability  

Georgia [109] 
Determining proper UAS 
configuration for specific 

tasks 

Proposition of five UAS configuration 
including the type of platform, vehicle, 

station and number and type of sensors. 
No field inspections 

Michigan [100] 
Initial Bridge Inspection, 
delamination detection 

Successful construction of point cloud 
3D models, defect detection 

(delamination) 

Manual control,  
inconsistency between 

thermal and ground true in 
for delamination detection,  

inaccurate GPS 

Minnesota 
(Phase 1) 

[15] 
Initial bridge inspection 
with off-the-shelf UASs 

Structure mapping, thermal inspections, 
GPS assisted navigation, reasonable 
agreement between human and UAS 

inspection 

FAA regulations prevented 
top bridge inspection, Loss of 
GPS signals prevented under 

bridge inspections,  

Florida  [110] 
Initial inspections of 

bridge and high mast 
luminaires 

Similar image quality compared to 
human inspector, detection of concrete 

cracks down to 0.02 inches 

FAA regulations prevented 
top bridge inspection, Loss of 
GPS signals prevented under 

bridge inspections, poor 
control in wind 

Idaho [46] 
Fatigue crack detection 
(FCM inspection), GPS-

denied navigation 

Autonomous and visual bridge deck 
condition assessment,  

No crack detection in the field 
inspection, no over water 

flight due to sonar limitation,  
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Autonomous and visual fatigue crack 
detection in mock inspections, field 

inspection 

 

Minnesota 
(Phase2) 

 [88] 

GPS denied 
environment, initial 

inspection of large-scale 
bridges 

Successful delamination detection using 
thermography, successful GPS-denied 

navigation, 3D model and mapping, 
cheaper and faster than traditional 
inspections for large-scale bridges 

No indication to weather 
effects,  

no comparison between UAS 
and human inspection.in 
terms of defect detection 
(except for delamination) 

Non-Bridge Inspection 

State DOT Ref. Goals Achievements Challenges 

Virginia [111] 
Traffic surveillance and 

road condition 
monitoring 

Cost Saving N/A 

Florida [113] 
Recording data in less 

time consuming  
FAA rule development, proof of concept Manual control 

Ohio  [112] 
Freeway traffic 

assessment 
quasi real-time space planning,  Manual control 

Washington [114] 
Minimizing the highway 
avalanche closure and 

traffic control 

Higher flight elevations up to 1500 feet, 
demonstrating need for flexible FAA 

regulations 

Manual control, restrictive 
FAA regulations 

Utah [115] 
Roadway construction 

and vegetation 
monitoring 

Successful and high quality images  
Manually controlled, 

inaccurate models of the site, 
insufficient  image overlap 

 
Table 6. UAS Mission Parameters in state DOTs 

Bridge Inspection 

State DOT Year Model/type Sensors Payload Purpose 

California 2008 ES20-10 Visual Camera 4.5kg Road Inspection 

Michigan 2015 

Bergen 
HexaCopter 

Visual and Thermal Camera, 
LiDAR 

5kg 
Deck inspection, 3D modeling, 

roadway assets 

DJI Phantom Visual camera unknown Bridge and construction monitoring 

BlackoutMini 
Quadcopter 

Visual camera unknown 
Bridge structure imaging, confined 

space assessment 

Heli-Max 1 Si Visual camera unknown Confined space assessment 

Walkera QR 100S Visual camera unknown Confined space assessment 

FVPfactory 
Waterproof 
quadcopter 

Visual Camera 
“Half of 
vehicle 
weight” 

Bridge structure imaging - undersides 
(For bridges over water) 

Blimp Visual Camera 
“Half of 
vehicle 
weight” 

Traffic monitoring and maintenance 

Minnesota 
(Phase 1) 

2015 Ayeron Skyranger 
Visual and Thermal Camera, 

Lights 
Variable Bridge inspection 

Florida 2015 
ArduPilot Mega 2.5 

Micro Copter 
Visual Camera Variable Bridge and high mast pole inspection 

Idaho 2017 

Custom-made 
(Goose) 

Visual and thermal Camera 
14.5kg  

 
Bridge inspection 

DJI Mavic Visual Camera 0.9kg Bridge inspection 

3DR Iris Visual Camera 0.4kg 
Bridge inspection and fatigue crack 

detection 

Minnesota 
(Phase 2) 

2017 Sensefly Albris Visual and Thermal Camera 
1.8kg 

(including the 
UAS) 

GPS-denied navigation, mapping, 
3D model construction, bridge 

inspection. 

Non-Bridge Inspection 

State DOT Year Model/type Sensors Payload Purpose 

Virginia 2002 ADAS Visual Camera - Proof of concept 

Ohio 2004 MLB BAT Visual Camera 2.2kg 
Traffic surveillance and road condition 

monitoring 

Florida 2005 Aerosonde Visual Camera 13kg Traffic surveillance 

Washington 2008 
MLB-BAT 

R-Max 
Visual Camera 

2.2kg 
29.5kg 

Avalanche control, traffic supervision 

Utah 2012 AggieAir Visual Camera 0.9kg Monitoring, Object detection 

Idaho 2014 Sensfly eBee RTk Visual and Thermal Cameras 0.73kg Road monitoring 
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4 FAA Regulations on UASs 

4.1 Current Regulations 
There are two sets of rules for flying any aircraft: Visual Flight Rules (VFL) and Instrument Flight Rules (IFR). 

According to the “Aeronautical Information Manual,” a controlled airspace is defined as “…an airspace of defined 

dimensions within which air traffic control service is provided to both IFR and VFR flights in accordance with its 

classifications” [116]. In the United States, the controlled airspaces are designated as in Table 7.  

 
Table 7. Designated Airspaces in United States (Adapted from [116]) 

Name of the class Definitions 

Class A From 5,500m mean sea level (MSL) up to and including Flight Level1 600. 

Class B From the surface to 3000m MSL. 

Class C From the surface to 1,200 m (4,000-foot) above the airport elevation. 

Class D From the surface to 760m from the airport elevation. 

Class E An airspace that is not classified as A, B, C, and D 

Class G Uncontrolled airspace with no IFR operation. 
1. Flight Level (FL) are described by a nominal altitude in hector-feet while being a multiple of 500-foot. FL 600 is equal to 

18,200 m (60,000-foot) 

 

The FAA was established after the Federal Aviation Act in 1958 and was called the “Federal Aviation Agency” 

at first, until it became a part of the DOT and took on its present name in 1967. One of the responsibilities of this 

administration was and is to provide safety regulations for flying UASs. FAA recognizes two categories for UAS 

use: “Fly for fun” and “Fly for work/business.” The former does not require permission from FAA, but the vehicle 

should be registered through the FAA website. The “Fly for work/business” category is restricted by FAA. The 

latest version of the FAA rules was published on the FAA website on June 21, 2016. Some of these regulations are 

as follows: 

• The total weight of the unmanned aircraft should be less than 25 kg (vehicle and payload). 

• The vehicle must remain within the visual line-of-sight of the remote pilot in command, the person 

manipulating the flight controls, and the visual observer during the flight. 

• The aircraft must not operate over any persons that are not directly participating in the operation, are not 

placed under a covered structure, and are not inside of a covered stationary vehicle.   

• Flight is only permitted during day-light or civil twilight with appropriate anti-collision lighting. 

• The sole use of a first person view camera does not satisfy the “see-and-avoid” requirements.  

• The maximum altitude is 133 m above ground level (AGL) or within 133 m of a structure.  

• The maximum speed of the UAS must not exceed 160 km/h. 

• No person may act as a remote pilot or visual observer for more than one UAS at the same time. 

• The UAS operator must either hold a remote pilot airman certificate or be under the direct supervision of a 

certificate holder. 

• UASs must be registered and certified by the FAA. 

• The UAS must not be flown within 8 km of an airport without prior authorization from the airport 

operators. 

• The UAS must not be flown from a moving vehicle.  

Pilots requirements are: 

• Must be at least 16-years old 

• Must pass an initial aeronautical knowledge test at an FAA-approved knowledge testing center 

• Must be vetted by the Transportation Safety Administration (TSA) 

• Must pass a recurrent aeronautical knowledge test every 24 months.  

Registered aircraft must have an application form (AC Form 5050-1) and evidence of UAS ownership. After 

submitting these documents, the UAS is registered and a Certificate of Authorization (COA) can be requested. The 

following information is required to submit the COA application form: concept of operation and type of missions, 

operation location, altitude, communications, and flight procedures [109]. After submission, FAA conducts a 

comprehensive operational and technical review on the application to ensure the UAS can operate safely with other 

airspace users. As of 2018, the wait time to complete the application is 60 days. The COA application also requires 

proof of airworthiness for the UAS. This proof can be obtained either by submitting an Airworthiness Statement or 

through FAA’s Certificate of Airworthiness. As a new interim policy, FAA has been speeding up COA, also known 

as Certificate of Waiver in section 333 for certain commercial UASs. Section 333 exemption holders now are 
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automatically granted with “blanket 200 foot,” which allows them to fly anywhere in the country except for 

restricted airspaces, as long as they are below 61 m (200 feet) and the platform is not heavier than 24 kg. The part 

107 regulations provide a flexible framework; however, more opportunities have been provided by FAA to omit 

these regulations. Table 8 demonstrates the summary of the regulations for flying UASs and micro UASs (weight 

less than or equal to 2 kg).  
Table 8.  UAS and micro UAS regulations (adapted from [110]) 

Provision UAS Micro UAS 

Maximum Weight (platform plus 
payload) 

24 kg 2 kg 

Airspace confinements 
Class G, and Class B, C, D, E with Air Traffic Center 

permission 
Only Class G 

Distance from people and structures 
No operation over any person not involved and 

uncovered 
No limitation 

Autonomous operations Yes No 

Required aeronautical knowledge Knowledge test Self-certification 

FPV Permitted; if visual line of sight is satisfied Not permitted 

Visual observer training Not required Not required 

Operator training Not required Not required 

Operator certificate Required with knowledge test 
Required without knowledge 

test 

Preflight safety assessments Required Required 

Operation within 8 km of an airport Prohibited Prohibited 

Operate in congested region Permitted Permitted 

Liability insurance Not required Not required 

Night operation Prohibited Prohibited 

 

 

4.2 FAA Restriction to UAS Bridge Inspection 
The previous section illustrated the current FAA regulation on using UASs. These regulations pose limitations on 

the certain aspects of UAS bridge inspection which will be discussed in this section.  

• FAA mandates the pilot has a line-of-sight to the vehicle during the inspection. However, one of the 

advantages of using UASs is to access to locations that are difficult to reach without a UBIT [46,117,118]. 

Maintaining the line-of-sight becomes impossible for certain terrain and topographical situations, severely 

limiting inspection. It may be possible to obtain a waiver for these situations.   

•  Past studies indicate bridge deck inspection is one of the strength of UASs over human inspector in terms 

of cost and time of inspection [31,88]. However, the current FAA regulations prohibit UASs over passing 

traffic, requiring lane closure. Waivers for flight over traffic are possible, however, the proximity to said 

traffic will be a deciding factor.  

• One of the proven techniques for deck delamination detection in using thermal inertia which requires taking 

thermal image of a surface in two different ambient temperatures with maximum possible temperature 

gradient, i.e., daytime and nighttime [80], yet the FAA limits the UAS operation to daytime.   

• According to FAA regulations, the maximum flight altitude is 133 m. Therefore, any bridge elevated more 

than 133 m cannot be inspected while one of the merits of using UASs is to provide data on bridges that are 

challenging such as tall bridges. There are almost 150 bridges with the height of 133 m or more and 

average age of 59 years which cannot be inspected by UASs. Again, a waiver is likely possible to relax this 

restriction. 

5 Synthesis of UAS Bridge Inspections and Future Needs 
The previous sections have outlined applications of UASs in different fields, including bridge inspection, and 

discussed the current capabilities related to automated inspections (i.e., 3D modeling, damage detection, and 

controls). UAS-assisted bridge inspections have had success throughout the United States that have resulted in 

successful routine inspections of easily accessible locations when UASs had access to GPS, and autopilot features. 

The compiled literature on these topics is informative about the future path of UASs for bridge inspection by 

recognition of current challenges and benefits. DOT research with UAS-based bridge inspections is relatively scarce 

and involved mostly off-the-shelf solutions and focused on feasibility. Proving that a UAS can be an alternative to 

visual inspections would very valuable in bridge inspection practice, but current studies have focused on case 
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studies. This section compiles the current main benefits and drawbacks of UASs as an alternative to visual 

inspections and the future potential for automated inspections.  

5.1 Immediate UAS Inspection Potential  
As mentioned in Section 2.4, the most interesting aspect of using UASs for state DOTs and bridge inspection 

agencies were visual inspections. The following sections investigate the possible advantages of using UASs for 

bridge inspections. 

5.1.1 Safer Inspection 
One of the major advantages of UASs in this field is the higher degree of safety. According to the engineer of 

maintenance and operation at Michigan DOT, “…using UAVs provides a mechanism to keep the crew out of high 

risk situations” [100]. UASs can obtain photos from under-bridge regions without requiring manlifts and potentially 

road closures, allowing for increased inspector and public safety, while the acquired data by UASs have similar 

qualities as visual inspections [88]. Fig.5a shows a UAS during a targeted visual inspection to detect fatigue cracks. 

If an inspector was to perform the visual inspection (for location shown Fig.5a), it would require rappelling or a 

UBIT [46]. Fig.5b shows the inspection image of a possible fatigue crack taken by UAS. Inspection of high mast 

poles and cable-stayed members are other scenarios where UASs can provide a safer situation [15,110].  

Additionally, safety risks and costs may decrease because there may be fewer people involved (Table 9). 

According to current FAA rules, having a certified pilot and a spotter is considered legally adequate to fly UASs; 

whereas, an inspection will typically involve at one to four people in the visual inspection.  

  
(a) (b) 

Fig.5 (a) A UAS inspecting girders bridge under a bridge, (b) an image of a fatigue crack taken by a UAS 

from a bridge girder with fatigue crack 

 
Table 9. Manual and drone cost comparison (adapted from [108]) 

Method of 
inspection 

Time spent Lane closure 
People 

involved 
Money spent 

Visual 
Inspection 

8hour Yes 4 $4600 U.S.  

UAS  
Inspection 

1hour Yes 2 $250 U.S.  

 

 

5.1.2 Faster Inspection 
The time required to inspect a complex bridge or obtain photos of a hard-to-reach location, like Fig.5, can be 

decreased considerably with UASs. For example, Yang et al. stated that it only took 42 minutes to complete an 

entire bridge inspection using a UAS: 25 minute set up time, 10 minute first flight, and 7 minute second flight. The 

inspected bridge was 240 m long and 8 m wide, but bridges are likely to be highly variable depending on the 

structure type [119]. In this case, public advertisement of the closure and set-up time for closing down the road can 

also be eliminated when the UAS is not visible to traffic. Note that the work by Yang et al. was a survey of the 

structure and was not of quality for a true inspection (i.e., detecting defects), which would take considerably longer. 

Table 9 is adapted from an AASHTO report, for deck inspection claiming UAS inspection reduce the deck 

inspection cost [108]. The size and condition of the inspected deck, and also the objective of this inspection were not 

mentioned in this report. Assuming both inspections were performed to get similar information of the deck, the UAS 
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was faster by 8 times. There have been scenarios during the inspection where having a UAS sped up the inspection 

process, however, more comprehensive experiments and inspections need be carried out to determine when and how 

UASs can decrease the inspection time and by how much.  

5.1.3 Economical Inspections 
In addition to the safety and time reductions, there is also a documented cost reduction; many of the cost 

reductions are associated with the safety and time reductions. If UASs are used instead of manned inspection, cost 

for just the deck inspection can decrease from $4600 to $250 [108,123]. The itemized cost of the inspection, 

according the Dorsey, is shown in Table 9 [108]. This survey did not address many of the assumptions about costs 

associated with span length, age of the bridge, location of the bridge, etc. In addition, the current FAA regulation 

prohibits using UASs over the traffic, so the cost of lane closure, estimated to be $3,000, should also be added to the 

cost of UAS inspection. A more detailed study for under-bridge inspection showed a more realistic cost estimation 

for visual versus UAS-based inspection, as shown in Table 10 [120]. This table shows that the inspection costs of a 

two span bridge can be reduced by more than one third. However, there are hidden costs that are commonly ignored 

in these studies, such as cost of renting a pilot and UAS. For many DOTs, the inspection of a simple bridge (e.g., no 

fatigue details, relatively easy access, low traffic) may take only 20-30 minutes and require only a single inspector 

with a camera and binoculars [12]. In these cases, UAS bridge inspection will not improve the cost or time 

associated. For a large-scale bridge (2,400 m long), a 2017 cost analysis showed that UAS-inspection was 37% 

faster and 66% cheaper than the traditional inspection [88]. However, details regarding this calculation and 

inspection performance was neither reported or compared.  
Table 10. The cost of visual and UAS inspections for under bridge (adapted [120]) 

Method of 
inspection 

Cost of traffic 
control 

Cost of UBIT 
Cost of 

Inspectors 
Total 

Visual 
Inspection 

$640 $2000 $1200 $3840 

UAS 
Inspections 

$320 0 $750 $1070 

As a case study, a bridge with FCMs was inspected using hands-on and UAS-assisted methods. The bridge is 

located in Ashton, Idaho, and carries Ashton-Flagg Ranch road traffic over the Fall River (ITD Bridge Key 21105). 

The full details of this inspection can be found in [46,118]. The bridge consisted of two main longitudinal frames on 

the Northern and Southern sides (West-East orientation). Hands-on inspection was carried out using a UBIT in four 

hours to inspect the whole bridge. The total cost of the inspection was $391 per hour, including UBIT costs, of 

inspection ($1,564 for four hours) which is itemized in Table 11. Separately, a DJI Mavic Pro UAS was used to 

inspect the bridge. The UAS followed the water current without pilots control making inspection over the water 

impossible (refer to section 3.1.1, Idaho DOT, for more details). Due to this issue, only a quarter of the fatigue prone 

locations were inspected using UAS which included 12 susceptible connections in four floor beams, two girder 

splices, a girder web, a concrete barrier, and bottom flange two girders. The UAS-assisted inspection identified the 

presence of fatigue cracks in two floor beam connections. These cracks have previously been detected marked 

through hands-on inspections. The images from these fatigue cracks show the marker lines, but not the actual cracks 

(Fig. 6a). In addition, the UAS-assisted inspection ruled out the presence of fatigue cracks in other inspected regions 

(Fig. 6b). Other defects such as concrete delamination and efflorescence, and steel rust were detected in the UAS-

assisted inspection. The UAS-assisted inspection took 4.5 hours with a net flight time of 1.5 hours (90 minutes). The 

inspection cost in this case was $200 per hour. Considering a quarter of the bridge was inspected in 4.5 hours, the 

inspection costs extrapolated to whole bridge using the UAS would be $1800. This case study shows the hourly cost 

of UAS inspection is almost half of the hourly cost of UBIT inspection, which agrees with previous studies [88, 

120]. However, the extrapolated UAS inspection time was longer than the actual UBIT assisted hands-on inspection. 

The additional time made UAS-assisted inspection 15% more expensive than the hands-on inspection. It should be 

noted that the time and cost associated with using UASs is different for various situations as outlined in other places 

in this paper. 
Table 11. The cost of hands-on and UAS-assisted inspections for FCM inspection [46] 

Method of 
inspection 

UBIT  
(per hour) 

Support 
Truck  

(per hour) 

UBIT 
Operator 
(per hour) 

Inspector 
(per hour) 

Pilot and 
UAS  

(per hour) 

Total  
(per hour) 

Full Bridge 
(total) 

Hands-on 
Inspection 

$200 $16 $75 $100 - $391 $1564 

UAS 
Inspections 

- - - $100 $100 $200 $1800 
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(a) (b) 

 

Fig.6 (a) UAS-assisted FCM inspection (a) a location with fatigue crack, (b) a location without fatigue crack 

 

5.1.4 Other Benefits 
An indirect benefit of UAS-assisted inspection may be lessened traffic congestion. Road closures and time 

required for a particular traffic disturbance can be limited, which is particularly important for high traffic bridges. 

Sometimes the objective of the inspection is to check the general integrity of the structure, such as checking if large 

items are missing or large areas are defected, for instance, a 330 m long barrier railing was inspected using a UAS in 

less than 3 hours, enabling to the designers to make an informed decision to ultimately replace the railing [88,110].  

5.2 UAS Inspection Challenges  
The advantages mentioned in section 5.1 are possible under relatively ideal conditions. Ideal conditions include a 

skilled pilot, no software and hardware malfunctions, an appropriate UAS, and no adverse weather conditions. 

Currently, there are many challenges associated with bridge inspections. Some challenges are due to the availability 

of this emerging technology, and some are due to the regulations associated with governing bodies such as the FAA 

and state DOTs. 

5.2.1 Regulations 
Current FAA restrictions are not too burdensome for an agency to perform inspections, but provide enough 

restrictions to limit use in some situations (refer to section 4.2). Regulations will relax over time, as in the past, as 

public perception, UAS reliability, and autonomous controls continue to improve. Currently, FAA regulations will 

allow UASs to inspect bridges if the they are not visible to traffic. Thus, for any inspection process that involves 

UASs being exposed to traffic, such as UAS bridge deck inspections, cable stay towers, above grade trusses, or even 

high mast luminaries, the traffic will need to be modified. Furthermore, FAA regulations mandate that the pilot is in 

visual contact with the UAS at all times, even if using first person view (FPV), which gives the pilot a live feed of 

the flight from a camera on the UAS. This mandate severely limits some difficult to access bridges which may still 

have inaccessible locations for the UAS due to this restriction.  

5.2.2 Flight Control 
Probably the largest hurdle to fully automated inspections is the GPS-denied environment under the bridge. Most 

pilots, skilled or unskilled, will have excessive difficulty without significant aid from the autopilot, the most useful 

and reliable of which comes from GPS signals. Coupled with the fact that most pilots own their own UASs, which 

will be used on multiple jobs, the risk of losing a UAS in a waterway or simply crashing it may deter many pilots 

from under-bridge inspections. UASs rely on GPS signals for autopilot features and stability. Under a bridge, these 

signals are either very weak or non-existent and UASs cannot be controlled properly [15]. Thus, claiming that UASs 

are a feasible alternative to UBIT visual bridge inspections, as some studies have indicated, is not accurate 

[108,120]. Zink and Lovelace handled this issue by using high-definition cameras with zoom capabilities, but the 

applicability of these techniques is limited [15]. Many new off-the-shelf UASs have indicated that they have 

additional sensors (SONAR, LiDAR) that can aid in GPS-denied environments, but there is little proof of feasibility 

at this time for bridge inspection [15,88]. Without the benefit of GPS, control under a bridge is very limited, 

especially in high wind situations, risking catastrophic damage to the UAS and sensors and even posing a safety 

hazard to the pilot, inspector, spectators, and motorists. There are many promising control possibilities to automate 

Fatigue Crack Marker Line 
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the inspection process, like SLAM outlined above, but the harsh environment and difficult scenarios limit the 

current generation of UAS controls packages. 

A skilled pilot is necessary, especially in a complicated situation like a bridge inspection where there are 

potentially harsh environments. Pilot needs to have substantial navigation skills to capture stable images while still 

be able to complete the inspection without imposing damage to the UAS. A skilled pilot can aid in a successful 

under or over-bridge inspection, and DOTs are likely to mandate some specific level of skill. Presence of a pilot 

(COA/333 or Part 107) is also legally mandatory for any type of non-recreational activity in the outdoors. Wages for 

an accomplished pilot can be considerable and variable. According to an informal survey of UAS pilots available in 

the authors’ area, costs can be as high as $1200/day but as low as $650/day, plus travel expenses. Based on the 

above findings, there is a major need for improvements in the areas of UAS controls, navigation, and image 

processing in order to maintain effectiveness. 

5.2.3 Time  
If for a typical structure a typical inspector will only require 30 minutes of onsite time to arrive at an appropriate 

condition rating, a UAS inspection will need to meet or exceed this to become viable. Considerable time and money 

could be spent on data post-processing if thermal images are desired as well as any semi-automated damage 

detection. Inspectors need a way to arrive at a condition onsite and move onto the next bridge without creating an 

additional level of analysis. Part of this will come with future automation of the inspection process, but currently, 

image-processing techniques for damage detection and 3D modeling are not at the level required for even a semi-

automated real-time inspection. Whether for image modifications like removing image distortion or for intelligent 

feature detection algorithms like image-based crack detection, the post-processing operations have been commonly 

used for UAS bridge inspection research, but are still not time or cost effective for most bridges at this time 

[100,117]. Performing these complex operations is costly and requires professional and highly trained staff, which 

are inaccessible to most DOTs [110]. Post-processing operations also need time to perform on the order of a few 

minutes to a few hours. As such, there is a major need for automated or semi-automated tool development for bridge 

inspection that will make UAS bridge inspections feasible.  

5.2.4 Weather 
Weather will continue to play a major role in UAS bridge inspections. Unfortunately, if there is a bad weather 

day, an inspection cannot always be rescheduled due to the many demands placed on a bridge inspection program. 

Inspections are often scheduled many months out without the possibility of returning due to tight DOT and private 

inspector schedules, although inspection dates can become more flexible when a UBIT is not involved. The quality 

of the UAS flight and the acquired data can decrease due to adverse weather [102,117]; furthermore, captured 

images or videos may not be clear due to the variable lighting conditions underneath a bridge. High wind speeds will 

significantly increase the allowable clearance between the UASs and the object of interest because of the risk for 

damaging sensitive mechanical equipment or even the structure itself [110,118]. UASs have several vulnerable 

components, especially the propellers, but also sensors. The pilot needs to be very cautious near a structure while 

trying to obtain the best resolution possible, and the complex geometry of bridge structures further complicates the 

situation. Many newer commercial UASs contain some obstacle avoidance software integrated into the autopilot; 

however, these options have not been evaluated in any known research. These options have the potential to help, but 

depending on the settings they could also hinder the inspection if the UAS gets too close to a point of interest [46]. 

One of the greatest tools a UAS pilot or spotter has for real-time defect detection is live streaming of visual data to 

the ground crew. However, due to the distance from the UAS to the receiver, interference, and bad weather, this can 

be compromised, making post-processing mandatory [46]. For a smaller bridge, a setback like this can eliminate the 

time and cost benefits of using UASs for inspections.  

5.2.5 Functionality 
UAS inspections can only replace visual inspections and are unlikely to be able to perform physical inspections 

anytime in the foreseeable future, but UASs can perform some limited NDE. Many times during an inspection, an 

inspector must remove rust, nests or droppings from an area to observe a defect. UASs cannot prepare the surface 

for defect detection without major advances in robotics and control. UASs are limited to non-contact NDE methods 

(e.g., visual, thermal) to assess the condition, whereas with a UBIT inspection, nearly all options for bridge 

inspection are available. Currently, an inspector can measure the size of a defect in real time, whereas a UAS can 

only provide this function on a limited basis with additional sensors and significant post-processing, most of which 

would not be off-the-shelf. The application of UASs are restricted to visual inspection, and if the inspectors decide a 

region requires more investigation, a UBIT must be used, which may still allow for a more robust inspection and 

cost reduction.  
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A functional UAS requires constant tuning and maintenance on the platform and all the components, e.g., 

motors, propellers, sensors, ground station unites, and controlling joy sticks [110]. UASs require skilled mechanical 

and electrical engineers to retune their system after replacing or upgrading a broken or out-of-date component. 

Without proper tuning, the autopilot functions can be less effective, resulting in less effective or dangerous 

inspections. However, the cost of individual components on UASs are continuously decreasing. Even full off-the-

shelf system costs are rapidly dropping while their functionality are improving. 

5.2.6 Gaps in Industry 
To select a suitable UAS for inspection, one needs to consider various parameters. For bridge inspection these 

parameters are varied based on inspection type and owner needs [46,118]. If the bridge inspection industry wishes to 

move in the direction of UAS assisted inspections for the long term, these needs must be formalized and this paper is 

a first step to this.  

The bridge inspection programs for each state can be very different. Each state relies on a combination of 

consultants and state employees to perform their required bridge inspections. Many consultants, eager to win more 

business, are pressing DOTs to allow UAS-assisted inspections. DOTs are grappling with this change and desire to 

develop standards and training protocols to ensure inspection quality. The recent popularity of UAS in civil 

infrastructure health monitoring and inspection has created the opportunity for private companies to perform UAS-

based inspection professionally. AETOS, Empire Unmanned, Microdrones, BDI and TechCorr are among 

companies providing UAS-based inspection services; however, bridge owners are not usually among their clients. 

Most of the inspections conducted by these companies have been on tanks, pipe and power lines, and industrial sites 

(e.g. power plants) which are not as complicated as bridge inspections. DOTs may wish to train internal UAS pilots 

for bridge inspection. As of 2018, the cost of UAS registration for commercial UAS is $25. The pilot has to obtain a 

remote pilot license which costs $165. The pilot can acquire field-training through academic aviation credits (e.g., 

$500 at Utah State University for one semester). The cost of UAS varies from $500 to several thousand dollars; 

however, a DJI Mavic Pro, or a DJI Mavic Air are around $1,000 and are suitable for bridge inspections. For a DOT, 

the total cost for training an employee as a UAS pilot can be as low as $2,000. 

5.3 Future Needs 
This paper has outlined several current capabilities and proof of concept investigations for UAS bridge 

inspections as well as shortcomings of using UASs and areas in need of improvement. The following section 

outlines the areas of improvement that will enhance the capabilities of UASs and improve and automate 

infrastructure inspection.  

5.3.1 Autonomous Control 
Overall, each study which investigated unmanned inspections, whether bridge inspections or another application, 

used some form of autonomous control. Equipping the platform with some form of autonomous control algorithm(s) 

and appropriate sensors such as cameras (with image processing), LiDAR, and SONAR can help the UAS to 

autonomously record or avoid features or even simply hold altitude in GPS-denied environments; this would vastly 

improve bridge inspections. Some of these features are being implemented to various extents on a smaller scale in 

next-generation off-the-shelf platforms [15,46,118]. However, current limitations on UAS autonomous control ties 

the flight and inspection performance to the skills of the pilot. If fully autonomous control is to ever be achieved, the 

UASs can be operated by the bridge inspectors themselves, assuming FAA regulations allow it.  

Additionally, in order to have widespread augmentation of human inspections, the inspection of all bridge types 

must improve, posing cost, time, and sensing challenges. Self-navigated UASs are the solution for achieving more 

efficient and reliable bridge inspection; however, no studies have been carried out to assess the feasibility of self-

navigated UASs in bridge inspection. However, the breakthroughs in UAS technology have made them considerably 

more functional. For instance, the size and weight of UASs and sensors have been decreasing while the allowable 

altitude, control range, and payload capacity are increasing.  

5.3.2 Sensors 
Visual and thermal cameras are the most common UAS sensors available for inspection purposes. These 

technologies still provide significant opportunities in the field of 3D modeling and defect detection. However, UASs 

are severely limited to non-contact only sensors, eliminating the most popular and proven NDE technologies with 

which bridge owners are comfortable. Improvements are occurring rapidly in non-contact sensing like infrared 

thermography and high resolution visual imagery; however, these are not well used or accepted by DOTs [31, 

46,72,104,102]. Probably the most difficult hurdle to improving sensing of bridge structures is widespread 

acceptance of non-contact NDE by DOT engineers. This will likely require significant research to improve 

accessibility, training, and political improvements for this conservative group of engineers. Image processing 

techniques, specifically those in the thermography area, have shown promising results. These results are mostly 
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validated in the laboratory, but not in the challenging environments in which bridges reside [46,85,87,117,121,122]. 

One major area of impact for UAS bridge inspection will be FCM inspections, which require a disproportionate 

amount of the operations and maintenance budget. FCM inspections are usually manned, arms-length inspection that 

uses some form of contact NDE along with a UBIT. The FCM inspections are often done on a large structure and 

are exceptionally expensive [118]; however, UAS based inspection are not as successful as hand-on inspections in 

finding fatigue cracks (often much less than 0.5 mm wide) [46,117,118]. In addition, UAS-assisted FCM inspections 

are required to have some sort of self-navigation for GPS-denied operations which has not been resolved yet 

[46,118].  

5.3.3 3D Model Reconstruction 
Many previous studies illustrated the possibility of creating 3D models of a bridge from UAS-captured images. 

The ability to create a 3D model that includes enough detail to observe defects, support settlement, or structural 

members displacements could be invaluable to bridge management engineers. However, with off-the-shelf software 

and with current algorithms this is very time-consuming, not accurate enough, and not at a high enough resolution 

(see Section 2.6). With the improvement of LiDAR and even SONAR sensors, 3D models can also be constructed 

from LiDAR information, but only with skilled post-processing. There is potential for this with current sensor fusion 

techniques that combine several types of information, increased functionality, and accuracy [124-126]. With current 

inspection requirements, 3D models may be redundant for the average bridge, which takes only 30 minutes to 

inspect, but future work may make them more feasible and useful. Combining a 3D reconstructed model with Bridge 

Information Modeling may prove to be highly valuable, especially for older structures that do not have plans or need 

a detailed load or condition rating [127].  

In addition to a detailed model suitable for inspection, an accurate model would be a major step toward 

autonomous inspections and self-navigated UASs. The SIFT and SURF algorithms have proven to be the most 

efficient way for feature detection in the realm of 3D reconstruction; however, it is expected that the future focus of 

visual sensing should be on generating efficient algorithms for real-time 3D model reconstruction that align with 

DOT inspection needs.  

5.3.4 Automatic Damage Detection 
There are several ways damage can be detected using a UAS-assisted inspection. The simplest way is to have a 

trained inspector view a live feed of video during the inspection and manually identify damage as if the inspector 

was near the damage. This option works well but is limited by the quality of the view-screen, which is limited to 

1080p resolution, or in some cases, 4k resolution. Furthermore, this style of inspection is hampered by inspector bias 

and human error. As many other industries attempt to limit human inspections, it is likely that human influence will 

eventually be reduced through some form of augmented or automated damage detection. Currently, a significant 

issue with autonomous damage detection is the expense of post processing. Some recent techniques have been 

developed that can provide a near real-time augmentation for crack detection, but more robust tools are needed that 

fit within the current inspection framework [72]. If additional sensors are employed, like LiDAR or thermal 

imaging, damage detection techniques will require a skilled investigator to evaluate for accuracy and/or very generic 

algorithms need to be developed [66]. A normal human inspection results in a handful of images that are used for 

record keeping purposes while UAS inspections result in thousands of images, increasing storage demand, and off-

site inspector time, which is unlikely to reduce costs.  

Furthermore, the accuracy of all damage detection techniques depends on the quality of the raw data, which is 

unlikely to be recollected if post-processing must be done off site. Because adverse weather and vibration of the 

platform can cause blurry images, shadow contrast, and lack of observable heat flux, care must be taken to use the 

appropriate sensor and platform for the situation. More intelligent post-processing algorithms used to detect smaller 

defects are also in demand but will always be tied to the raw data accuracy. The ability to automatically detect and 

separate irrelevant objects in the images, such as shadows and background scenery lines, is a current hot topic in 

crack detection algorithms. In the case of thermal imagery, it is important to select a proper time to capture thermal 

images. The proper time depends on the depth of the defects, the material, and the weather temperature [128,129]. 

More sensitive and higher resolution thermal cameras can help, but good thermal measurements are more likely to 

be affected by how the inspector pre-planned the inspection process. It is anticipated that more standard procedures, 

like ASTM D4788-03, which focuses on bridge deck delamination detection using thermography, will be developed 

for surface and subsurface defects and for various materials in the future [31].  

5.3.5 Regulation 
Current rules that apply to UASs are much more relaxed than in the past, but still represent significant 

restrictions. Since the applications of UASs in structural inspection and maintenance are being developed in 

conjunction with government agencies (state DOTs), more flexible regulations are predicted to be sanctioned in the 
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near future. These new regulations will likely reflect public perception of UAS safety as well as the improvements 

on UAS control and platform reliability. With respect to infrastructure inspection, the rules that hinder inspection the 

most are the visual line-of-sight necessity, required visual observers, and limit of a single UAS controlled by a 

single pilot.  

6 Available UASs for Bridge Inspections 
In this section, available off-the-shelf UAS platforms are presented with their suitability for different types of 

bridge inspections. The recommended UASs in this section are based on the authors experience and do not represent 

the whole UAS market. Due to lack of definitive guidelines to help with the selection of UASs, sensors, and other 

equipment, this can be challenging for DOTs to successfully start a UAS inspection program. Table 12 shows 

several UASs along with their general specifications, price (as of April 2018), and the potential bridge inspection 

applications. The price of a UAS for bridge inspection varies significantly, depending on the purpose of the 

inspection, quality and quantity of the integrated sensors, and computing capabilities. Integrating thermal cameras 

with the existing visual sensors can increase the price of the UAS up to three times. If a requirement of inspection is 

3D model reconstruction, the size and the price of the UAS increases dramatically. Neither of these options may be 

necessary to complete most types of bridge inspection. On the other hand, in the case of under-bridge inspections, 

the UAS must have an auxiliary positioning system, vision system, to compensate with lack of GPS signals, in order 

to have a successful mission. The potential applications mentioned in this table are not without the limitations and 

challenges discussed throughout this paper; however, the content of this table guides the bridge owners and 

inspectors when purchasing a UAS and provides a variety of commercial options. Furthermore, the table does not 

suggest that the entire bridge inspection can be performed using only the recommended UASs. The possible 

challenges during each UAS bridge inspection are expected to vary significantly since published inspection reports 

with UASs are limited.  
Table 12. General specifications for UAS-assisted bridge inspections 

UAS Sensors 
Positioning 

System 
Size (cm) 

Maximum 
Flight Time 

(min) 

Price 
Range 

($) 

Potential Bridge Inspection 
Applications 

Parrot BEBOP 
2 

Visual GPS 
32.8 by 

38.2  
25 

500-
700 Over-bridge, visual detection of 

macroscale surface cracks (thicker 
than 0.8 mm), routine inspection, 

checking the bridge structural integrity 

3DR Iris1 Visual GPS 63 by 38  20 
600-
800 

3DR Solo1 Visual GPS 40 by 40  20 
800-
1000 

DJI Mavic Air Visual 
GPS, Vision 

System 
21.3 

(diagonal) 
20 

800-
900 

Over and under-bridge, visual 
detection of surface cracks (as thin as 

0.04 mm), routine inspection, FCM 
inspection, checking the bridge 

structural integrity  

DJI Mavic Pro Visual 
GPS, Vision 

System 
33.5 

(diagonal) 
27 

1000-
1200 

DJI Phantom 4 
Pro 

Visual GPS and 
Vision 

System 

35 
(diagonal) 

30 

1800-
2000 

Visual and 
Thermal 

5500-
8000 

Over and under-bridge, visual 
detection of surface cracks (as thin as 
0.04 mm), subsurface defect detection 

(delamination), routine inspection, 
FCM inspection, checking the bridge 

structural integrity 

DJI Mavic Air 
Visual and 
Thermal 

GPS, Vision 
System 

21.3 
(diagonal 

20 
4000-
6000 

DSLR Pros 
Law 

Enforcement 

Visual and 
Thermal 

GPS and 
Vision 

System 

64.3 
(diagonal) 

17 
13000-
15000 

Albris 
SenseFly 

Visual and 
Thermal 

GPS 56 by 80 20 
30000-
35000 

Over-bridge inspection, autonomous 
3D model reconstruction, microscale 
defect detection (thinner than 0.02 

mm), 

Altus LRX 
Visual, 

Thermal, 
LiDAR 

GPS 
140 

(diagonal) 
20 

40000-
50000 

Over and under-bridge inspection, 
autonomous 3D model reconstruction, 

microscale defect detection (thinner 
than 0.02 mm), subsurface defect 

detection 
1 No integrated camera 
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7 Conclusions 
This paper has outlined the state-of-the-art for bridge inspections and UAS technology with the aim of educating 

and informing academics and decision makers about the current and future capabilities of UAS-assisted or 

automated bridge inspections. The current state of practice for bridge inspections, especially in United States, is 

heavily tied to visual inspections with minimal use of NDE. Bridge owners have demonstrated reluctance to accept 

NDE methods unless they are absolutely required for bridge evaluations. UAS-assisted bridge inspections have the 

potential to not only decrease costs, but to also improve the adoption of NDE technologies, potentially increasing 

inspection accuracy, however UAS inspections face major hurdles.  

UASs have shown promising results in civilian applications as well as civil engineering purposes, and many state 

DOTs have performed feasibility studies and found significant limitations, but also successes. The most common 

UAS applications in DOTs were traffic monitoring and surveillance, road condition assessment, and mapping; 

however, significant effort has been put into bridge structure inspection with varying degrees of success. The 

perception of UAS effectiveness for bridge inspection is tied to several variables, including DOT expectations, pilot 

skill, weather condition, and off-the-shelf limitations. It was shown that, ideally, UASs can provide less expensive 

and less time-consuming inspections for under bridge regions without traffic closure, but not in all situations and 

there are obstacles to overcome. FAA regulations have recently relaxed, but impose significant limitations, including 

required line of sight and UAS certification. Using advanced NDE sensors or even visual images can become too 

burdensome to be effective for routine inspections. Current autopilot controls have become a severe limitation for 

under bridge inspections due to the loss of GPS signals, causing a UAS to rely on a vision positioning system or a 

suite of other sensors which are questionably useful in the severe under-bridge environment.  

The literature identified two major potential functions for UAS based inspections: 3D model reconstruction and 

autonomous damage identification. Unfortunately, these functions face major implementation limitations in order to 

be functional for complex – or even routine – inspections. Programs capable of generating 3D reconstructed bridge 

models, from either SFM or MVS, using feature detectors and feature descriptors such as SIFT and SURF have been 

used for 3D model reconstructions of building, sites, and objects, but are very time consuming and require highly 

skilled technicians. These models have promising applications for UAS navigation but are unlikely to be accurate 

enough for bridge inspections without significant advancements. Autonomous defect detection methods are another 

promising advantage for UAS-assisted bridge inspections. Surface defect detection, for example, cracks, spalls, and 

surface degradation, have been successfully detected from visual images. Delaminated regions have been located 

and measured using thermal imagery on concrete bridge decks. A major hurdle to the adoption of these methods for 

UAS bridge inspection is resistance from bridge owners that have historically not implemented NDE technologies.  

Based on the synthesis of this state-of-the-art review of bridge inspection and UASs, the following conclusions 

can be made: 

1. The review of current bridge inspection practices makes it clear that there is a need for continuous 

improvement of bridge inspection procedures and cost reductions. Several NDE technologies were 

identified that can provide a better inspection but, based on DOT surveys, may not be worth the time, 

effort, post-processing, and cost associated with them [46,124]. UAS sensors may also fall within this 

category. Improvements should take the form of reduced inspection time and increased inspector and public 

safety, as well as decreased inspection costs, all of which indicate the need for automated inspections [27]. 

If automated inspection processes are going to replace standard practice, then they must be robust and 

require a similar amount time and effort to current bridge inspections techniques in order to gain 

widespread adoption.  

2. The recent advances of UASs and UAS have the potential to shift the bridge inspection paradigm by 

providing low cost options to gather previously difficult or expensive images [108,120,].  

3. UASs have increased in popularity and functionality for many applications, but the challenging nature of 

bridge inspections has reduced their effectiveness in this area [15,28,41,46]. UASs can also decrease the 

allocated time and budget for large-scale bridge inspections by providing inspection data comparable to 

hands-on method [88,117,118]. 

4. There have been mixed successes for UAS-assisted bridge inspections throughout the United States that 

have resulted in successful inspections of easily accessible locations where the UAS has access to GPS, the 

most reliable and effective tool for UAS autopilots (see Table 5). 

5. There is a major need for improvements in the areas of UAS controls, navigation, and image processing in 

order to maintain effectiveness [46,100,110]. 

6. Weather currently plays too big of a role in UAS flight success, which is a very significant barrier for many 

state agencies with very tight inspection schedules [46,110,102]. This can be mitigated with continued 



28 

 

improvement of autopilot controls in GPS-denied environments. UAS controls need to improve such that a 

pilot can safely and effectively obtain stable images of every part of the bridge in any reasonable weather.  

7. For UAS inspections to become commonplace and cost-effective, automated inspection may need to 

become a reality, or at least, vast improvements will need to be made on autopilot controls [41,43,44,97]. 

Based on the above syntheses, full automation during a bridge inspection is not possible given current 

technology and environmental challenges. 

8. Image processing techniques (3D mapping or damage detection) that can detect defects are a significant 

advantage of a UAS inspection [107,131], but without the possibility of a real-time inspection will not 

become a routine part of any bridge inspection soon due to the level of detail required [46,118].  

9. Bridge owners must learn to accept and become comfortable with the non-contact NDE techniques unique 

to UAS inspections for the full potential of UAS bridge inspection to be realized [8,129]. This places the 

burden on industry and researchers to develop accurate, generic algorithms for post-processing that can 

facilitate a real-time inspection or fit within existing local bridge inspection constraints [55,69,70,71]. 

10. Current FAA restrictions are not too burdensome for an agency to perform some inspections, but provide 

significant challenges to be useful in all situations [46,110]. Regulations will relax over time, as public 

perception, UAS reliability, and autonomous controls continue to improve [44,46,110]. 
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