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This paper introduces a unified chaotic system that contains the Lorenz and the Chen systems as
two dual systems at the two extremes of its parameter spectrum. The new system represents the
continued transition from the Lorenz to the Chen system and is chaotic over the entire spectrum
of the key system parameter. Dynamical behaviors of the unified system are investigated in
somewhat detail.
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1. Introduction

Recently, the study of chaotic dynamics has evolved
from the traditional trend of understanding and an-
alyzing chaos to the new intention of controlling and
utilizing it [Chen & Dong, 1998; Wang & Chen,
2000; Lü et al., 2002d].
The Lorenz system, found in 1963, produces

the best-known canonical chaotic attractor in a sim-

ple three-dimensional autonomous system [Lorenz,
1963; Stewart, 2000]. In 1999, Chen found a sim-
ilar but nonequivalent chaotic attractor [Chen &
Ueta, 1999; Ueta & Chen, 2000], which is now
known to be the dual of the Lorenz system, in a
sense defined in [Vanĕc̆ek & C̆elikovský, 1996]: The
Lorenz system satisfies the condition a12a21 > 0
while the Chen system satisfies a12a21 < 0. Very
recently, Lü and Chen [2002] reported a new chaotic
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system, which satisfies the condition a12a21 = 0,
called Lü system by others [Yu & Zhang, 2003],
thereby bridging the gap between the Lorenz and
the Chen systems.
It is notable that the above three systems share

some common properties: (1) they all have the
same symmetry, dissipativity, stability of equilib-
ria, and similar bifurcations and topological struc-
tures, etc. In fact, they belong to the generalized
Lorenz canonical family [C̆elikovský & Chen, 2002].
(2) They have a compound structure [Lü et al.,
2002b; Lü et al., 2002c]. (3) The familiar Duffing
oscillator can be controlled to both the Lorenz and
the Chen systems [Kunin & Chen, 1997; C̆elikovský
& Chen, 2002].
We have pointed out [Lü & Chen, 2002; Lü

et al., 2002a] that the new chaotic system found in
[Lü & Chen, 2002] is a transition system between
the Lorenz and the Chen systems. It is therefore
interesting to ask if there is a chaotic system that
can unify the aforementioned three chaotic systems,
and can realize the continued transition from one to
another. This paper provides a positive answer to
this question.

2. The Unified System

Based on the concept of generalized Lorenz system
[Vanĕc̆ek & C̆elikovský, 1996], C̆elikovský and Chen
[2002] introduced the broader generalized Lorenz
canonical form. Notice, however, that although the
generalized Lorenz canonical form contains both the
Lorenz and the Chen systems, their relationship
and particularly the transition between them are
not very transparent. Here, we introduce a unified
system that not only bridges the gap between the
Lorenz and the Chen system but also represent the
entire family of chaotic systems between them. To
that end, the dynamical behaviors of this family of
chaotic systems will be investigated.
The new unified system is described by























ẋ = (25α + 10)(y − x)
ẏ = (28 − 35α)x− xz + (29α − 1)y

ż = xy − α+ 8
3
z ,

(1)

where α ∈ [0, 1].
According to [Vanĕc̆ek & C̆elikovský, 1996],

the linear part of system (1), a constant matrix
A = [aij ]3×3, provides a critical value a12a21.

According to this critical value, the whole fam-
ily of chaotic systems (1) can be classified as fol-
lows: when 0 ≤ α < 0.8, system (1) belongs to
the generalized Lorenz system defined in [Vanĕc̆ek

& C̆elikovský, 1996], since with these values of α
in the above equation one has a12a21 > 0; when
α = 0.8, it belongs to the class of chaotic systems
introduced in [Lü & Chen, 2002; Lü et al., 2002a],
since in this case a12a21 = 0; when 0.8 < α ≤ 1, it
belongs to the generalized Chen system formulated
in [C̆elikovský & Chen, 2002], for which a12a21 < 0.
Simulations and numerical analysis suggest

that the Chen attractor has many different and yet
more complicated topological structures and prop-
erties as compared to the Lorenz attractor [Ueta
& Chen, 2000]. When the parameter α increases
from 0 to 1, system (1) evolves from the Lorenz at-
tractor to the Chen attractor, which will be further
discussed below.
Here, some special features and advantages of

system (1) are first summarized:

(i) System (1) is a chaotic system when α ∈ [0, 1];
(ii) System (1) is very simple and has only one
key parameter α. One can use the so-called
complementary-cluster energy-barrier criterion
(CCEBC) to analyze this system [Xue, 1999];

(iii) System (1) connects the Lorenz and the Chen
systems, and realizes the entire transition spec-
trum from one to the other;

(iv) The control of the parameter α in system (1)
reveals the evolution of dynamical behaviors
from Lorenz attractor to Chen attractor;

(v) The periodic windows of system (1) reveal the
true reason as to why the Lorenz and the Chen
attractors have similar but different topological
structures.

3. Dynamical Behaviors of the
Unified System

3.1. Some basic properties

System (1) shares several important qualitative
properties with both the Lorenz and the Chen sys-
tems. This is further discussed in the following.

(1) Symmetry and invariance

The Lorenz and the Chen systems both have a
natural symmetry under the coordinates transform
(x, y, z) → (−x, −y, z). Similarly, it is easy to
verify the invariance of system (1) under the same
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transformation, i.e. the reflection about the z-axis.
The symmetry persists for all values of the system
parameters α ∈ [0, 1]. Also, it is clear that the z-
axis itself is an orbit (an invariant manifold), i.e. if
x = y = 0 at t = t0 then x = y = 0 for all t ≥ t0.
Furthermore, the trajectory on the z-axis tends to
the origin as t → ∞, since for such a trajectory,
dx
dt
= dy
dt
= 0 and dz

dt
= −α+83 z. Therefore, system

(1) shares the symmetry and invariance with both
the Lorenz and Chen systems for all values of α.

(2) Dissipativity and the existence of
attractor

For system (1), one has

∇V = ∂ẋ
∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −41− 11α

3
.

Hence, for all α ∈ [0, 1], which satisfy 41−11α > 0,
system (1) is dissipative, with an exponential con-
traction rate:

dV

dt
= e−

41−11α
3 .

That is, a volume element V0 is contracted by the

flow into a volume element V0e
− 41−11α

3
t in time t.

This means that each volume containing the system
trajectory shrinks to zero as t→∞ at an exponen-
tial rate −41−11α3 . In fact, numerical simulations
have shown that system orbits are ultimately con-
fined into a specific limit set of zero volume, and the
system asymptotic motion settles onto an attrac-
tor. Thus, system (1) has the same dissipativity as
both the Lorenz and Chen systems for any value of
α ∈ [0, 1].

3.2. Equilibria and stability

The equilibria of system (1) can be easily found by
solving the three equations ẋ = ẏ = ż = 0, which
lead to

(25α + 10)(y − x) = 0 ,

(28 − 35α)x − xz + (29α − 1)y = 0 ,

and

xy − α+ 8
3
z = 0 .

It can be easily verified that there are three
equilibria:

S0(0, 0, 0)

S
−
(−
√

(8 + α)(9− 2α), −
√

(8 + α)(9− 2α), 27− 6α)

S+(
√

(8 + α)(9− 2α),
√

(8 + α)(9− 2α), 27− 6α) ,

in which two equilibria, S− and S+, are symmetri-
cally placed with respect to the z-axis.
Linearizing the unified system (1) about the

equilibrium S0 provides an eigenvalue λ1 = −α+83
along with the following characteristic equation:

f(λ) = λ2 + (11 − 4α)λ
+(25α + 10)(6α − 27) = 0 . (2)

Since α ∈ [0, 1], it always satisfies both 11−4α > 0
and (25α+10)(6α− 27) < 0, and the two eigenval-
ues satisfy λ2 > 0 > λ3. So, the equilibrium S0 is a
saddle point in the three-dimensional phase space.
Next, linearizing the system about the

other equilibria yields the following characteristic
equation:

f(λ) = λ3 +
41 − 11α
3

λ2

+
(38− 10α)(α + 8)

3
λ

+2(25α + 10)(α + 8)(9− 2α) = 0 . (3)

Obviously, the two equilibria S± have the same sta-
bility characterization. Let

A =
41− 11α
3

B =
(38− 10α)(α + 8)

3

C = 2(25α + 10)(α + 8)(9− 2α) .

(4)

The Routh–Hurwitz conditions lead to the conclu-
sion that the real parts of the roots λ are negative
if and only if

41− 11α
3

> 0, 2(25α + 10)(α + 8)(9− 2α) > 0 ,

and

2(α+ 8)(505α2 − 2259α − 31)
9

> 0 ,

namely, if and only if α < −0.0137. But this is
impossible for α ∈ [0, 1].
Note that the coefficients of the cubic poly-

nomial (3) are all positive. Therefore, f(λ) > 0
for all λ > 0. Consequently, there is instability
(Re(λ) > 0) only if there are two complex conjugate
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zeros of f . Let the two complex zeros be λ1 = iω
and λ2 = −iω for some real ω. Note that the sum
of the three zeros of the cubic f is

λ1 + λ2 + λ3 = −
41− 11α
3

.

Hence, λ3 = −41−11α3 , on the margin of stability,
where λ1,2 = ±iω. On this margin,

0 = f

(

−41− 11α
3

)

=
2(α+ 8)(−505α2 + 2259α + 31)

9
,

that is,

α1,2 =
2259 ±

√
5165701

1010
.

Since

−0.0137 < 0 ≤ α ≤ 1 < 4.4869 ,

the two equilibria S± are unstable.
Actually, one can determine the exact values of

the eigenvalues by setting λ = −A3 +Λ in (3). This
yields

f(Λ) = Λ3 + PΛ+Q ,

where P = −A23 + B and Q =
2A3

27 −
AB
3 + C.

This third-order polynomial in Λ can be solved by
using the Cardan formula, whereby one may set
∆ = 4P 3 + 27Q2. Since

P =
−211α2 + 524α + 1055

27
> 0 for α ∈ [0, 1] ,

one has

∆ = 4P 3 + 27Q2 > 0 .

Therefore, Eq. (3) has a unique real eigenvalue:

λR = −
A

3
+ ΛR

= −A
3
+
1

6

3
√

−108Q+ 12
√

12P 3 + 81Q2

− 2P
3
√

−108Q+ 12
√

12P 3 + 81Q2
, (5)

along with two complex conjugate eigenvalues:

(λC)± = −
A

3
+ (ΛC)±

= − A
3
− 1
12

3
√

−108Q+ 12
√

12P 3 + 81Q2

+
P

3
√

−108Q+ 12
√

12P 3 + 81Q2

±
√
3

2
i

(

1

6

3
√

−108Q+ 12
√

12P 3 + 81Q2

+
2P

3
√

−108Q+ 12
√

12P 3 + 81Q2



 . (6)
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Fig. 1. (a) The real eigenvalue λR(α); (b) the real part of complex conjugate eigenvalues −
A

3 −
ΛR
2 .
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By some tedious manipulations, one can get the
exact algebraic expression of α for a unique real
eigenvalue λR(α). And the correlation between α
and λR(α) is shown in Fig. 1(a). According to
Fig. 1(a), one can see that λR(α) is a decreasing
function of α and λR(α) < 0 for all α ∈ [0, 1].
Similarly, the correlation between α and the real
part of the complex conjugate eigenvalues −A3 −

ΛR
2

is shown in Fig. 1(b). Figure 1(b) shows that −A3 −
ΛR
2 is an increasing function of α and −

A
3 −

ΛR
2 > 0

for all α ∈ [0, 1]. Therefore, the two equilibria S±
of system (1) are always unstable for all α ∈ [0, 1].
That is, the three equilibria of system (1) are un-
stable for all α ∈ [0, 1].

3.3. Dynamical analysis of the
new system

In the following, we will use the complementary-
cluster energy-barrier criterion (CCEBC) [Xue,
1999] to investigate the dynamical behaviors of the
unified system (1).
First, consider the first and second equations of

the system:

{

ẋ = (25α + 10)(y − x) ,
ẏ = (28− 35α− z)x+ (29α − 1)y ,

(7)

where α ∈ [0, 1], x, y are status variables and z is
considered as a known function of time variable t.

(a) (b)

(c)

Fig. 2. The solution curve of system (8). (a) z < 27− 6α; (b) 27− 6α < z < 27− 6α+ (11−4α)2

20(5α+2)
; (c) z > 27− 6α+ (11−4α)2

20(5α+2)
.
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Fig. 3. The time series of z(t).

In particular, when z is a constant indepen-
dent of x, y and t, system (7) can be regarded
as a two-dimensional linear system with constant
coefficients. In this trivial case, its dynamical be-
havior is very simple and global. Especially, when
this constant z 6= 27 − 6α, the origin (0, 0) is the
only equilibrium of system (7). Linearizing system
(1) about the equilibrium (0, 0) gives the following
characteristic equation:

f(λ) = λ2 + (11− 4α)λ
+(25α + 10)(6α − 27 + z) = 0 . (8)

(1) For 0 ≤ α ≤ 1, when z < 27−6α, the two eigen-
values satisfy λ1 > 0 > λ2, so the equilibrium
(0, 0) is a saddle point in the two-dimensional
plane. The solution curve in the x–y plane is
shown in Fig. 2(a), where the direction of ar-
row is the direction of the orbit as t increases.
When t goes to infinity, only two orbits go to
the origin, and the other orbits go to infinity
along two different directions.

(2) When 27−6α < z < 27−6α+ (11−4α)
2

20(5α+2) , Eq. (8)

has two different negative real roots. The equi-
librium (0, 0) is a node. The solution curve
in the x–y plane is shown in Fig. 2(b), where
the direction of arrow is the direction of the or-
bit as t increases. When t goes to infinity, all
but two orbits go to infinity along two different
directions.

(3) When z > 27 − 6α + (11−4α)
2

20(5α+2) , Eq. (8) has two

complex conjugate eigenvalues with a negative
real part. The equilibrium (0, 0) is a focus.

The solution curve in the x–y plane is shown
in Fig. 2(c), where the direction of arrow is the
direction of the orbit as t increases. When t
goes to infinity, all orbits spiral into the origin.

Now, we take a closer look at the dynamical
behaviors of the unified system (1). In all the
simulations here, for any chosen initial condition
x(0) = x0, y(0) = y0, z(0) = z0, the time step
size h = 0.001, parameter α = 0.5, and the time
series x(t), y(t), z(t) are generated by the fourth-
order Runge–Kutta algorithm. Figure 3 shows the
correlation between the time variable t and the
function z(t).
It can be seen that when t→∞, the orbit z(t)

goes through the straight lines z = 27 − 6α and
z = 27−6α+ (11−4α)

2

20(5α+2) alternatively, and repeatedly

many times. The z-axis is partitioned into three dis-
joint domains: (−∞, 27− 6α), (27− 6α, 27− 6α+
(11−4α)2
20(5α+2) ), and (27−6α+

(11−4α)2
20(5α+2) , +∞), by the two

straight lines z = 27−6α and z = 27−6α+ (11−4α)
2

20(5α+2) .

System (7) has different dynamical behaviors in
the above three different domains. When t → ∞,
system (1) changes dynamical behaviors when z(t)
goes through these domains repeatedly. That is, the
dynamical behaviors of system (1) is changing re-
peatedly, leading to complex dynamics such as the
appearance of bifurcations and chaos.

4. Controlling the Duffing
Oscillator to the Unified System

The familiar Duffing oscillator can be controlled to
the canonical Lorenz and Chen systems [Kunin &

Chen, 1997; C̆elikovský & Chen, 2002]. Here, a sim-
ilar connection between the Duffing oscillator and
the unified system (1) can be found.

Theorem 1. The controlled Duffing oscillator

d2xd

dt2
+ µ
dxd

dt
+ (εx2d − 1)xd = −uxd , (9)

with parameter µ = 11 − 4α and the dynamical
feedback controller u satisfying

du

dt
= λ3u+ ε(λ3 + 50α+ 20)x

2
d

−λ3(150α2 − 615α − 269) (10)
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is diffeomorphic to the unified system (1) via the
following linear transformation:

xd =
x√
2ε
,

dxd

dt
=
(25α + 10)(y − x)√

2ε
,

u = (25α + 10)z − x
2

2

(11)

Alternatively, system (9) can be transformed into
the unified system (1) by using the parameter
µ = 11−4α√

−150α2+615α+270 and the dynamical feedback

controller

du

dt
=
λ3u+ ε(λ3 + 50α + 20)x

2
d√

−150α2 + 615α + 270
, (12)

with the following linear transformation:

xd =
x

√

2ε(−150α2 + 615α + 270)
(13)

dxd

dt
=

(25α + 10)(y − x)
(−150α2 + 615α + 270)

√
2ε
,

u =
(25α + 10)z − x

2

2
−150α2 + 615α + 270 ,

(14)

and with the following time-rescaling:

t =
√

−150α2 + 615α + 270θ , (15)

where the time variable in the unified system (1) is
denoted as t and that in the Duffing equation as θ.

Proof. Applying to the unified system (1) the
coordinate change

x
′

=
x√
−2ε

,

y
′

=
(25α + 10)(y − x)√

−2ε
,

z
′

= (25α + 10)z − x
2

2
+ 150α2 − 615α − 269 ,

after straightforward but somewhat tedious compu-
tations, one obtains


















































dx
′

dt
= y

′

dy
′

dt
= x

′

(1− ε(x′)2) + (4α − 11)y′ − x′z′

dz
′

dt
= λ3z

′

+ ε(λ3 + 50α + 20)(z
′

)2

− λ3(150α2 − 615α − 269) .

(16)

Then, denoting xd ≡ x
′
and u ≡ z′ , and by using

the first equation of (16), dxd
dt
≡ y′ , the last two

equations in (16) are converted exactly into those
of (9) and (10), with parameter µ = 4α− 11.
Similarly, the case with time-rescaling can be

proved. Applying the coordinate change

x
′

=
x

√

2ε(−150α2 + 615α + 270)
,

y
′

=
(25α + 10)(y − x)

(−150α2 + 615α + 270)
√
2ε
,

z
′

=
(25α + 10)z − x

2

2
−150α2 + 615α + 270 ,

one has














































dx
′

dt
=
√

−150α2+615α+270y′

dy
′

dt
=
√

−150α2+615α+270x′(1−ε(x′)2)

+ (4α−11)y′−
√
−150α2+615α+270x′z′

dz
′

dt
=λ3z

′

+ε(λ3+50α+20)(x
′

)2 .

(17)

Under the time rescaling (15) and denoting xd ≡ x
′
,

dxd
dt
≡ y′ , u ≡ z′ , the last two equations of (17)

are converted into those of (9) and (12), with µ =
4α−11√

−150α2+615α+270 . The proof is thus completed. �

5. Numerical Simulations

As mentioned, the unified system (1) contains the
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Fig. 4. The maximum Lyapunov exponent of system (1).
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canonical Lorenz system [C̆elikovský & Chen, 2002],
the Chen system [Chen & Ueta, 1999; Ueta & Chen,
2000], and the chaotic system recently introduced in
[Lü & Chen, 2002] as special cases.

The maximum Lyapunov exponents of system
(1) are shown in Fig. 4, while Figs. 5(a)–5(h) show
some snapshots taken from the entire spectrum of
the chaotic transition between the two extremes —
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Fig. 5. The phase portraits of system (1). (a) α = 0; (b) α = 0.37; (c) α = 0.47; (d) α = 0.5; (e) α = 0.59; (f) α = 0.6;
(g) α = 0.8; (h) α = 1.
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Fig. 5. (Continued )

the Lorenz and the Chen attractors. In these
figures, only a single parameter α is tuned: α ∈
[0, 1]. Figure 5(a) is the original Lorenz attractor;
Fig. 5(g) is the typical chaotic attractor reported in
[Lü & Chen, 2002]; Fig. 5(h) is the original Chen
attractor. It is clear that with the increasing of
the parameter α, the topological structure of the
chaotic attractor becomes more and more complex.
It is noticed that system (1) has three periodic

windows: W1 = [0.369, 0.371], W2 = [0.468, 0.470],
W3 = [0.575, 0.597]. These periodic windows
divide the whole interval [0, 1] into four chaotic
intervals: I1 = [0, 0.36], I2 = [0.38, 0.46], I3 =
[0.48, 0.57] and I4 = [0.6, 1]. When α ∈ I1, the
topological structure of system (1) is similar to the
original Lorenz attractor; when α ∈ I2, this topo-
logical structure is a variant of Lorenz attractor;
when α ∈ I3, it is a variant of the Chen attractor;
when α ∈ I4, it becomes similar to the Chen attrac-
tor. Figure 5(d) displays the variant of the Chen at-
tractor, and Figs. 5(f) and 5(g) show their similar
structures to that of the Chen attractor. Particu-
larly notable is that Fig. 5(g) belongs to the chaotic
system discussed in [Lü et al., 2002b]. Figures 5(b),
5(c) and 5(e) display some typical periodic orbits of
system (1).
It is very interesting to point out that the Chen

attractor can be derived from the periodic orbit
shown in Fig. 5(e). Similarly, the Lorenz attrac-
tor can be derived from the periodic orbit shown in
Fig. 5(b). Even more interesting is that the peri-
odic orbit shown in Fig. 5(c) is the transition be-
tween the two periodic orbits shown in Figs. 5(b)

and 5(e), respectively. It is the very reason that the
Lorenz and the Chen attractors have similar but dif-
ferent topological structures but they are connected
through such a chaotic transition.

6. Conclusions

A unified chaotic system has been introduced and
discussed in this paper. The unified system is pro-
duced as a kind of unique and unified classification
between the Lorenz and the Chen attractors, both
in theory and in simulation. In fact, this unified sys-
tem is likely to be the simplest chaotic system that
bridges the gap between the Lorenz and the Chen
systems, and contributes to a better understanding
of the correlation between the Lorenz attractor and
the Chen attractor.
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