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The aim of this work is to minimize the weight of steel bridge trusses under the limitations imposed on its behaviour by 
the design codes when it is subjected to moving load (HS20-truck). Adaptive manner operators are included to enhance the 
capability of GA. Design examples are solved to illustrate the applicability of proposed algorithm. Results are compared 
with those evaluated by various optimization methods with continuous design variables such as sequential convex 
programming (SCP), sequential quadratic programming (SQP) and evolution strategy (EVOL). It can be concluded that the 
results obtained by GA is meaningful, more suitable for practice and GA performs well to find minimum weight of the 
bridge trusses under moving load. 
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The weight and the volume of a structural system can 
be minimized under certain limitations imposed on its 
behaviour by the design codes. Optimum design 
methods to be used in the structural engineering can 
be deterministic or stochastic. In the deterministic 
search methods such as mathematical programming, 
the objective function and stated constraints are used 
as a linear or nonlinear combination of the design 
variables, or a single cross-sectional property is used 
as the design variable and then all other properties are 
expressed as a function of that design variable1. On 
the other hand, a random component is usually 
introduced in the stochastic search methods such as 
genetic algorithms (GA) and evolution strategy 
(EVOL). Both GA and EVOL use of the solution 
principles and mechanisms of the biological evolution 
processes, in which numerous optimization 
mechanisms are embedded. In contrast to the GA, 
EVOL imitate the effects of genetic procedures on the 
phenotype. 
 In contrast to deterministic techniques that try to 
reach optimum step by step, stochastic techniques 
work on a population of potential solutions for a given 
problem. This population is generated randomly. And 
then genetic operations, especially crossover and 
mutation, are performed on old population to generate 
a new population.  GA and EVOL get their power 
from the genetic operators. 

 Bridges can be designed more elegant and 
economical through the development of computer 
technologies and optimum design approaches. The 
self-weight of the structure increases quickly as its 
span expands. That is why it is very important to 
design the structures with a possible minimum self-
weight satisfying certain design requirements. The 
aim of this study fulfills this target using GA with 
discrete design variables and compares the design 
obtained continuous design variables.   
 
Sequential Convex and Quadratic Programming  
 An efficient and accurate solution to any 
optimization problem depends not only on size of the 
problem in terms of the number of constraints and 
design variables but also on characteristics of the 
objective function and constraints. When an optimum 
design problem has both the linear objective function 
and constraints in the design variables, the problem is 
known as a linear programming (LP). Quadratic 
programming (QP) concerns with the minimization or 
maximization of a quadratic objective function that is 
linearly constrained. Nonlinear programming problem 
in which the objective function and constraints can be 
nonlinear functions of the design variables is more 
difficult to solve. A solution of the NP problem 
generally requires an iterative procedure to determine 
the search direction at each iteration2,3. If the problem 
is a so-called convex programming then the Kuhn 
Tucker (KT) equations are both necessary and 
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sufficient for a global solution point4,5. The solution 
of the KT equations forms the basis for many 
nonlinear programming algorithms. These algorithms 
attempt to compute the Lagrange multipliers directly. 
Constrained quasi-Newton methods guarantee super 
linear convergence by accumulating second order 
information regarding the KT equations using a quasi-
Newton updating procedure. These methods are 
commonly referred to as sequential quadratic 
programming (SQP) methods. 
 
Evolution Strategy 
 Rechenberg in 1973 developed first evolution 
strategy, so-called (1+1)-evolution strategy. The 
denotation (1+1)-evolution strategy means that one 
“offspring” individual is created from one “parent(s)” 
by a mutation. Parents and offspring individuals 
represent potential solutions to an optimization 
problem encoded as a set of numerical parameters. 
Either only the offspring or both parents plus 
offspring individuals compete for survival into the 
next generation. The mutation rate can be adjusted 
between successive generations to optimize the search 
progress. Mutation is a domain specific operator and 
can be implemented, for example, as a Gaussian 
distributed increment of a numerical parameter. The 
evolution strategy has some characteristics as 
follows4,6: (i) Reproduction in evolution strategy is 
not proportional to the fitness value; (ii) The original 
evolution strategy does not make a distinction 
between genotype (the bit strings which are 
manipulated by genetic operators) and phenotype (the 
decoded value, e.g., an integer value interpreted as a 
parameter of the objective function, i.e., the fitness) of 
an individual. In the original evolution strategy is both 
coincide; (iii) In evolution strategy, both parents and 
offspring may compete to survive into the next 
generation; and (iv) Mutation is the main force to 
drive an evolution strategy.  
 
Genetic Algorithms 
 Genetic algorithm can be divided into a problem-
independent genetic operations part and problem-
dependent function evaluation part.  The coding 
scheme representing the variables of the optimization 
problems and fitness evaluation that reflects how 
good the solution is compared to the other solutions in 
the population serve as a link between these two 
parts7. Genetic algorithms do not require gradient 
information; they can be effective regardless of the 

nature of the objective functions and constraints. They 
combine the use of random numbers and information 
from previous iterations to evaluate and improve a 
population of points (a group of potential solutions) 
rather than a single point at a time8. The GA initiates a 
search to find the optimum in a discrete space by first 
selecting a number of individuals randomly to 
constitute the initial population. And then, Genetic 
operators such as selection, crossover and mutation 
are applied to produce a new generation.  
 The process that the genetic operators are applied 
on the population sequentially in order to obtain a 
better population than the previous one is known as 
the genetic loop. The loop is repeated until a 
satisfying solution to the problem is obtained ensuring 
certain design criteria.  
 Various types of genetic operators have been 
proposed by researchers to improve the performance 
of simple genetic algorithm (SGA) introduced by 
Goldberg9. The basic idea behind proposing various 
applications of the genetic operators is to prevent the 
population from getting stuck on a local optimum, and 
to maintain diversity. However, both the operators in 
SGA and improved versions of crossover and 
mutation operators are applied with pre-defined rates 
that are imposed on the algorithm by the user. 
Whereas, the choice of mutation and crossover 
probabilities, pm and pc, critically effect the behaviour 
and performance of GA. There are various 
suggestions for pm and pc in the literature, but not an 
exact value is given10. In addition Pawlowsky 
concluded that there is no “best” unique operator 
setting in all circumstances11.  
 The adaptive probabilities of crossover and 
mutation proposed by Srinivas and Patnaik10 and 
improved by Toğan and Daloğlu12 are used in this 
study to decide the probability of mutation and 
crossover according to the fitness value of the 
solutions and to relieve the user. 
 
Adaptive mutation and crossover 
 Recently, researchers have applied new GA 
implementations for better performance or to enhance 
GA’s capabilities10-14. One of the new 
implementations is adaptive technique. The adaptive 
procedure proposed by Srinivas and Patnaik10 and 
improved by Toğan and Daloğlu12 is used in the study 
as follows:  
 The expressions for pm and pc take the forms of 
 

pc= k1 (fmax – f ' ) / (fmax – faveg)             f ' ≥ faveg 
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pc= k3                                                  f ' < faveg … (1) 
 
pm= k2 (fmax – f) / (fmax – faveg)             f ≥ faveg 
 
pm= k4                                               f < faveg … (2) 
 
 Here, f is the fitness of an individual, faveg is the 
average fitness value of the population, fmax is the 
maximum fitness value of the population, and f ' is the 
larger of the fitness value of the solutions to be 
crossed, Srinivas and Patnaik10. Coefficients k1, k2, k3, 
and k4 have to be less than or equal to 1.0. 
 When Srinivas and Patnaik10 used a value of 0.5 for 
k2 and k4, they assigned a value of 1.0 for k1 and k3 to 
disrupt all the solutions with a fitness value less than 
faveg. However, the following is recommended for the 
case of  f < faveg  in Eq. (2). 
 
pm= (faveg – f) / (faveg – fmin)               f < faveg … (3) 
 

where, fmin is the minimum fitness value of the 
population. Using the above expression, solutions are 
disrupted depending on the fitness value, instead of 
destroying all the solutions with the fitness value less 
than faveg with a constant probability of mutation. The 
probability of mutation increases as the fitness value 
tends to get closer to fmin, so a constant probability of 
mutation is not employed for all of the solutions 
having a fitness value of less than faveg. Thus, some 
infeasible individuals with good characteristics 
especially having exact or near average fitness value 
of the population will have a chance to survive. 
 Rates of mutation and crossover are calculated by 
multiplying pm and pc with string length for each 
solution in the population. These rates state the 
number of design variables to be disrupted for an 
individual. For adaptive mutation, design variables in 
the individual are arranged according to the level of 
violation. And then design variables are renewed with 
the mutation rate starting with the most violated one. 
This is useful because modification of bit is not being 
done randomly and therefore good solutions are being 
kept as they are. Thus, only the solution with fitness 
value of fmin exposes mutation completely and 
diversity maintains.  
 For adaptive crossover, on the other hand, since pc 
changes from couple to couple, information exchange 
between the pairs can be done with flexible point 
crossover. That is, the crossover is performed with 
various crossover points changing from 1 to the string 
length of the individual. f ' represents the solution with 
the low fitness value in this study, on the contrary of 

the one described by Srinivas and Patnaik10. This is 
because if the lowest value of fitness is bigger than 
the average fitness value of population, the crossover 
will take place between the pairs having good fitness 
value. Whereas, when f  ' represents the best fitted one, 
there is a possibility that the crossover to take place 
among the pairs with bad fitness value. 
 Adaptive manner proposed by Toğan and Daloğlu12 
is applied in the study as given below: 
 

pm= 0.5 (fmax – f) / (fmax – faveg)               f  ≥ faveg 
 
pm= (faveg – f) / (faveg – fmin)                    f < faveg … (4) 
 
pc= (fmax – f  ' ) / (fmax – faveg)                  f  ' ≥ faveg 
 

pc= 1.0                                                 f  ' < faveg … (5) 
 
In contrast to mutation, rearranging of Eq. (5) is not 
necessary here because of the fact that the crossover is 
not in progress for renewing the bits between the 
couples. Hence, the formulation of the unconstrained 
optimization problem which is based on the violations 
of normalized constraints proposed by Rajeev and 
Krishnamoorthy15 is given as: 
 

min. 
1 1 1

1
NG m M N

k i i
k i r

W A L K Cρ
+

= = =

⎛ ⎞
= × +⎜

⎝ ⎠
∑ ∑ ∑  … (6) 

 

Subject to the following constraints: 
 

(   or  ) 1 0 1,...,t c
il allowable allowable iσ σ σ − ≤ = M … (7) 

 

and 
 

1 0 1,...,jl allowabled d j N− ≤ =  … (8) 
 

where M is the total number of members in the 
structure, and N is the number of restricted 
displacements. σil is the stress in member i for the load 
case l. σt

allowable and σc
allowable are the allowable stresses 

in tension and compression under load case l. djl 
displacement of joint j, and dallowable is its upper bound 
under load case l. NG is the total number of groups in 
the structure; Ak is the area of members belonging to 
group k; m is the number of members in group k.  Li 
and ρi are the length and the density of member i. K in 
Eq. (7) is known as a penalty coefficient. It is a 
constant to be selected depending on the problem. A 
value of 10 was found suitable for the optimization of 
truss systems15 and it is taken 10 in the current work. 
C is the violation coefficient of the constraints and it 
is computed in the following manner.  
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−⎪⎩ =

 

 … (9) 
 

The value encoding is also adapted in the study. 
 
Application Examples 
 In any optimum design problem, some certain 
criteria must be established to evaluate a reasonable 
solution.  For a structure, typical criteria may be (i) 
minimum cost; (ii) minimum weight; (iii) minimum 
construction time; (iv) minimum labor; (v) minimum 
cost of owner’s products16.  
 The self-weight of the structure increases quickly 
as its span expands. That is why it is very important to 
design the structures, i.e., the bridges that have long 
span, with a possible minimum self-weight satisfying 
certain design requirements. So, the criterion of 
minimum weight is generally used in optimum 
design.  In this study, the moving load which is a 
series of concentrated truck-wheel loads given in 
AASTHO (Fig. 1) is considered. It is treated as a 
series of static loads moving on the bridge deck.  
 The first concentrated load in the series, 36 kN in 
Fig. 1, takes three positions between any two adjacent 

nodal joints of the bridge truss. Initially the first 
concentrated load in the series is placed on the first 
joint of the truss while the other two wheels are still 
of the bridge (Fig. 2a), and this is the first load case 
for the truss.  Next the front wheel of the truck is 
placed at the center of the two adjacent joints. This 
situation requires the first load in the series to be 
placed on the bridge deck between the two nodal 
joints.  The transference of this load from the deck to 
the truss needs to be calculated.  If the front wheel is 
placed in the middle of the two adjacent joints, the 
transference of this load to the each nodal joint will be 
18 kN as shown in Fig. 2b, and this is the second load 
case for the truss.  As the truck continues to move on, 
the front wheel gets on the second nodal joint of the 
truss (Fig. 2c), and this will be the third load case for 
the bridge truss.  While the truck moves on the bridge, 
the contribution of the second and the third wheel 
loads also needs to be included since they will be on 
the deck, and the transference of the wheel loads to 
the truss joints are calculated according to the 
distance from the joints as explained above and as 
illustrated in Figs 2 (d), (e) and (f), as it is indirect 
loading for the truss. 

 Since vehicles travel directly on the superstructure, 
all of the parts are subjected to vibration and must be 
designed under impact load. AASHTO-1992 
prescribes empirically that the impact factor 
expressed as a portion of live load16. 
 
I=50/(L+125) ≤ 0.30 … (10) 
 
where, L is the span of the bridge expressed in feet 
and I is the impact factor. The value of impact factor 

 
 

Fig. 2—HS20 Loading between any two adjacent Joints 

 
 

Fig. 1—Moving load (HS20) 
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is increased by one and the load vector of the truss 
system is multiplied by it, and the system is analyzed. 

 
 

Fig. 3—Eighty-four-bar bridge truss 
 

 In the design, the allowable displacement is limited 
to L/800 at the mid span of the bridge according to 
AASHTO. Allowable tensile stress, σt

allowable, and the 
young modulus, E, are taken as 212 N/mm2 and 210 
kN/mm2 respectively. Allowable stresses for the 
compression members, σc

allowable, are calculated 
considering the slenderness ratio of the member 
according to the criteria given by AISC. The density, 
ρ, is taken as 7.85E-8 kN/mm3. Double angles, 
angles, structural tees cut from S shapes and pipes 
given in AISC are adopted to form the structural 
members.  
 To design the bridge trusses with a minimum 
weight, the related optimization algorithms are run 20 
times totally and the results presented in Tables and 
the best results among the all runs are given in the 
following sections. In addition to the optimization of 
bridge trusses with discrete design variables by GA, 
the same trusses are also optimized by SCP, SQP, and 
EVOL. The optimization methods tool of Institute for 
Computational Engineering, Faculty of Civil 
Engineering, Ruhr University Bochum for the SCP, 
SQP and EVOL are used with the default values for 
the purpose. The bridge trusses are optimized with 
different initial value of design variables and tables 
also show the initial values of design variables needed 
to get these results. For GA, a new initial population 
is created randomly for each try of 20 run, and the 
optimization process is repeated.  
 

Bridge Truss 1 
 Figure 3 shows a plane truss having 45 joints and 
84 members. The areas of the members are taken as 

the design variables and they are collected in to 14 
groups. The allowable displacement is 22 mm at 
joints 6 and 40 while it is 38 mm at joints 22 and 24. 
The truss is designed under 55 static load cases 
representing the moving load HS20 to cross the 
bridge once.  

 
 

Fig. 4—Design history for bridge truss 1 with various operators 
 

 The optimal solution has a weight of 65.285 kN by 
GA. Figure 4 shows how the adaptive operators effect 
the solution. It also shows the exploring of the 
solution space and finding the optimum value of the 
weight with the number of generation for single point, 
two points, ¼ uniform + two point crossover, and 
adaptive mutation and crossover operators proposed 
in this study and in Srinivas and Patnaik10. For this 
case, the maximum number of generations is taken as 
200 in the algorithm, and the process is terminated if 
the same individual constitutes 75% of the population. 
Also, a population size of 50 is taken in the 
optimization process. For this truss, the convergence 
is obtained at generation 79 when adaptive mutation 
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and crossover are imposed in the algorithm. It is 
observed that the convergence is faster when the 
adaptive operators are used in the algorithm compare 
to those by single point, two points, ¼ uniform + two 
point crossover, and adaptive mutation and crossover 
operators proposed in Srinivas and Patnaik10, and 
number of iteration to reach the optimum design is 
much smaller with the adaptive operators. 
 As known if any member in the structural system is 
in compression, the stress constraint turns out to be 
buckling constraint. In that case, the allowable stress 
is obtained by computing its critical stress. In contrast 
to allowable tensile stress, the critical stress is not 
constant but it is a function of the slenderness ratio of 
the compression member. So, it is related to radius of 
gyration of the cross-section. Since GA works with 
discrete design variable it is very simple to compute 
allowable compression stress of the member in each 
design step since all the geometric properties of the 
cross-sections are included in the algorithm as input 
data. But gradient based methods and EVOL use 
continues design variables, and it is not possible to 
give radius of gyration of member as an input data. 
One way to overcome this problem is to calculate the 
radius of gyration in terms of the area of the cross-

section. According to Saka17 this relationship has the 
form of  
 

R = aAb … (11) 
 

where a and b are the constants depending on the 
types of section adopted for the members and their 
values are given for some sections in Table 1. A is 
cross-section area of the members and r is the radius 
of gyration. The relationship given in Eq. (11) is used 
in the study to calculate the allowable compression 
stresses of the members to consider the buckling 
effect in the optimum design by SCP, SQP, and 
EVOL, whereas the real value of radius of gyration 
are used as they are given in the codes for the 
optimum design by GA. 
 The results are summarized in Table 2 and Figs 5 
(a), (b) and (c) present the variation of design 
variables, objective functions and constraints by SQP, 
SCP, and EVOL respectively. 
 Studying Figs 5 (a), (b), and (c) it can easily be said 
that the values of the objective function obtained by 
SCP and SQP increase as the number of iteration 
increases. Whereas the value of the objective function 
obtained by EVOL decreases as the number of 
iteration increases. Also, iteration numbers of 69, 63, 
for SQP and SCP are necessary to find optimum 
weight while 102 iterations are needed for EVOL. All 
constraints are satisfied and become zero when the 
process is terminated. The results summarized in 
Table 2 show that the minimum weight obtained by 
GA  is  higher  than  the  weight obtained by the other 

Table 2—Results of optimization processes for bridge truss 1 
          

Number of 
groups 

SCP 
(mm2) 

SQP 
(mm2) 

EVOL 
(mm2) 

SCP+ 

(mm2) 
SQP+ 

(mm2) 
EVOL+ 

(mm2) 
GA 

(mm2) 
Section Initial values 

          
1 5235 5309 5423 5625 5625 5625 5625 Double angle 900 
2 4840 4831 4722 5625 5625 4838 4838 “ 700 
3 5587 5312 5682 6258 6258 6258 6258 Tee cut from S 700 
4 3542 3810 3201 3870 4070 3322 2406 “ 300 
5 837 1138 905 954 1438 1096 954 Pipe 300 
6 1167 1429 1509 1438 1451 1729 1729 “ 300 
7 1713 1350 1717 1948 1438 1948 1729 “ 300 
8 762 931 772 954 1096 954 2045 “ 300 
9 759 762 765 954 954 954 2045 “ 300 
10 2271 2354 2516 2374 2774 2774 2045 “ 300 
11 1640 1599 1517 1729 1729 1729 1729 “ 300 
12 871 1357 998 954 1438 1096 1729 “ 300 
13 936 1140 1005 1096 1438 1438 1729 “ 300 
14 1222 913 1221 1438 1096 1438 1719 “ 300 

Weight (kN) 60.16 61.31 60.48 67.14 68.94 64.98 65.28   
+ shows the results converted to the standard section  

Table 1—Values of the constants of Eq.(11) for various section 
     

 Angle Pipe Tee Double Angle 
     

a 0.8338 0.4993 0.2905 0.584 

b 0.5266 0.6777 0.8042 0.524 
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Fig. 5—Variation of the design variables, objective function, and constraints in SQP, SCP, and EVOL by iterations 
 
 

 
Fig. 6—Hundred-bar bridge truss 
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methods. This is because the continues design 
variables are used for SCP, SQP, and EVOL as 
mentioned above and it is impossible to include any 
standard section properties as they are available in 
practice. From the practical point of view design 
variables obtained by SCP, SQP, and EVOL are not 
real and this optimization process is not applicable. 
They must be converted to the standard sections given 
in the codes to make the results by SCP, SQP, and 
EVOL practical and feasible. Table 2 also presents the 
results converted to the standard sections for SCP, 
SQP, and EVOL in order to make a comparison with 
GA.  It can be stated that the result obtained by GA is 
lighter than those produced by SCP and SQP while it 
slightly bigger than that obtained by EVOL. However, 
it is worthy to state that converting the results of SCP, 
SQP and EVOL to next higher available standard 
sections results with infeasible solution. In other 
words, the converted results for SCP, SQP, and 
EVOL do not satisfy the constraints, and a process is 
needed to update the result to satisfy the constraints.  
 
Bridge Truss 2 
 Another bridge truss shown in Fig. 6 is optimized 
as a second application. The bridge truss has 53 joints 
and 100 members. Displacements are limited to 23 
mm at joints 7 and 48 and 30 mm at joints 20 and 35.  
 The design variables of the structure are collected 
into 16 groups. The truss is investigated under 67 
static load cases representing HS20 crossing the 
bridge once.  The size of the population is taken as 
50; the optimum weight of bridge truss is determined 
as 83.67 kN. Figure 7 shows how the adaptive 
mutation and crossover affect the solution depending 
on the fitness value.  It is seen in Fig. 7 that the effects 
of the probabilities of both the adaptive operators lose 
theirs effect as the fitness value of the solution 
increases. It is also seen that the probability of 
crossover is high while probability of mutation is low 
for some generations. This is because probability of 

mutation works on the fitness value of each solution 
while probability of crossover works on the partner 
having the lower fitness value. As the solution having 
the high fitness is disrupted with low rate of mutation, 
its partner is crossed with high rate of crossover if its 
partner has lower fitness than solution and near 
average fitness of the population. This will not be the 
case in the following generations since the majority of 
the individuals in the generation will be identical. 
 The design procedure initiates the optimization 
cycles for SCP, SQP and EVOL by deciding the 
initial values of the variables being the areas of cross 
sections first. They can be selected in any way as 
desired. They can be selected from a feasible domain 
without violating any of the constraints of the 
optimization problem, or from an infeasible domain 
that violate the constraints. However, it is observed 
that the selection of the initial value of area affects the 
design considerably. Especially in the case of the 
research domain has multiply strict local and global 
points. This situation is illustrated in Fig. 8.  If any 
initial value is selected randomly it is most possible to 
reach a strict local or local optimum point in the 
search domain. Hence the design process should be 
repeated with different initial value in order to check 
whether the point reached is global optimum or not. It 
must be also repeated several times because of the 
fact that the GA initiates a search to find the optimum 
result in a discrete space by selecting a number of 
individuals randomly to constitute the initial 
population. Table 3 summarizes the best solution of 
all the runs. 
 
Bridge Truss 3 
 Another truss shown in Fig. 9 is considered as the 
final example. It has 99 joints and 193 members. 100 
static load cases are applied on the truss representing 
the moving load of HS20 crossing the bridge. Cross-
sections of the members are collected into 19 groups, 
and  therefore  there  are 19 design variables since one 

 
 

Fig. 7—Working of adaptive mutation and crossover 
 

 

Fig. 8—Unconstrained local and global minima in one dimension 
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Table 3—Results of optimization processes for bridge truss 2 
          

SCP 
(mm2) 

SQP 
(mm2) 

EVOL 
(mm2) 

SCP+ 

(mm2) 
SQP+ 

(mm2) 
EVOL+ 

(mm2) 
GA 

(mm2) 
Section Initial values Number of 

groups 
          

1 5379 5831 5638 6258 6258 6258 5187 Tee cut from S 650 
2 5140 4904 4911 6258 5187 5187 5187 “ 650 
3 559 749 619 605 877 703 1251 Angle 750 
4 550 631 567 605 703 605 1251 “ 750 
5 1902 1319 1813 2096 1451 1954 1845 “ 750 
6 955 1265 970 1090 1348 1090 2354 “ 750 
7 1024 1636 1047 1116 1774 1116 1251 “ 750 
8 5465 5624 6034 5625 5948 6129 4838 Double angle 750 
9 4287 4614 3789 4658 4838 3903 4658 “ 750 
10 564 749 596 605 877 703 1251 Angle 750 
11 601 717 631 703 767 703 1845 “ 750 
12 712 712 773 767 767 877 1954 “ 750 
13 1595 1015 941 1774 1116 1090 1954 “ 750 
14 1237 1524 1290 1348 1600 1348 2339 “ 750 
15 1059 1413 1078 1116 1548 1116 1954 “ 750 
16 1206 1419 1212 1348 1548 1348 2329 “ 750 

Weight (kN) 77.05 81.38 77.41 85.73 86.46 81.60 83.67   
+ shows the results converted to the standard section  

 
 
 
 

 
 
 

Fig. 9—Hundred and ninety-three-bar bridge truss 
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bit is required to represent each cross-section in the 
value encoding; the string length of coded part of the 
chromosome is 19 bits.  
 The allowable values for vertical deflections are 25 
mm at nodes 7 and 93, 42 mm at nodes 23 and 77, and 
83 mm at nodes 48, 50 and 52. The size of population 
is taken as 60 in the design process. The variation of 
the weight of the truss with the number of generation, 
and the maximum displacement at each generation are 
plotted in Fig. 10. Studying both Figs 10 and 11 that 
illustrate the variation of violation of displacements 
and stresses with the number of generations, it can be 
said that the displacement constraints are dominant in 
the design process because the weight of the truss is 
getting heavier while the mid-span displacement is 
getting closer to the allowable displacement. 
Minimum weight of the truss without violating any of 
the constraints is obtained as 465.08 kN. The program 
is terminated when 85% of the population consists of 
the same individual and the number of iteration is 
118. 
 The same truss is designed one more time ignoring 
the displacement constraints to see how it affects the 
result. The minimum weight of the truss is obtained as 
347.557 kN for this run under the stress and stability 
constraints only, and the convergence is obtained 
faster.   This   clearly   shows   that   the  displacement 

constrains are active and dominant over stress and 
stability constraints for this bridge truss as well as 
other bridge trusses designed in the study. 

Table 4―Results of optimization processes for bridge truss 3 
          

Number of 
groups 

SCP 
(mm2) 

SQP 
(mm2) 

EVOL 
(mm2) 

SCP+ 

(mm2) 
SQP+ 

(mm2) 
EVOL+ 

(mm2) 
GA 

(mm2) 
Section Initial values 

          
1 5789 4254 4304 5948 4658 4658 6129 Double angle 5000 
2 5767 4328 4341 5948 4658 4658 3903 “ 5000 
3 2518 2550 2753 2696 2696 2812 3064 Angle 2000 
4 2501 1766 1870 2696 1845 1954 2812 “ 2000 
5 14999 15000 14860 15161 15161 15161 14258 Tee cut from W 2000 
6 14920 15000 14694 15161 15161 15161 14258 “ 2000 
7 4855 4249 5602 5419 5419 7677 5419 Pipe 1000 
8 3997 3581 3954 5419 3941 5419 5419 “ 1000 
9 3575 2945 2983 3941 3599 3599 3941 “ 1000 
10 3377 1519 1745 3599 1729 1948 3599 “ 1000 
11 2959 1545 2329 3599 1729 2774 3599 “ 1000 
12 4549 7419 7137 5419 7677 7677 5419 “ 1000 
13 14999 15000 14999 15161 15161 15161 14258 Tee cut from W 2000 
14 14999 15000 14976 15161 15161 15161 14258 “ 2000 
15 6009 6735 6523 7677 7677 7677 7677 Pipe 1000 
16 7582 9236 8960 7677 9419 9419 7677 “ 1000 
17 7662 8094 8517 8258 8258 9419 7677 “ 1000 
18 7056 6238 6931 7677 7677 7677 7677 “ 1000 
19 5111 4692 3953 5419 5419 5419 5419 “ 1000 

Weight (kN) 470.51 453.01 457.06 490.06 471.77 484.42 465.08 “ 1000 
+ shows the results converted to the standard section  

 
Fig. 10—Variation of the weight and maximum displacement 
with generations 
 

 
 
Fig. 11—Variation of the violation of stress and displacement 
with generations 
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 The optimum results obtained by all four methods 
are presented in Table 4. It can be concluded that the 
optimum weight of bridge trusses obtained by GA is 
slightly bigger than those obtained by the other three 
methods with continuous design variables for all 
cases. However when the results of SCP, SQP and 
EVOL is converted the standard sections GA 
produces the lighter design (Table 4). 

 It can be possible to use the exact value of the 
radius of gyration in the design process by GA while 
this cannot be possible with the other methods in 
which the radius of gyration is expressed in terms of 
the cross-section areas in the design process. And Eq. 
(11) does not work well all the time. For example a 
member having 1754 mm2 area of cross-section and 
consist  of  the  double  angle section is adopted in the 

Table 5—Results of optimization processes for bridge truss 3 with new approximation 
        

Number of groups SCP 
(mm2) 

SQP 
(mm2) 

EVOL 
(mm2) 

SCP+ 

(mm2) 
SQP+ 

(mm2) 
EVOL+ 

(mm2) 
Initial 
values 

        
1 4074 5897 4150 4658 7419 4658 5000 
2 3278 5891 3490 3690 7419 3690 5000 
3 2205 2541 2931 2329 2696 3709 2000 
4 3434 4687 3541 3709 5445 3709 2000 
5 15071 15099 14926 15161 15161 15161 2000 
6 15071 14427 14867 15161 15161 15161 2000 
7 4365 4638 4468 5419 5419 5419 1000 
8 3651 4213 4535 5419 5419 5419 1000 
9 3270 3816 3532 3599 5419 3599 1000 

10 2101 3038 2352 2774 3599 2774 1000 
11 2466 2752 4004 2774 2774 5419 1000 
12 7597 4794 3927 7677 5419 5419 1000 
13 15071 15099 15015 15161 15161 15161 2000 
14 15071 15099 15047 15161 15161 15161 2000 
15 6962 5980 7886 7677 7677 9419 1000 
16 7290 7492 8769 7677 7677 9419 1000 
17 8317 7569 8101 9419 7677 9419 1000 
18 6336 6788 6575 7677 7677 7677 1000 
19 4792 4638 4196 5419 5419 5419 1000 

Weight (kN) 460.67 478.62 466.22 483.69 513.47 493.84 1000 
+shows the results converted to the standard section 

 

Table 6―Extracting profile list 

Section Types 
Double Angle Single Angle Tee Pipe 

Area (mm2) r (mm) Area (mm2) r (mm) Area (mm2) r (mm) Area (mm2) r (mm) 
        

2722.58 23.19 1567.74 14.86 1896.77 18.64 690.32 15.37 
3206.45 27.18 1600 17.45 2180.64 20.27 954.84 19.46 
3690.32 31.24 1845.16 20.02 2406.45 24.23 1096.77 24.05 
3903.22 39.88 1954.83 25.25 3019.35 25.4 1438.71 29.46 
4658.06 39.62 2329.03 25.15 3870.96 26.92 1729.03 34.04 
5625.8 47.75 2696.77 25.04 4070.96 27.18 2045.16 38.35 
7419.34 47.24 3709.67 29.97 5187.09 28.96 2774.19 47.75 

14774.16 62.74 4148.38 29.97 6258.05 30.23 3599.99 57.15 
17096.74 62.23 4587.09 29.97 7548.37 34.04 5419.34 74.68 
19354.8 61.98 5445.15 29.72 8193.53 34.54 7677.4 93.22 

21612.86 61.47   11483.85 38.86 9419.34 111.25 
    14258.03 62.73   
    15161.26 63.5   

 

r, exact radius of gyration 
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code. The radius of gyration is calculated as 26.2 mm 
by Eq. (11) for the same member. And this value is 
used in the design process by SCP, SQP, and EVOL. 
But according to the double angle section list in the 
codes, the real radius of gyration of the member is 

equal to 15.09 mm which is used in the design process 
by GA. So it can easily be seen that this cause a 
higher value of the allowable compression stress to be 
calculated obeying the AISC-ASD. Therefore, one 
will end up with a larger cross-section by GA.  
 In this study a new relationship is proposed 
between the radius of gyration and the area of cross-
section. A polynomial curve fitting approximation 
using MATLAB is offered instead of the relationship 
in Eq. (11). Then Bridge Truss 3 is designed to find 
the optimum weight once again by SCP, SQP, and 
EVOL in order to see how the minimum weight of 
truss changes depending on the radius of gyration. As 
presented in Table 5, the results show that the new 
relationship by the polynomial curve fitting 
approximation is more effective than old one (Fig. 
12a). Further, it can be said that even this relationship 
is not very effective due to the fluctuation on radius of 
gyration (Fig. 12b).  
 There is not a regular relationship between the 
actual area of cross-sections and the radius of 
gyrations. Hence, some cross-sections are extracted 
from the list in order to get a smooth curve for the 
data given (Fig. 12c).  
 Naturally, this curve is not enough to represent the 
whole data. This is clearly shown in Table 5. The 
polynomials obtained for some cross-section types are 
as follows: 
 For double angle; 
 

r= -18.5621 z7 +46.3275 z6 +18.4652 z5 -99.9004 z4  

       +16.4648 z3 +48.2871 z2+5.5338 z+46.0816 
  … (12) 
For single angle; 
 

r= -8.9001 z7 +15.3680 z6 +21.0658 z5 -35.9631 z4  

        -11.5443 z3 +18.2282 z2 +5.9197 z +25.2508 
  … (13) 

For Tee; 
 

r= -1.0952 z7 -3.6734 z6 +15.0258 z5 +1.7861 z4  
     -16.1685 z3 -0.8382 z2 +11.0013 z+31.5137 

   … (14) 
 

For Pipe;  
Fig. 12—Visualization of the polynomial fitting approximation (a) 
graphical symbolization of results, (b) before extracting, and (c) 
after extracting 

 

r= 3.1701 z3 -9.0935 z2 +32.5148 z +54.8731  … (15) 
 

 The value of z in these polynomials is normalized 
according to mean and standard deviation that are 
calculated from extracting sections list presented in 
Table 6. Means and standard deviations related with 
the extracting sections list are presented in Table 7. 
The value of z is calculated using Eq. (16). 
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SQP = sequential quadratic programming Table 7―The means and standard deviations for the extracting 
profile list EVOL = evolution strategy 

LP = linear programming 
Mean (mm2) Standard Deviation (mm2) Section Types QP = quadratic programming 

NP = nonlinear programming  Double angle 9460 7230 
KT = Kuhn tucker Single Angle 2990 1390 

Tee 6580 4540 SGA = simple genetic algorithm 

Pipe 3350 2930 
pm = probability of mutation 
pc =  probability of crossover 

 

f =  fitness of an individual std/)mnx(z −=  … (16) 
= average fitness value  f   

where, x represents the value of design variables (area 
of cross-sections), mn stands for the mean value and 
std symbolizes standard deviation. 

fmax =  maximum fitness value 
fmin =  minimum fitness value 
f’ =  larger of the fitness value 
k1, k2, k3, k4 = coefficients  
W = Weight of the bridge truss Observations and conclusions 
NG = number of groups  Value encoding provides a comfort because the 

string length is independent of the number of sections 
list adopted for the design variables of optimization 
problem, and programming gets simpler since 
decoding scheme is not necessary.  

M = total number of members  
N = number of restricted displacement 
σt

allowable = allowable tensile stress 
σc

allowable = allowable compression stress 
stress in member i σil = 

l = load case  Generally in the GA based optimization problems 
pm takes a value between 0.0 - 0.5, while the value of 
pc varies between 0.0-1.0 in the literature. However, 
the adaptive operators, in the current work, provide 
various ways for the consideration of pm and pc 
depending on the fitness of the solutions and the 
population. Hence, the adaptive operators used in the 
current work improve performance of GA.  

djl displacement of joint j = 
j = joint number 
dallowable = upper bound of displacement 

area of members belonging to group k  Ak = 
k = group number 
m number of members in group k = 
Li length of member i = 
ρi density of member i = 
K = penalty coefficient 

 For the examples solved, it is observed that the 
displacement constraints are dominant over stress and 
stability constraints. Therefore, it can be concluded 
that the displacement constraints play an important 
role in the optimization process for the bridge trusses. 
A lighter truss can be obtained with less number of 
iteration if displacement constraints are kept out in the 
design process. 

C = violation coefficient 
I = impact factor 
L = span of the bridge 
r = radius of gyration 
a = constant 
b = constant 
z = variable of polynomial 
x = design variable 
mn = mean value 
std = standard deviation  It can be said that the results by GA are 

meaningful, more suitable for practice. GA performs 
well to find minimum weight of bridge trusses under 
moving load for optimization with discrete design 
variables. The optimizations with continuous design 
variables confirm the optimal designs reported.  
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