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Abstract. The gap between the computational and semantic features is the one

of major factors that bottlenecks the computer-aided diagnosis (CAD) perfor-

mance from clinical usage. To bridge such gap, we propose to utilize the

multi-task regression (MTR) scheme that leverages heterogeneous computa-

tional features derived from deep learning models of stacked denoising

autoencoder (SDAE) and convolutional neural network (CNN) as well as

Haar-like features to approach 8 semantic features of lung CT nodules. We

regard that there may exist relations among the semantic features of “spicula-

tion”, “texture”, “margin”, etc., that can be exploited with the multi-task

learning technique. The Lung Imaging Database Consortium (LIDC) data is

adopted for the rich annotations, where nodules were quantitatively rated for the

semantic features from many radiologists. By treating each semantic feature as a

task, the MTR selects and regresses the heterogeneous computational features

toward the radiologists’ ratings with 10 fold cross-validation evaluation on the

randomly selected LIDC 1400 nodules. The experimental results suggest that the

predicted semantic scores from MTR are closer to the radiologists’ rating than

the predicted scores from single-task LASSO and elastic net regression methods.

The proposed semantic scoring scheme may provide richer quantitative

assessments of nodules for deeper analysis and support more sophisticated

clinical content retrieval in medical databases.
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1 Introduction

The semantic features like the “spiculation”, “lobulation”, etc., are commonly used to

describe the phenotype of a pulmonary nodule in the radiology report. For the dif-

ferential diagnosis of pulmonary nodules in the CT images, the semantic spiculation

feature and the high-level texture feature of nodule solidness are suggested to be

important factors for the identification of malignancy in several diagnostic guidelines
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[1, 2]. In the context of computer-aided diagnosis (CAD), several methods also

attempted to computationally approximate some high-level semantic features to

achieve the classification tasks [3–6]. For examples, in [4] the partial goal of the

bag-of-frequencies descriptor was to classify 51 spiculated and 204 non-spiculated

nodules in the CT images, whereas the nodule solidness categorization method was

developed in [5] based on the low-level intensity features. In general, most of these

works simply focused on the elaboration of single semantic feature for the discrete

trichotomous/dichotomous nodule classification of malignancy, spiculation and solid-

ness [3–6]. There is scarcely any work that has ever attempted to quantify the degrees

of these high-level features to support deeper nodule analysis. Since a pulmonary

nodule can be profiled with several semantic features, there may exist some kinds of

relation among the semantic features. In this paper, we aim to address two specific

problems: (1) degree quantification of the semantic features and (2) jointly mapping the

computational image features toward the multiple semantic features. Distinct from the

traditional CAD scheme that only suggests malignancy probability [3, 6], the proposed

nodule profiling scheme may provide broader quantitative assessment indices in the

hope to get closer to the clinical usage.

The thoracic CT dataset from the Lung Image Database Consortium (LIDC) [7] is

adopted here for the rich annotation resources from many radiologists across several

institutes in U.S.A. A nodule with diameter larger than 3 mm was annotated by

radiologists to give their ratings for the semantic features of “spiculation”, “lobulation”,

“texture”, “calcification”, “sphericity”, “subtlety”, “margin”, “internal structure”, and

“malignancy”. The exemplar nodules of each semantic features are shown in Fig. 1.

The “malignancy” is excluded in this study as it relates to diagnosis. Most semantic

features were scored in the range of 1–5, excepting the “internal structure” and

“calcification” that were scored in the ranges of 1–4 and 1–6, respectively.

As shown in Fig. 1, our goal is challenging. The appearances and shapes of nodules

are very diverse for each semantic feature, and the surrounding tissues of nodules may

further complicate the image patterns of nodules. Therefore intensive elaboration on the

Fig. 1 Illustration of nodule patterns for the 8 semantic features.
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extraction and selection of effective computational image features for each semantic

feature is needed. In this study, we leverage the techniques of stacked denoising

autoencoder (SDAE) [8], convolutional neural network (CNN) [9], and Haar-like

feature computing [10] along with multi-task regression (MTR) framework to

approximate our predicted scores to radiologists’ ratings. With the SDAE, CNN and

Haar-like features, the MTR can automatically exploit the sharable knowledge across

the semantic features and select useful computational features for each of them. Here,

each semantic feature is treated as an individual task.

2 Method

The training of nodule scoring scheme for the 8 semantic features is based on 2D

nodule ROIs to avoid direct 3D feature computing from the LIDC image data with

anisotropic resolution between x-y and z directions. The slice thickness variation is

quite high (1.25–3 mm) in the LIDC dataset. At testing, the predicted scores for a

nodule are derived with the averaged scores over all its member slices. Each nodule

ROI is defined as the expanding bounding boxes of radiologists’ outlines with offset of

10 pixels to include more anatomical contexts. For training and testing, all ROIs are

resized as 28 � 28 for efficiency. The flowchart of our scheme is shown in Fig. 2.

2.1 Extraction of Heterogeneous Computational Features

Referring to Fig. 1, the semantic features (tasks) cover the high-level description about

the shape and appearance of pulmonary nodules, and the effective computational

Fig. 2 Flowchart of the proposed scheme.
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features for each task is generally unknown. Therefore, we firstly compute heteroge-

neous features as diverse as possible, and then use the MTR framework to seek the

suitable features for each task. The SDAE, CNN and Haar-like features are computed

as the heterogeneous features. The SDAE and CNN are deep learning models that can

automatically learn spatial patterns as features. The learnt SDAE and CNN features

may encode both appearance and shape characteristics of nodules. SDAE features are

derived from unsupervised phase and thus are general features. The training of CNN

requires the sample labels, and hence CNN features are more task-specific. The

Haar-like features aim to characterize low-level image contextual cue of nodules. To

compensate the ROI resizing effect, we add the scaling factors of x and y directions and

aspect ratio as three extra features; see Fig. 2.

SDAE model is constituted of unsupervised and supervised training phases. Here,

we only take output neurons of the unsupervised phase as the SDAE features. At the

unsupervised phase, the SDAE architecture is built by stacking the autoencoders in a

layer-by-layer fashion. A layer of autoencoder can be constructed by seeking the

coding neurons with the minimization of the reconstruction error of

x� r W 0
rðW~xþ bÞþ b0ð Þk k

2
; ð1Þ

where x is the input data and ~x is the corrupted input data for better performance. The

data corruption is conducted with random 0.5 zero masking. W , b, W
0
, and b

0
are the

synaptic matrices and biases of coding and reconstruction neurons, respectively, and r

is the sigmoid function. There are totally 100 SDAE features for MTR.

A typical CNN model is composed of several pairs of convolutional (C) and

max-pooling (M) layers and commonly ended with fully-connected (F) and soft-max

layers. We train 8 CNN models for the 8 tasks and adopt the neural responses at the

fully-connected layer as the CNN features. Therefore, the CNN features are

task-specific. The number of CNN features for each task is 192.

The Haar-like feature for a nodule ROI, Z, is computed with two blocks cropped

from the resized ROI as:

1

ð2s1 þ 1Þ2

X

p�c1k k� s1
ZðpÞþ

e

ð2s2 þ 1Þ2

X

p�c2k k� s2
ZðqÞ; ð2Þ

where c1, s1 and c2, s2 are the center and half-size of two square blocks, respectively,

and ZðpÞ is the HU value of p. e can be 1, 0, and −1 and is randomly determined. The

center and half-sizes of blocks are randomly set to generate 50 Haar-like features from.

The half-size can be 1, 2, or 3.

2.2 Multi-task Regression

The 8 semantic features (tasks) describes nodule shape and appearance and hence may

relate to each other in semantic meaning. The relation among the 8 tasks are generally

unknown, and some tasks may share some computational features whereas some other

tasks may not. To exploit the inter-task relation, we apply a MTR scheme with the

56 S. Chen et al.



constraints of block and element sparsity [11]. Specifically, the cost function of the

MTR is expressed as:

X8

t¼1
XT
t Wt � Yt

�

�

�

�

2

F
þ kB Bk k1;1 þ kS Sk k1;1;W ¼ Bþ S; ð3Þ

where Yt and Xt are the data labels and the SDAE + CNN + Haar-like features for the

task t, respectively, WT
t is the feature coefficient matrix of task t, W ¼ W1; � � � ;W8½ �,

and �k kF is the Frobenius norm. The regularization terms Bk k1;1 and Sk k1;1 assure the

block and element sparsity and kB and kS are their weightings. The Sk k1;1 is defined as
P

i;j Si;j
�

�

�

�, and Bk k1;1 is computed as
P

i Bik k1, where Bik k1¼ max
j

Bi;j

�

�

�

�; i and j are

the indices of the rows and columns w.r.t. each matrix. The Sk k1;1 encourages zero

elements in the matrix, whereas the Bk k1;1 favors zero rows in the matrix. Each

column of W carries the feature coefficients of each task, while the coefficients of

shared and task-specific features are hold in B and S, respectively, see Fig. 4(right). The

minimization of the Eq. (3) is realized by interleavedly seeking proper B and S with the

coordinate descent algorithm. The output W can be obtained with the final B and S. As

shown in [11], with the constraints in Eq. (3), the coefficients of non-zero rows in B are

sparse and distinctive, because the term Bk k1;1 may help avoid the situation of

nearly-identical elements in the non-sparse rows with the constraint of l1=lq-norm. In

such case, the MTR can not only exploit the shared features but also reserve the

flexibility of coefficient variation of the shared features w.r.t. each task.

3 Experiments and Results

To illustrate the efficacy, the MTR framework are compared with two single-task

regression schemes of LASSO [12] and elastic net [13], which can also select sparse

features within the linear regression frameworks. The single-task regression schemes

use the same set of computational features with MTR, except the CNN features, and

perform the regression for each task independently. For MTR, all CNN features from 8

tasks are involved, whereas the single-task regressions only use the CNN features

derived from each task. The performances of the two single-task regression schemes for

each task are tuned independently and thus the regression parameters are different from

task to task. To further show the effect of each type of computational features, we also

compare the sole uses of SDAE, CNN, Haar-likes features in all regression

schemes. 1400 nodules randomly selected from the LIDC dataset are involved in this

study with the 10-fold cross-validation (CV) evaluation (basic unit is nodule). The

feature computing and regression use the same data partition in each fold. Each nodule

may have more than one annotation instances from different radiologists. In each fold

of training, only one instance is utilized for nodules with multiple annotation instances,

whereas all instances of the same nodule are involved in the testing in each fold. There

are totally 581, 321, 254, 244 nodules with one, two, three and four annotation

instances from different radiologists, respectively. We adopt the differences between

the computer-predicted and radiologists’ scores as the assessment metrics.
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Table 1 summarizes the statistics of absolute differences between the computer-

predicted (MTR, LASSO, and elastic net) and radiologists’ scores over the 10-fold of

CV. The performance of sole uses of three heterogeneous features for the three

regression schemes are reported in Table 1 to show the effectiveness of the three types of

computational features. The absolute differences of inter-observer ratings are also shown

in the Table 1 for comparison. The inter-observer variation is computed from all pos-

sible pairs of annotation instances of the same nodule. As can be observed, the

inter-observation variation is quite close to the variation between MTR scores and

radiologists’ scores. It may suggest there may exist ambiguity between the scoring

degrees of the 8 semantic features that leads to rating disagreements among radiologists,

see Fig. 4(left), where two ROIs of a nodule are shown. The nodule in Fig. 4(left) has

degree ambiguity in “Subtlety” with scores from 4 radiologists of (2, 4, 5, 3), while the

Table 1. Abosulte distance perfomance. The “Tex”, “Sub”, “Spi”, “Sph”, “Mar”, “Lob”, “IS”,

and “Cal” stand for of the tasks “Texture”, “Subtlety”, “Spiculation”, “Sphericity”, “Margin”,

“Lobulation”, “Internal Structure”, and “Calcification”, respectively. “IB”, “LS” and “EN”

indicate the inter-observer variation, LASSO and elastic net, respectively.

Tex Sub Spi Sph Mar Lob IS Cal Overall

IB .

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

A
ll featu

res

LS 1.04

± 0.53

1.25

± 0.65

0.89

± 0.85

1.25

± 0.90

1.13

± 0.62

0.95

± 0.84

0.02

± 0.19

2.18

± 0.61

1.09

± 0.65

EN 1.24

± 0.50

1.20

± 0.63

0.86

± 0.79

1.09

± 0.74

0.98

± 0.91

0.96

± 0.93

0.14

± 0.24

1.44

± 0.84

0.99

± 0.70

MTR .

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

.

± .

C
N

N
LS 1.06

± 0.58

1.13

± 0.66

1.04

± 1.08

1.29

± 0.95

1.13

± 1.00

1.28

± 1.04

0.02

± 0.19

2.12

± 0.66

1.13

± 0.77

EN 1.27

± 0.53

1.68

± 0.82

1.04

± 1.08

1.39

± 0.97

1.31

± 0.96

1.08

± 0.95

0.02

± 0.19

1.89

± 0.71

1.21

± 0.78

MTR 0.74

± 0.60

0.84

± 0.56

0.86

± 0.65

0.83

± 0.48

0.97

± 0.64

0.90

± 0.66

0.04

± 0.19

0.69

± 0.56

0.73

± 0.54

H
aar- lik

e

LS 2.42

± 1.18

2.43

± 1.09

0.88

± 1.02

1.50 ±

1.05

1.88

± 1.16

0.95

± 1.02

0.02

± 0.19

4.38

± 1.13

1.81

± 0.98

EN 3.48

± 1.05

3.08

± 1.08

0.95

± 1.01

2.68

± 0.95

2.71

± 1.18

1.02

± 1.00

0.26

± 0.46

4.61

± 0.99

2.35

± 0.97

MTR 1.70

± 1.17

1.63

± 1.11

0.91

± 1.04

1.65

± 1.08

1.56

± 1.09

0.96

± 1.04

0.07

± 0.29

2.94

± 1.37

1.43

± 1.02

S
D

A
E

LS 1.17

± 0.54

1.43

± 0.76

1.17

± 0.91

1.68

± 0.88

1.35

± 0.80

1.16

± 0.89

0.02

± 0.19

2.24

± 0.58

1.28

± 0.69

EN 1.23

± 0.75

1.23

± 0.70

1.15

± 0.90

1.58

± 0.87

1.47

± 0.90

1.18

± 0.92

0.55

± 0.24

1.56

± 0.95

1.24

± 0.78

MTR 0.74

± 0.74

0.84

± 0.63

0.95

± 0.69

0.84

± 0.50

1.00

± 0.69

0.97

± 0.70

0.05

± 0.19

0.64

± 0.71

0.76

± 0.61
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MTR score is 3.78. The “Subtlety” scoring is highly subjective and depends on radi-

ologists’ experience. Figure 3 shows the box-plots of signed differences between the

computer-predicted and radiologists’ scores in CV 10 folds.

In Table 1, it can be found that the performances for the task “internal structure” are

very good. It is because most nodules were rated as score 1 (1388) where the sample

numbers for the scores 2–4 are nearly zeros. Accordingly, the regression for the task

“internal structure” will not be difficult. For tasks like “spiculation” and “lobulation”,

the performance of the two single-task regression methods are not bad. However, it

shall be recalled that the performance of these two single-tasks methods require tedious

task-by-task performance tuning. It may turn out to be impractical if the task number

goes formidably large. On the other hand, the MTR jointly considers the 8 tasks and

achieves better performance.

To further insight on meaning and effect of the W separation mechanism in the

MTR scheme, the sought B and S at the one fold of CV are shown in Fig. 4(right),

where the black and non-black areas suggest zero and non-zero elements respectively.

The blue rectangle identify the Haar-like features, while the left and right sides of the

rectangle are the CNN and SDAE features, respectively. The selected task-specific

features in S are very sparse, and many CNN and SDAE features are sharable across

tasks as can be found in B.

4 Discussion and Conclusion

A computer-aided attribute scoring scheme for CT pulmonary nodules is proposed by

leveraging the heterogeneous SDAE, CNN and Haar-like features with the multi-task

regression (MTR) framework. The yielded scores with the MTR are shown to be more

close to the radiologists’ ratings, comparing to the scores from the two single-task

regression methods. The two single-task methods share similar formulation like Eq. (3)

without the consideration ofmultiple tasks, and are suitable for comparison. Accordingly,

Fig. 3 Boxplots of the signed differences for MTR, LASSO, and elastic net, respectively.

Fig. 4 Annotation ambiguity (left) and illustration of B, S and W at one fold of CV (right).
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the MTR can help to select useful features for each task with the exploration of inter-task

relation. The effectiveness of using all SDAE, CNN, and Haar-like features are also

illustrated in Table 1. Therefore, the efficacy of the MTR and the used heterogeneous

features shall be well corroborated. Our automatic scoring scheme may help for deeper

nodule analysis and support more sophisticated content retrieval of clinical reports and

images for better diagnostic decision support [14].
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