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Bridging Design and Behavioral Research With Variance-
Based Structural Equation Modeling

J€org Henseler
University of Twente, Enschede, the Netherlands, and Universidade Nova de Lisboa, Lisboa, Portugal

Advertising research is a scientific discipline that studies
artifacts (e.g., various forms of marketing communication) as
well as natural phenomena (e.g., consumer behavior). Empirical
advertising research therefore requires methods that can model
design constructs as well as behavioral constructs, which typically
require different measurement models. This article presents
variance-based structural equation modeling (SEM) as a family
of techniques that can handle different types of measurement
models: composites, common factors, and causal–formative
measurement. It explains the differences between these types of
measurement models and clears up possible ambiguity regarding
formative endogenous constructs. The article proposes
confirmatory composite analysis to assess the nomological
validity of composites, confirmatory factor analysis (CFA) and
the heterotrait-monotrait ratio of correlations (HTMT) to assess
the construct validity of common factors, and the multiple
indicator, multiple causes (MIMIC) model to assess the external
validity of causal–formative measurement.

Advertising research is a relatively young academic disci-

pline that combines design research and behavioral research.

On one hand, advertising research covers “knowledge unique

to advertising as an institution and professional practice”

(Reid 2014, p. 410). It investigates what is understood as

advertising in the widest sense, including the whole range of

marketing communication and branding. In this sense, adver-

tising forms a class of marketing instruments that can be

viewed as artifacts designed by humans. The term artifact

should be understood broadly, but not as a statistical or meth-

odological artifact despite the methodological character of this

article.1 Advertising research with this focus is a “science of

the artificial” (Simon 1969) and thus a design science, aiming

to generate a body of knowledge on how to create, improve,

orchestrate, and manage specific types of marketing instru-

ments. On the other hand, advertising research is predomi-

nantly regarded as a behavioral science (Carlson 2015),

aiming to explain advertising effects and the social aspects of

advertising (Reid 2014). Advertising research with this focus

sheds light on consumers and can be viewed as a particular

type of consumer research and applied psychology. This dual

focus poses challenges for its theories as well as the empirical

methods to create and validate them.

Empirical advertising research on relationships between

behavioral constructs and design constructs needs analytical

tools that can cope with the different requirements of behav-

ioral and design sciences. Behavioral constructs are often

latent variables that can be understood as ontological entities,

such as attributes or attitudes of consumers. This way of theo-

retical reasoning rests on the assumption that theoretical con-

structs of interest exist in nature, irrespective of scientific

investigation. In contrast, constructs of design research (arti-

facts) can be conceived as products of theoretical thinking.

Thinking about constructs as artifacts has its roots in construc-

tivist epistemology. Constructs in this sense can be understood

as constructions that are theoretically justified. The epistemo-

logical distinction between the ontological and the constructiv-

ist nature of constructs has important design implications. The

correspondence rule that links the empirical indicators to the

theoretical construct, as conceptually represented in what is

referred to as the measurement model, depends on the nature

of the construct. Whereas behavioral constructs are typically

modeled as common factors, design constructs can be modeled

as composites. Modeling design constructs as composites pays

tribute to the fact that all artifacts or abstractions thereof con-

sist of more elementary components (Nelson and Stolterman

2003).

Against this background, this article illustrates the use of

variance-based structural equation modeling (SEM) as an ana-

lytical tool for empirical advertising research at the interface

of design and behavioral research. Unlike covariance-based

SEM, variance-based SEM can estimate common factors and
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composites, which makes it suitable for behavioral constructs

as well as design constructs. The remainder of this article is

organized as follows: It begins by explaining the nature of var-

iance-based SEM and how to specify structural equation mod-

els containing composites as well as common factors. This

includes the different specifications of measurement models

(composite, reflective, and causal–formative) as well as struc-

tural models. Next, it describes how to conduct model tests,

how to assess and report estimates of variance-based SEM,

and the use of the bootstrap for inference statistics. Finally, it

discusses extensions of variance-based SEM and provides sug-

gestions for further research.

VARIANCE-BASED STRUCTURAL EQUATION
MODELING

As in several other scientific disciplines, theoretical con-

structs are the building blocks of advertising theories. A theo-

retical construct is “a conceptual term used to describe a

phenomenon of theoretical interest” (Edwards and Bagozzi

2000, pp. 156–57). Generally speaking, most theoretical

constructs “can only be measured through observable meas-

ures or indicators that vary in their degree of observational

meaningfulness and validity. No single indicator can capture

the full theoretical meaning of the underlying construct and

hence, multiple indicators are necessary” (Steenkamp and

Baumgartner 2000, p. 196).

Common theoretical constructs in advertising research are,

for instance, attitude toward the brand, ad liking, ad awareness,

advertising practices, media mix, advertising budget, and

advertising content. Whereas some theoretical constructs of

advertising research refer to consumer attributes, others refer

to human-made objects (artifacts) that are typically created by

managers, staff, or other agents of firms.

To empirically investigate relationships between theoret-

ical constructs of advertising research, researchers can

apply SEM. SEM is a family of statistical techniques that

have become popular in advertising and marketing research

(Henseler, Ringle, and Sarstedt 2012). A key reason for the

attractiveness of SEM is the possibility to (graphically)

model and estimate parameters for relationships between

theoretical constructs and to test complete behavioral sci-

ence theories (Bollen 1989). SEM distinguishes between

theoretical constructs and their empirical measurement by

multiple observable variables.

SEM can be divided into two subtypes: covariance based

(J€oreskog 1978; Rigdon 1998) and variance based (Reinartz,

Haenlein, and Henseler 2009). These two approaches to SEM

differ in their estimation objectives (Henseler, Ringle, and

Sinkovics 2009). Covariance-based SEM minimizes a discrep-

ancy between the empirical covariance matrix and the theoreti-

cal covariance matrix implied by the structural equations of

the specified model. In contrast, variance-based SEM deter-

mines construct scores as linear combinations of observed

variables such that a certain criterion of interrelatedness is

maximized. Variance-based SEM techniques encompass

extended canonical correlation analysis (Kettenring 1971),

generalized structured component analysis (Hwang and

Takane 2004), traditional partial least squares (PLS) path

modeling (Lohm€oller 1989), consistent PLS path modeling

(Dijkstra and Henseler 2015a, 2015b), and regularized

generalized canonical correlation analysis (Tenenhaus and

Tenenhaus 2011). Regressions between sum scores or princi-

pal components can also be regarded as simple variance-based

SEM techniques. The techniques differ with respect to their

optimization function and abilities.

Applications of variance-based SEM in advertising research

address topics such as online and mobile advertising (Jensen

2008; Naik and Raman 2003; Okazaki, Li, and Hirose 2009),

advertising believability and information source value (O’Cass

2002), e-mail viral marketing (San Jos�e-Cabezudo and Camar-

ero-Izquierdo 2012), integrated marketing communication abil-

ity (Luxton, Reid, and Mavondo 2015), and advertising and

selling practices (Okazaki, Mueller, and Taylor 2010a, 2010b).

SPECIFYING AND ESTIMATING STRUCTURAL
EQUATION MODELS

Structural equation models consist of two submodels:

the measurement model, which specifies the relationships

between constructs and their indicators, and the structural

model, which contains the relationships between constructs.

Three types of measurement models can be distinguished:

composite, reflective, and causal–formative. The choice of

measurement model should be driven mainly by the nature

of the construct, in other words, whether a design construct

or a behavioral construct is studied. Design constructs can

be regarded as mixtures of elements. This suggests that

they should be modeled as composites. In contrast, con-

structs of behavioral sciences are typically latent variables

and are traditionally modeled using reflective measurement.

If causal indicators (antecedents of the construct) are avail-

able in addition to the reflective indicators, an analyst can

apply causal–formative measurement. Table 1 summarizes

the differences between the three types of measurement

models, and Figure 1 depicts the resulting decision tree.

Composite Measurement

The composite measurement model, also referred to as the

composite factor model (Henseler et al. 2014), the composite–

formative model (Bollen and Diamantopoulos 2015), or sim-

ply the composite model, assumes a definitorial relation

between a construct and its indicators. This means that the

construct is made up of its indicators or elements. An example

from advertising research would be brand equity as conceptu-

alized by Aaker (1991): It is a construct made up of brand
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awareness, brand associations, brand quality, brand loyalty,

and other proprietary assets.

In composite measurement, the relationships between the

indicators and the construct are not cause-effect relationships

but rather a prescription of how the ingredients should be

arranged to form a new entity. Nelson and Stolterman (2003,

p. 119) remind us that “[a]lthough it’s true that ‘the whole is

greater than the sum its parts,’ we must also acknowledge that

the whole is of these parts.”

Figure 2 depicts a composite measurement model. The

arrow connections between the indicators and the composite

should not be regarded as causal relationships in the com-

mon sense of the word causal. Rather, in terms of the four

Aristotelian causes, composite measurement taps into the

TABLE 1

Summary of Differences Between Types of Measurement Models

Factor Composite Measurement Reflective Measurement

Causal–Formative

Measurement

Relationship between

construct and

indicators

The indicators make up the

construct.

The construct causes its

indicators.

The indicators cause the

construct.

Expected correlational

pattern among

indicators

High correlations are

common but not required.

High correlations are

expected.

There is no reason to expect

the measures are

correlated.

Validity of scale score The scale score adequately

represents the construct.

The scale score does not

adequately represent the

construct.

The scale score does not

adequately represent the

construct.

Dealing with

measurement error

Does not involve

measurement error.

Takes measurement error into

account at the item level.

Takes measurement error into

account at the construct

level.

Consequences of

dropping an indicator

Dropping an indicator alters

the composite and may

change its meaning.

Dropping an indicator does

not alter the meaning of the

construct.

Dropping an indicator

increases the measurement

error on the construct level.

Nomological net Indicators are required to

have the same

consequences.

Indicators are required to

have the same antecedents

and consequences.

Indicators are not required to

have the same antecedents

and consequences.

FIG. 1. Decision tree for measurement models.
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material cause instead of the efficient cause. In formal

terms, the composite model regards the construct as a linear

combination of its indicators, each weighted by an indicator

weight w:

ξ D
XI

iD 1

wixi (1)

Researchers who introduce a composite can be thought of as

designers: They design this construct. Designers can choose

whether they define the weights or let mathematical tools deter-

mine the weights to achieve some kind of optimality. A typical

composite construct of advertising research is the media mix:

Different media can receive equal budgets, different budgets

based on the decider’s experience, or different budgets based on

heuristics or optimization tools (F€are et al. 2004; Reynar, Phil-

lips, and Heumann 2010). Researchers using variance-based

SEM typically let the software provide estimates for the

weights. If the indicators are highly correlated, preset equal

weights are also a viable option (McDonald 1996). In general,

preset weights are the way to go if concrete weights form an

integral part of the recipe of the modeled artifact.

Composite measurement models pose only a few restric-

tions on the overall model. The most important restriction is

that all correlations between indicators of different constructs

can be explained as the product of interconstruct correlations

and respective indicator loadings. Besides that, the composite

measurement model does not require any assumptions about

the correlations between its indicators; they can have any

value. Consequently, the correlations between indicators will

not be indicative for any sort of quality; applying internal

consistency reliability coefficients to composite measurement

models bears any meaning. Instead, composite measurement

can be evaluated only in relation to its nomological net, which

implies that constructs specified as composites typically

require a context in which they are embedded.

Reflective Measurement

Reflective measurement models form the backbone of

behavioral research. Advertising research constructs bor-

rowed from consumer psychology are most often modeled in

this way. A typical example would be consumer involvement

(Andrews, Durvasula, and Akhter 1990). Reflective measure-

ment models are essentially common factor models, which

postulate that there is a latent variable underlying a set of

observable variables. In turn, each observable variable or indi-

cator is regarded as an error-prone manifestation of a latent

variable’s level, as expressed by the following equation:

xi D λi�ξ C ei (2)

The measurement errors are assumed to be centered around

zero and uncorrelated with other variables, constructs, or

errors in the model. The latent variable is not directly observ-

able, but only the correlational pattern of its indicators pro-

vides indirect support for its existence. Figure 3 depicts a

typical reflective measurement model. The strong tie between

reflective measurement and the common factor model implies

that covariance-based SEM typically serves as its statistical

workhorse (Bollen 1989; J€oreskog and S€orbom 1982, 1993).

For a more detailed description of reflective measurement, we

refer to Hair, Babin, and Krey (2017) in this issue of Journal

of Advertising.

In principle, variance-based SEM estimates composite

models, not factor models. If a composite is created as a linear

combination of error-prone indicators, the composite itself

does contain measurement error. As a consequence, research-

ers who use composites as stand-ins for latent variables will

obtain inconsistent model coefficients and risk inflated Type I

and Type II errors (Henseler 2012). For most types of

research—except predictive research—it is indispensable to

aim for consistent estimates. The solution is the correction for

attenuation. It entails that the correlation between composites

divided by the geometric mean of their reliabilities is a consis-

tent estimate of the correlation between the factors.

There are several ways of determining the reliability of the

composites. First, one can use covariance-based SEM to

FIG. 2. Composite measurement.

FIG. 3. Reflective measurement.
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estimate a factor model and derive the composite’s reliability

from the variance that the composite and the factor share (Ray-

kov 1997). If all the weights of a composite are equal, the reli-

ability can be calculated based on the factor loadings (Werts

et al. 1978). Second, if a factor is embedded in a nomological

net, one can exploit the fact that some variance-based SEM

techniques (such as PLS Mode A) provide weights that are pro-

portional to the true yet unknown correlations between the indi-

cators and their common factor (Dijkstra and Henseler 2015a,

2015b). Researchers do not have to conduct a separate common

factor analysis to obtain consistent estimates for the loadings.

Causal–Formative Measurement

The causal–formative measurement model (often referred to

as the formative measurement model) assumes a different epi-

stemic relationship between the construct and its indicators: The

indicators are considered as immediate causes of the focal con-

struct (Fassott and Henseler 2015). In turn, the construct is seen

as a linear combination of the indicators plus a measurement

error. An example from advertising research would be the per-

ceived interactivity of a website: This construct can be mea-

sured in a causal–formative way using the indicators “active

control,” “synchronicity,” and “two-way communication”

(Voorveld, Neijens, and Smit 2010).

The following equation represents a causal–formative mea-

surement model, where w indicates each indicator’s contribu-

tion to ξ, and d is an error term.

ξ D
XI

iD 1

wixi C d (3)

This equation strongly resembles the one for composite

measurement, yet the measurement error on the construct level

makes it distinct. The measurement error on the construct level

implies that the construct of interest has not been perfectly

measured by its formative indicators. Except for rare cases

when all causes can be measured (e.g., see Diamantopoulos

2006), it is indispensable to also have a reflective measurement

model; otherwise it is not possible to capture the entire content

of the construct. The reflective indicators can be observed or

latent as long as there are at least two reflective indicators

whose correlation is fully attributable to the construct as a

common cause. Figure 4 depicts a causal–formative measure-

ment model.

There is some confusion in the literature about what is

meant by formative measurement. Authors referring to forma-

tive measurement sometimes discuss the characteristics of

composite measurement and sometimes those of causal–for-

mative measurement (e.g., in particular early contributions on

formative measurement, such as Diamantopoulos and

Winklhofer 2001; Jarvis, MacKenzie, and Podsakoff 2003).

This confusion can be traced back to Edwards and Bagozzi

(2000), who deliberately sought a term that characterizes both

causal and definitorial relationships.

The confusion has culminated in such statements as “When

an endogenous latent variable relies on formative indicators

for measurement, empirical studies can say nothing about the

relationship between exogenous variables and the endogenous

formative latent variable” (Cadogan and Lee 2013, p. 233; for

a rejoinder, see Rigdon 2014a) or variance-based SEM “is not

an adequate approach to modeling scenarios where a latent

variable of interest is endogenous to other latent variables in

FIG. 4. Causal–formative measurement.
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the research model in addition to its own observed formative

indicators” (Aguirre-Urreta and Marakas 2013, p. 776; for a

rejoinder, see Rigdon et al. 2014).

The confusion can be cleared up if one carefully distin-

guishes between composite measurement and causal–

formative measurement. Whereas the older literature on vari-

ance-based SEM tends to equate formative measurement with

composite measurement (e.g., see Chin 1998; Hwang and

Takane 2004), it is only recently that scholars started recom-

mending the multiple indicators, multiple causes (MIMIC)

model specification for causal–formative measurement in

variance-based SEM, as depicted in Figure 4 (Rigdon et al.

2014). For covariance-based SEM, such types of models have

been the standard for decades (e.g., see Bagozzi 1980).

Particular care is required if a construct with a causal–for-

mative measurement model is meant to be explained by other

constructs in the model. Researchers should then apply the lit-

mus test of whether these other constructs are theorized to

directly or indirectly cause the construct. In the case of a direct

causal relationship, the other constructs should be added as

additional formative indicators. In the case of an indirect

causal relationship, the extant formative indicators mediate the

effect of the other constructs. Consequently, the researcher

should include effects from the other constructs on the forma-

tive indicators in the model.

The Structural Model

The structural model consists of endogenous and exogenous

constructs as well as the (typically linear) relationships

between them. In variance-based SEM, exogenous constructs

can freely correlate. The size and significance of path relation-

ships are typically the focus points of the scientific endeavors

pursued in empirical research.

In variance-based SEM, it is helpful to estimate two models:

the estimated model, as specified by the analyst, and the satu-

rated model (Gefen, Straub, and Rigdon 2011). The latter corre-

sponds to a model in which all constructs can freely correlate,

whereas the construct measurement is exactly as specified by

the analyst. The difference lies purely in the structural model. If

the estimated model is a full graph, both models will be equiva-

lent. The saturated model is useful to assess the quality of the

measurement model, because potential model misfit can be

entirely attributed to measurement model misspecification.

In principle, it is possible for structural models to leave the

comfortable realm of linear relations. In advertising research,

more is not always better, but there can be optimal numbers of

advertising instruments. This notion can be modeled by an

inverse U-shaped relation. Another common phenomenon in

advertising research is saturation. Both phenomena can be mod-

eled using variance-based SEM if nonlinear terms are included

in the structural model. In many cases, simple polynomial

extensions can help model the typical nonlinearities in advertis-

ing research (Dijkstra and Henseler 2011; Henseler et al. 2012).

A particular form of nonlinearity is moderation. One refers

to a moderating effect if a focal effect is not constant but

depends on the level of another construct in the model. Several

approaches for modeling moderating effects using variance-

based SEM have been proposed (e.g., Fassott, Henseler, and

Coelho 2016; Henseler and Fassott 2010; Henseler and Chin

2010).

Model Identification

Researchers using covariance-based SEM quickly become

aware of the need for identified models. The applied statistical

technique can only provide unanimous estimates for the model

parameters if the model is identified. Variance-based structural

equation models typically do not have identification problems,

because the available software packages restrict the allowed

models to those that are theoretically identified.

Nevertheless, it can happen that a variance-based structural

equation model is statistically underidentified. This occurs if a

construct with multiple indicators is unrelated to all other con-

structs in the model. In this case, any combination of indicator

weights would yield the same result, namely a construct that is

unrelated to the rest of the model. Analysts should avoid this

situation and take care that every construct is embedded in a

nomological net that consists of at least one other related vari-

able in the model. If such a nomological net is not available,

researchers should preset the weights or determine them by

means of techniques that do not require a nomological net,

such as principal component analysis (PCA).

A special identification issue is the phenomenon of sign

indeterminacy, which all SEM techniques face. Sign indeter-

minacy means that the statistical method can determine weight

or loading estimates for a factor or a composite only jointly

for their value but not for their sign. For instance, it can hap-

pen that all indicators of a construct have a sign opposite to

what would be expected. In covariance-based SEM, it has

become customary to constrain one loading to one, dictating

the orientation of the construct. Recently, this approach was

partly transferred to variance-based SEM as the dominant indi-

cator approach (Henseler, Hubona, and Ray 2016). For each

construct, the researcher should determine one indicator—the

dominant indicator—that must correlate positively with the

construct. If the loading of this indicator turns out to be nega-

tive, the orientation of the construct will be switched. This is

achieved by multiplying its scores by ¡1.

ASSESSING AND REPORTING THE RESULTS OF
VARIANCE-BASED STRUCTURAL EQUATION
MODELING

The fact that structural equation models consist of two sub-

models has immediate implications for the way in which the

results of variance-based SEM are assessed. It makes sense to

analyze the relationships among the constructs only if there is
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sufficient evidence of their validity and reliability. In analogy

to the two-step approach for covariance-based SEM (Anderson

and Gerbing 1988), a two-step approach for variance-based

SEM is suggested. In a first step, the quality of construct mea-

surement is determined. In a second step, the empirical esti-

mates for the relationships between the constructs are

examined. In the following section, we draw from new guide-

lines to assess and report results of variance-based SEM

(Henseler, Hubona, and Ray 2016).

Assessing Composite Measurement Models

Composites can be assessed with regard to three characteris-

tics: nomological validity, reliability, and weights (composition).

Composites can be regarded as prescriptions for dimension

reduction (Dijkstra and Henseler 2011) and generally go along

with a loss of information. Analysts face a trade-off: Should

they form the composite and accept the loss of information, or

continue the analysis simply using the indicators?

A generally accepted heuristic is Ockham’s razor: A model

should be preferred over a more general model in which it is

nested if it does not exhibit a significantly worse goodness of

fit. Composites impose proportionality constraints on the cor-

relations between the composite’s indicators and other varia-

bles in the model. If a model with these proportionality

constraints does not have a significantly worse fit than a model

without them, the composite can be said to have nomological

validity. If a composite has nomological validity, a researcher

can infer that it is the composite that acts within a nomological

net rather than the individual indicators. The concept of nomo-

logical validity was developed by Cronbach and Meehl (1955)

for factor models; its adaptation for the application to compos-

ite measurement is new.

The statistical technique needed to test for the nomological

validity of composites is confirmatory composite analysis

(Henseler et al. 2014). Confirmatory composite analysis tests

whether the discrepancy between the empirical correlation

matrix and the correlation matrix implied by the saturated

model is so small that the possibility cannot be excluded that

this discrepancy is purely attributable to sampling error. The

statistical test underlying confirmatory composite analysis

uses bootstrapping to generate an empirical distribution of the

discrepancy if the model was true (Dijkstra and Henseler

2015a). According to Zhang and Savalei (2016), this

“[m]odel-based bootstrap is appropriate for obtaining accurate

estimates of the p value for the test of exact fit under the null

hypothesis” (p. 395).

In addition to the nomological validity of the composite, it

is possible to determine its reliability. If a composite is mea-

sured by means of perfectly observable variables, there is no

random measurement error involved, and the resulting reliabil-

ity of the composite equals 1. If the indicators contain a ran-

dom measurement error, the composite will have imperfect

reliability. In these instances, the reliability of the composite

can be determined using the following equation (Mosier

1943):

rDw
0
S�w (4)

In this equation for a composite’s reliability r, w is the col-

umn vector of indicator weights, and S* is the correlation

matrix of the composite’s indicators, with the respective indi-

cator reliabilities in the main diagonal. Analysts facing the

challenge to provide reliability estimates for each indicator

could make use of respective values reported in previous stud-

ies or model second-order constructs as composites of factors

(van Riel et al. forthcoming).

Finally, if the weights were not preset by the analyst but

freely estimated, they should be carefully studied. What is

their size? What is their sign? What are their confidence inter-

vals? Another point of concern should be multicollinearity

among indicators (Diamantopoulos and Winklhofer 2001):

High levels of multicollinearity may let indicators yield unex-

pected signs or huge confidence intervals.

Assessing Reflective Measurement Models

The point of departure to assess reflective measurement

models should be a model test of the saturated model (Ander-

son and Gerbing 1988). In analogy to the confirmatory com-

posite analysis as described in the previous subsection,

reflective measurement models should be examined using con-

firmatory factor analysis (CFA). If a structural equation model

consists only of reflectively measured constructs, covariance-

based SEM is the most versatile technique for this task. If the

structural equation model also contains composites, covari-

ance-based SEM is not applicable, and it is recommended that

the CFA be conducted using variance-based SEM, leading to a

combined confirmatory composite/factor analysis. Techni-

cally, the CFA using variance-based SEM does not differ from

the confirmatory composite analysis. The main difference can

be found in the model-implied correlation matrix: For factor

models, the implied correlation between two indicators of a

factor is constrained to the product of their loadings, while

these implied correlations are unconstrained for composite

models.

Experience has shown that most empirical studies on mar-

keting and management provide evidence against the existence

of a factor model (Henseler et al. 2014). Concretely, research-

ers almost always find a significant discrepancy between the

empirical correlation matrix and the model-implied correlation

matrix, which reflects the pattern that should be observed if the

world indeed functioned according to the researcher’s model.

For advertising research, the figures are quite similar, although

not that bad: As Hair, Babin, and Krey (2017) point out in this

issue of Journal of Advertising, about 12% of the CFAs

reported in the journal exhibit factor models without signifi-

cant misfit.
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As a consequence of the poor test record of the factor

model, many researchers lose interest in testing the hypothesis

of exact fit (Zhang and Savalei 2016, p. 395), which is a wor-

rying trend. They acknowledge more or less that the factor

model is not (fully) correct and rely on measures of approxi-

mate model fit to quantify the degree of the model’s misfit. A

popular measure of approximate model fit is the standardized

root mean square residual (SRMR; Hu and Bentler 1999),

which has been shown to work well in combination with vari-

ance-based SEM (Henseler et al. 2014). SRMR values below

0.08 typically indicate that the degree of misfit is not substan-

tial (Henseler, Hubona, and Ray 2016). Instead of surrendering

in the light of significant misfit and referring to measures of

approximate fit, it would be wiser to investigate the sources of

misfit. In terms of model diagnostics, the (standardized) resid-

ual matrix is most informative to detect significant discrepan-

cies between the empirical covariance matrix and the model-

implied covariance matrix.

While the overall goodness-of-fit test and measures of

approximate fit are informative about whether the data at hand

favor a factor model, they hardly provide evidence of the qual-

ity of measurement. This becomes obvious if one looks at the

extreme case of a factor model whose indicators exhibit very

low correlations. In this case, a factor model is unlikely to be

rejected, because the discrepancy between the empirical corre-

lation matrix and the model-implied correlation matrix will

most likely be small. Yet it is legitimate to ask whether one

was able to measure the intended factor at all. Additional qual-

ity criteria have therefore been proposed.

Unidimensionality indicates whether a researcher succeeds

in extracting a dominant factor out of a set of indicators. The

most widely applied measure of unidimensionality is the aver-

age variance extracted (AVE; Fornell and Larcker 1981). It

equals the average proportion of variance explained of each

reflective indicator of a latent variable. Researchers should

strive for values higher than 0.5, because then there cannot be

a second factor that explains as much variance as the first one.

A weaker alternative is the permutation test that Sahmer,

Hanafi and El Qannari (2006) proposed, which tests whether

the first extracted factor explains significantly more variance

than the second factor.

Discriminant validity applies if two conceptually different

constructs are also statistically distinct. Fornell and Larcker

(1981) operationalized this requirement as a comparison

between a construct’s AVE and its squared correlations with

other constructs in the model. The Fornell-Larcker criterion pos-

tulates that a construct’s AVE should be higher than all its

squared correlations. A new criterion for discriminant validity is

the heterotrait-monotrait ratio of correlations (HTMT, proposed

by Henseler, Ringle, and Sarstedt 2015). In a recent simulation

study, the HTMT clearly outperforms the Fornell-Larcker crite-

rion (Voorhees et al. 2016). An HTMT value significantly

smaller than 1 or clearly below 0.85 provides sufficient evi-

dence of the discriminant validity of a pair of constructs.

The internal consistency reliability quantifies the amount of

random measurement error contained in the construct scores

that serve as stand-ins for the latent variables. Consistent

reliability coefficients for construct scores are Raykov’s r

(Raykov 1997) and Dijkstra-Henseler’s rho (rA, proposed by

Dijkstra and Henseler 2015b). If all weights of a composite are

equal, they will equal the composite reliability rc as proposed

by Werts et al. (1978). Psychometricians recommend a mini-

mum reliability value of 0.7 (Nunnally and Bernstein 1994).

Finally, a researcher should ensure that each indicator loads

sufficiently well on its own construct but less on other con-

structs in the model. The latter can be ensured by inspecting

the cross-loadings. If needed, researchers can rely on addi-

tional assessment criteria implemented for covariance-based

SEM (e.g., see Markus and Borsboom 2013).

Assessing Causal–Formative Measurement Models

Because causal–formative measurement models require a

complementary reflective measurement model, a point of

departure is the assessment of this reflective measurement.

Once this is accomplished, the analyst can devote attention to

the causal–formative measurement. Diamantopoulos and

Winklhofer (2001) propose to assess content validity, indicator

validity, indicator collinearity, and external validity of causal–

formative measurement models.

Content validity is about whether the set of indicators indeed

captures the full meaning of the construct. Transparent reporting

of the employed indicators helps create face validity. In this

way, content validity can be assessed without collecting data.

Indicator validity can also be assessed before data collection by

letting experts conduct a sorting task (Anderson and Gerbing

1991). If experts are able to correctly assign indicators to con-

structs, one can refer to the expert validity of the indicators.

Other ways of assessing causal–formative measurement

models require estimates and corresponding inference statis-

tics obtained from empirical data. Concretely, indicator valid-

ity applies if an indicator contributes significantly and

substantially to explaining the construct. Indicator multicolli-

nearity can have an adverse effect on this approach to indicator

validity. Analysts are therefore advised to keep an eye on the

variance inflation factors of the formative indicators.

The strongest evidence of the validity of causal–formative

measurement is external validity. How much variance of the

construct can be explained by the formative indicators? While

there are general suggestions for threshold levels (e.g., see

Henseler, Ringle, and Sinkovics 2009), it might depend on the

scientific development of the construct, as well as its scientific

discipline, to best identify which threshold would make sense.

Assessing Structural Models

A starting point for the assessment of structural models

should be the coefficients of determination (R2 values) of the
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endogenous constructs. The coefficient of determination quan-

tifies the proportion of variance of a dependent construct that

is explained by its predictors and lies between 0 and 1. The

coefficient of determination lies between 0 and 1 and quanti-

fies the proportion of variance of a dependent construct that is

explained by its predictors. To compare models with different

numbers of independent variables estimated using differently

large datasets, the adjusted R2 should be applied.

Because the constructs in variance-based SEM are typically

standardized, the path coefficients of the structural equation

model should be interpreted like standardized regression coef-

ficients: A coefficient for a path relationship between a depen-

dent and an independent variable quantifies the expected

increase in a dependent variable if the independent variable

increases by one standard deviation and all other independent

variables in the regression equation are kept constant (i.e.,

ceteris paribus). Apart from the size of a coefficient, its sign

also matters, because a negative sign implies that an increase

in the independent variable is accompanied by a decrease in

the dependent variable.

Inference statistics for all coefficients in a structural equa-

tion model are typically obtained using the bootstrap. Empiri-

cal bootstrap confidence intervals are the output of choice to

gauge the sampling variability of a coefficient. Alternatively,

the bootstrap can provide Student t and corresponding p values

for one-sided and two-sided null hypothesis significance tests.

Although the path coefficients provide a first impression of

the size of an effect, they are not very helpful in comparing

the size of effects across models, because they are influenced

by the number of other explanatory variables as well as the

correlations among them. As a remedy, Cohen (1988) intro-

duced the effect size, f2. f2 values above 0.35, 0.15, and 0.02

can respectively be regarded as strong, moderate, and weak

(Cohen 1988).

In addition to the direct effects, variance-based SEM can

derive estimates for indirect effects as the departure point for

the analysis of mediation (Nitzl, Rold�an, and Cepeda Carri�on
2016; Zhao, Lynch, and Chen 2010). The sum of the direct

effect and the indirect effect(s) between two constructs is

called the total effect. It is regarded as particularly useful for

success factor analysis (Albers 2010).

If a researcher aims to conduct predictive research, the

results need to be assessed and reported accordingly. Addi-

tional desirable assessments of predictive validity are the use

of holdout samples (e.g., Cepeda Carri�on et al. 2016) or the tri-
angulation of results using different samples (e.g., Lancelot-

Miltgen et al. 2016).

EXAMPLE

To demonstrate the application of variance-based SEM in

an advertising research setting, the empirical data Yoo,

Donthu, and Lee (2000) reported serve as a showcase. Their

empirical study of 569 individuals aims to explore the

relationships between selected marketing mix elements and

the creation of brand equity. Figure 5 depicts the conceptual

model. The data contain indicators of relevant advertising con-

structs, and the correlation matrix is publicly available, which

permits readers to completely replicate the reported analyses.2

The analyses entail CFA, SEM, and confirmatory compos-

ite analysis. CFA answers the questions of whether there is

evidence of the existence of nine latent variables and whether

it is possible to measure them validly. SEM allows one to say

something about the causal relationships among these latent

variables. Confirmatory composite analysis helps answer an

additional research question (not asked by Yoo, Donthu, and

Lee 2000), namely whether it makes sense to create a brand

equity construct as a weighted sum of the elements’ perceived

brand quality, brand loyalty, and brand awareness or

associations.

Table 2 contrasts the original values Yoo, Donthu, and Lee

(2000) reported with estimates obtained with covariance-based

and variance-based SEM. Yoo, Donthu, and Lee used the max-

imum likelihood (ML) estimator as implemented in LISREL 8.

The reanalysis makes use of three established estimators of

covariance-based SEM, as implemented in the R package (R

Core Team 2014) Lavaan (Rosseel 2012). Next to ML, these

are generalized least squares (GLS) and unweighted least

squares (ULS). Potential deviations between the original val-

ues and the ML values are attributable to rounding errors

(Yoo, Donthu, and Lee reported the correlation matrix with

only two digits) and differences in software used. The far-right

column of Table 2 contains the results from consistent PLS as

implemented in ADANCO 2.0 (Henseler and Dijkstra 2015),

which is currently the only variance-based SEM technique

that yields consistent estimates for factor models.

Table 2 reports the outcomes from two separate analyses.

The SRMR and the standardized loadings stem from a CFA,

whereas the standardized path coefficients stem from SEM.

The structural equation model is nested in the confirmatory

factor model and has nine additional degrees of freedom (500

versus 491 df).

Overall, the results obtained from variance-based SEM

strongly resemble those of covariance-based SEM using the ULS

estimator. Tenenhaus (2008) has already reported similar findings.

The use of confirmatory composite analysis can be illustrated

using the same data set, but for a model on a higher level of

abstraction. Concretely, one might ask whether it makes sense to

model brand equity as a second-order construct. According to

Aaker’s (1991) conceptualization, brand equity is composed of

perceived quality, brand loyalty, and brand awareness or associa-

tions, and is therefore regarded as a composite of latent variables.

Van Riel et al. (forthcoming) have shown that variance-based

SEM can be used to test and consistently estimate second-order

constructs in the form of composites of factors.

Figure 6 depicts two competing models, which represent

two different understandings of the brand equity concept. The

model on the left understands brand equity as an umbrella
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term that groups three individual variables: perceived quality,

brand loyalty, and brand awareness or associations. In con-

trast, the model on the right regards brand equity as a compos-

ite of these three factors. The second model has fewer

parameters than the first, or more restrictions on the implied

correlation matrix.

A confirmatory composite analysis for the model on the

left yields an SRMR of 0.004 and an according HI95 value

of 0.013. This means that in more than 5% of the cases

one would obtain a value higher than 0.004 if the model

was correct. There is therefore no reason to reject this

model. In contrast, the model on the right yields an SRMR

of 0.073 and an according HI95 value of 0.019, which

means that it is very unlikely that the empirical data stem

from a world that functions as theorized by the model.

Consequently, one should reject this model. This implies

that for the empirical study of Yoo, Donthu, and Lee

(2000), there is no added value in regarding brand equity

as a composite of perceived quality, brand loyalty, and

brand awareness or associations.

DISCUSSION

Empirical advertising research—similar to probably any

other type of empirical research—strives for a logical fit

between research goals and statistical techniques. Rigdon

(2014b) comments that “[w]e have seen a long period where

our choice of statistical tools has shaped our research goals

[. . .] In future, we need to have our choice of goals shaping

our tools” (p. 166).

FIG. 5. Example model.
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TABLE 2

Comparison of Results for the Example Model

Criterion Original ML GLS ULS PLSc

Model fit in confirmatory factor analysis

SRMR .069 .069 .227 .058 .061

Standardized loadings of confirmatory factor analysis

Price PR1 .94 .94 .96 .86 .83

PR2 .74 .73 .62 .88 .91

PR3 .85 .86 .82 .77 .76

Store image IM1 .93 .93 .95 .84 .83

IM2 .82 .82 .79 .71 .70

IM3 .62 .62 .61 .78 .80

Distribution intensity DI1 .95 .96 .96 .89 .87

DI2 .93 .93 .95 .85 .84

DI3 .56 .56 .49 .69 .71

Advertising spending AD1 .89 .89 .82 .92 .92

AD2 .66 .66 .65 .65 .66

AD3 .93 .93 .97 .90 .89

Price deals DL1 .59 .58 .53 .69 .94

DL2 .94 .94 .87 .86 .73

DL3 .73 .73 .73 .68 .48

Perceived quality QL1 .87 .87 .89 .92 .95

QL2 .93 .92 .93 .88 .86

QL3 .82 .82 .81 .78 .74

QL4 .87 .86 .90 .84 .82

QL5 .84 .84 .81 .85 .86

QL6 .60 .60 .44 .66 .68

Brand loyalty LO1 .85 .85 .81 .88 .88

LO2 .94 .94 .92 .99 .99

LO3 .81 .81 .88 .74 .73

Brand associations with brand awareness AA1 .92 .92 .89 .85 .79

AA2 .92 .93 .89 .88 .84

AA3 .90 .90 .89 .87 .86

AA4 .79 .79 .74 .88 .95

AA5 .85 .85 .86 .90 .93

AA6 .66 .66 .51 .68 .67

Overall brand equity EQ1 .79 .78 .76 .80 .81

EQ2 .94 .94 .93 .95 .95

EQ3 .94 .94 .98 .94 .94

EQ4 .85 .85 .84 .84 .83

Standardized path coefficients of structural equation model

Perceived quality! Brand equity .10 .08 .05 .09 .12

Brand loyalty! Brand equity .69 .69 .73 .71 .67

Brand associations or awareness! Brand equity .07 .06 ¡.05 .05 .04

Price! Perceived quality .09 .10 .12 .11 .11

Store image! Perceived quality .32 .32 .33 .37 .36

Store image! Brand associations or awareness .33 .33 .19 .41 .41

Distribution intensity! Perceived quality .23 .23 .23 .29 .26

Distribution intensity! Brand loyalty .38 .38 .36 .46 .37

Distribution intensity! Brand associations or awareness .02 .02 ¡.06 .10 .09

(Continued on next page)
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Combining design and behavioral research, empirical

advertising research poses special challenges to statistical

tools. It requires an SEM technique that can handle both com-

posites (as the dominant model for design constructs) and fac-

tors (as the dominant model for latent variables of behavioral

research). Variance-based SEM is a family of techniques that

fulfill this requirement.

Researchers often call for more rigor when applying vari-

ance-based SEM techniques (e.g., Rigdon et al. 2014). For

this purpose, methodological research has presented a wide

range of extensions that enable researchers and practitioners

to adequately use variance-based SEM for the purpose of

their study. These advances include consistent estimates for

factor models (Dijkstra 2014; Dijkstra and Henseler 2015a,

2015b), the confirmatory tetrad analysis to test the kind of

measurement model and construct (Gudergan et al. 2008),

the heterotrait-monotrait ratio of correlations (HTMT) to

assess discriminant validity (Henseler, Ringle and Sarstedt

2015), different multigroup analysis approaches (Chin and

Dibbern 2010; Sarstedt, Henseler, and Ringle 2011), testing

measurement invariance of composites (Henseler, Ringle,

and Sarstedt 2016), as well as bootstrap-based tests of over-

all model fit (Dijkstra and Henseler 2015a). All these

changes culminate in revised guidelines for a confirmatory

research use of variance-based SEM (Henseler, Hubona,

and Ray 2016).

Although empirical advertising research is focused on

developing and testing theories, it is sometimes also about pre-

diction (Gardner 1984). Orientation toward prediction has

been one of the key building blocks of variance-based SEM

and its most emphasized characteristic since its creation

(J€oreskog and Wold 1982; Wold 1985). Recent conceptual

(Chin 2010; Sarstedt et al. 2014) and empirical studies

(Becker, Rai, and Rigdon 2013; Evermann and Tate 2012)

substantiate the suitability of variance-based SEM for predic-

tive purposes.

Future research should equip researchers with the tools and

criteria they need to exploit variance-based SEM’s capabilities

for predictive modeling (Shmueli 2010). The first advances in

this direction have recently been presented by Cepeda Carri�on

TABLE 2

Comparison of Results for the Example Model (Continued)

Criterion Original ML GLS ULS PLSc

Advertising spending ! Perceived quality .35 .32 .18 .26 .27

Advertising spending ! Brand loyalty .35 .33 .29 .23 .30

Advertising spending ! Brand associations or awareness .34 .32 .21 .25 .26

Frequency of price deals! Perceived quality ¡.21 ¡.20 ¡.14 ¡.20 ¡.16

Frequency of price deals! Brand associations or awareness ¡.21 ¡.20 ¡.11 ¡.17 ¡.14

Note. SRMR D standardized root mean square residual; ML D maximum likelihood; GLS D generalized least squares; ULS D unweighted

least squares; PLSc D consistent partial least squares.

FIG. 6. Competing models of confirmatory composite analysis.
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et al. (2016), Evermann and Tate (2016), and Shmueli et al.

(2016). Based on these advances, more research on methods

development can be expected to exploit variance-based SEM’s

predictive capabilities and a more intensive use of predictive

modeling in advertising research and other business and social

science disciplines.
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