BRIDGING INTER- AND INTRA-FIRM BOUNDARIES: MANAGEMENT OF SUPPLIER INVOLVEMENT IN AUTOMOBILE PRODUCT DEVELOPMENT

First Draft: 98/11

Akira Takeishi

Hitotsubashi University Institute of Innovation Research

2-1 Naka, Kunitachi, Tokyo 186-8603, Japan Phone: 81-(0)42-580-8425 Fax: 81-(0)42-580-8410 Email: takeishi@iir.hit-u.ac.jp

I would like to thank all the firms, respondents, and interviewees who gave of their time to participate in this study. Others who made suggestions incorporated into this article include Michael Cusumano, Charles Fine, Rebecca Henderson, Takahiro Fujimoto, Kentaro Nobeoka, Shoichiro Sei, Yaichi Aoshima, Tony Frost, and participants of seminars at MIT, Hitotsubashi University, Tokyo University, Kobe University, and

Mitsubishi International Conference. This study was conducted as a part of a research project at Massachusetts Institute of Technology's International Motor Vehicle Program (IMVP). IMVP's financial support is gratefully acknowledged.

BRIDGING INTER- AND INTRA-FIRM BOUNDARIES: MANAGEMENT OF SUPPLIER INVOLVEMENT IN AUTOMOBILE PRODUCT DEVELOPMENT

ABSTRACT

Outsourcing has become an important strategy for many firms. Yet, firms need to compete with their competitors who also outsource and may share the same suppliers. This article explores how a firm could outperform others in managing the division of labor with a supplier in product development. Drawing on the empirical data collected from the Japanese auto industry, this paper shows that an automaker needs capabilities to coordinate various activities both externally with a supplier and internally within its own organization, in order to gain better component development performance. Overall, the results imply that outsourcing does not work effectively without extensive internal effort.

INTRODUCTION

Managers have continually struggled with the question of where to set the boundary between what work takes place inside versus outside a company, what kind of relations to build with suppliers, and how to manage the division of labor with them. Outsourcing has recently become an important strategy for many firms, partly due to an increased pressure towards down-sizing and a growing recognition of possible advantages of cooperative inter-firm relations (Miles and Snow 1984; Jarillo 1988; Johnson and Lawrence 1988; Kanter 1989; Dertouzos, Lester and Solow 1989). Outsourcing some internal activities and building cooperative, interdependent, and long-term relations with suppliers and alliance partners are considered to give the participating firms some benefits such as combining different competencies, sharing fixed costs, and gaining economies of scale (Kanter and Myers 1991).

Yet however close relations a corporation builds with its partners and however capable the partners are, the firm still has to compete with other firms who are seeking similar close relations with their capable partners. Some partners may even be shared by competing firms. How could a company outperform competitors who also have cooperative relations with their partners? Without addressing this question, a firm cannot gain a sustainable competitive advantage from outsourcing. This paper intends to make a contribution to management research on inter-firm relations, product development, and competitive advantage by analyzing how some automakers manage more effectively than others the division of labor with suppliers who play critical roles in automobile product development.

A typical passenger car contains more than 30,000 parts. Although original equipment manufacturers such as General Motors and Toyota assemble final vehicles, outside suppliers are often involved in design as well as manufacturing, and may account for 70% of manufacturing costs and 50% of engineering costs at some auto companies (Clark and Fujimoto 1991). This means that the competitiveness of an automobile producer is highly dependent on the capability of its suppliers and how effectively the producer manages the division of labor with these suppliers. Many studies in the past have shown that Japanese firms have had particularly efficient and effective supplier systems, and that these supplier networks have played a major role in the international competitiveness of the Japanese automobile industry (Abernathy, Clark and Kantrow 1983; Cole and Yakushiji 1984; Cusumano 1985; Womack, Jones and Roos 1990; Cusumano and Takeishi 1991; Nishiguchi 1994; Helper and Sako 1995). A critical element of Japanese practices is to involve suppliers, from the early stages, in the design of components for a new vehicle (Asanuma 1988, 1989; Clark 1989; Clark and Fujimoto 1991). Following Japanese practices, many non-Japanese automakers have reduced the number of their suppliers and have required the suppliers to be more involved in product development, thus shifting the responsibility of design and engineering to outside specialists.

Despite this growing recognition of the importance of supplier involvement, previous researchers have not fully explored detailed, systematic analyses of effective management of supplier involvement in product development. Empirically, this paper attempts to probe this relatively unexplored area, drawing on the data collected from the Japanese auto industry. This paper identifies certain organizational patterns in problem

solving, communication, and knowledge that enable some automakers to gain higher component design quality even when a supplier is shared by competing automakers. Most important, an automaker needs capabilities to effectively coordinate diverse activities both externally with a supplier and internally within its organization — that is, capabilities to bridge both *inter*-firm and *intra*-firm boundaries. Theoretically, the paper demonstrates the importance of linking inter-firm and intra-firm level variables to analyze inter-organizational division of labor.

The remainder of this paper begins with a brief literature review. The next section lays out an analytical framework and hypotheses. The subsequent section describes the research design and the data. The results of analysis are then presented and discussed.

The paper concludes with a discussion of implications of this study and future research.

LITERATURE REVIEW

Advantages of Collaborative Inter-Firm Relations

An increasing number of researchers have studied inter-firm relations since a newly conceptualized mode of economic organization began to attract attention in the early 1980s. This new mode is typified by cooperative, interdependent, and long-term relations among independent organizations, and it contrasts with the modes of markets and of hierarchies (Piore and Sabel 1984; Powell 1990; Aoki 1990; Williamson 1991).

In the field of strategy, according to Jarillo (1988), researchers were relatively slow to incorporate the concept of cooperative inter-firm relations into their research, probably because the concept did not easily fit with the basic paradigm of competitive

strategy. As Martin, Mitchell and Swaminathan (1995) pointed out, strategy theorists once tended to view suppliers and buyers primarily as antagonists seeking to appropriate the profits of existing business activities in an industry chain. Yet as evidence accumulated on the advantages of a cooperative mode, both practitioners and strategy researchers have paid increasing attention to networking, alliances, and cooperative inter-firm relations. Some strategy researchers have argued that firms with collaborative inter-firm relations could be more competitive than those without (Miles and Snow 1984; Jarillo 1988; Johnson and Lawrence 1988). Gomes-Casseres (1996) further argued that growing collaboration among firms generated new forms of rivalry. Business rivalry could often occur between sets of allied firms, which he called "constellations," rather than between individual firms.

Product development, a crucial activity for a firm's competition and survival, is an area that benefits from collaborative relations with partners, including customers (von Hippel 1988), research communities (Allen 1977; Henderson and Cockburn 1994), competitors (Gomes-Casseres 1996), and suppliers (Gold 1987; Mabert, Muth and Schmenner 1992). Involving suppliers in product development allows a firm to reduce its workload, to focus on the activities that take advantage of its areas of competence, and to capitalize on the supplier's competence and potential for scale economies. Thus supplier involvement can provide the firm with considerable benefits. Imai, Nonaka and Takeuchi (1985), for example, observed that the extensive use of supplier networks had a positive effect on the speed and flexibility of product development in Japanese industries such as automobiles, copiers, cameras, and personal computers. With a high

level of specialized technical skill, suppliers could respond to their customers' sudden requests quickly and effectively.

Eisenhardt and Tabrizi (1995) reported mixed effects of supplier involvement on product development speed in the global computer industry. Supplier involvement had a positive effect on speed in mainframe and minicomputer products, but not in personal computer and peripheral products. They argued that in less predictable products such as personal computers, early involvement might be difficult to achieve because there is less certainty which suppliers will be used. In contrast, in more predictable, mature products such as mainframe computers, suppliers are likely to be clear early on and it is preferable to involve them early in the process. Similarly, positive effects of supplier involvement have been observed in the auto industry.

Many auto-industry studies showed that effective supply chain management, which has been most often observed in Japan, involved close, trusting relationships with long-standing suppliers who were typically intimately involved with development as well as production of components (Asanuma 1988, 1989; Womack, Jones and Roos 1990; Nishiguchi 1994; Dyer 1996a; Helper 1996). Clark and Fujimoto (1991) shed much light on how outsourcing product development activities through "black-box parts," where a supplier conducts detailed engineering based on functional specifications provided by an automaker, reduces overall project lead time and engineering resources required for product development, and thus contributes to Japanese advantage.

Recognizing the advantages of Japan's approaches to supplier management in product development, American and European automakers have begun to adopt the

Japanese practices (Bertodo 1991; Ellison, Clark, Fujimoto and Hyun 1995; Liker, Kamath, Wasti and Nagamachi 1995). This means that they are giving increased responsibility to suppliers and asking them to be involved in product development more deeply at an earlier stage in new vehicle development. Probably the most visible examples of such initiatives have been at Chrysler. The decision to improve partnerships along the supply chain seems to have significantly helped Chrysler on its return to growth and profitability (Dyer 1996b).

Unexplored Perspectives

Previous studies have contributed to a better understanding of the nature and advantages of collaborative inter-firm relations and supplier involvement in product development. However, they have not fully explored the next critical question — how a firm could outperform competitors who also have collaborative relations with their partners. If, when, and where the mode of cooperative inter-firm relations has been acknowledged and diffused among organizations, additional research on differences within this mode is needed. The growing literature on strategic alliances, the "virtual corporation," buyer-supplier relations, and technology collaboration has indicated the importance of external integration and outsourcing (Teece and Pisano 1994). However, the problem of how to manage external integration and outsourcing for competitive advantage has remained unsolved. This is also the situation with existing literature on product development. Reviewing the literature, Brown and Eisenhardt (1995) concluded that, while some studies of product development had shown that the participation of suppliers was important, the empirical literature was imprecise in testing the link

between supplier involvement and performance, and was not clear exactly how or when suppliers should become involved in the development process.

What are possible sources of differences among firms that follow a collaborative mode of inter-firm relations? One of the potentially promising areas of investigation is firms' own capabilities. Recently, a stream of strategy research has paid growing attention to organizational capabilities as a source of competitive advantage. Complementary to the view that emphasizes market and industry structure for competitive analysis (Porter 1980), this stream, driven by the "resource-based view of the firm," stresses the importance of firm-specific capabilities as a source of inimitable and thus sustainable competitive advantage (Wernerfelt 1984; Barney 1986; Itami 1987; Dierickx and Cool 1989; Prahalad and Hamel 1990; Peteraf 1993). Along with this stream, researchers have increasingly paid attention to features of internal organization, such as organizational structure, managerial processes, routines, and values, as a basis of firm-specific capabilities and competencies that are difficult for other firms to buy or imitate (Leonard-Barton 1992; Teece and Pisano 1994; Henderson and Cockburn 1994)

Such a perspective of emphasizing firm-specific organizational capabilities hints at possible benefits from linking the analysis of internal organization to the research of inter-firm division of labor and relations, and reminds us of the issue of the level of analysis. As Rousseau (1985) pointed out, in studying organizations, researchers must explicitly address the role of level in organizational phenomena, and must properly specify their analytical model. According to Van de Ven and Ferry (1980), there are three levels of analysis for studying interorganizational relationships: (1) pairwise or dyadic interorganizational relationships, (2) interorganizational sets, and

(3) interorganizational networks. In the context of automaker-supplier relations, the dyadic level analyzes relations between one automaker and one supplier. The set level analyzes relations between one automaker/supplier (a focal organization) and its multiple suppliers/customers. The network level analyzes relations among multiple automakers and multiple suppliers. While those three levels are certainly important and have been studied, many students of interorganizational relations have overlooked another level of analysis, internal organization. We could study inter-firm division of labor and relations by analyzing inside a focal organization (either an automaker or a supplier, or both). It is natural to pay attention to the factors external to a firm when researchers study the firm's collaborative activities with its external organizations. However, as Wheelwright and Clark (1992) pointed out, even where the primary source of technology is external, the firm needs some internal capabilities to evaluate the external work and to integrate it into the internal operations. When treating the firm as a black box, researchers would miss a critical area for the analysis of the inter-firm division of labor.

Hillebrand (1996), who stressed the importance of linking external and internal cooperation for the study of supplier involvement in product development, argued that internal and external cooperation had been studied entirely independent of each other. Similarly, Kanter and Myers (1991) pointed out that while many analysts had described the conditions giving rise to alliances and the problems they entail, there had been remarkably little scholarly attention in the business policy area to the organizational behavior implications that ensure when a firm conducts more activities in collaboration with another firm. In research on supplier involvement in the auto industry, only a few

empirical studies have paid attention to automakers' internal organization for supplier involvement, and their attention has remained limited (Clark and Fujimoto 1991; Liker, Kamath, Wasti and Nagamachi 1995).

Research on product development has focused on internal organization as the level of analysis, whereas research on supplier relations has centered on inter-firm dyadic relations and sets. Positioned at an intersection of those two research domains, research on supplier involvement in product development should benefit from linking those different levels of analysis. Just as we need both the industry-based and the firm-based views to study strategy (Henderson and Mitchell 1997), we need analysis at both the inter-firm and the intra-firm levels to study strategic management of outsourcing. This paper takes such an approach in building an analytical framework in the next section.

ANALYTICAL FRAMEWORK AND HYPOTHESES

Figure 1 illustrates this study's analytical framework. It contends that effective component development (higher component development performance) is associated with an automaker's external coordination with a supplier (problem-solving and communication), internal capabilities (internal coordination and knowledge), and the nature of automaker-supplier relations, when controlled for the supplier's capability, the nature of the task, and other factors. The main dependent variable of this framework is the performance of a component development project jointly conducted by an automaker and a supplier. While component development performance measures are multidimensional, including operational efficiency (e.g. development speed (lead time)

and engineering productivity (engineering hours)) and output effectiveness (e.g. component design quality), this paper focuses on design quality.

INSERT FIGURE 1 ABOUT HERE

This framework examines the relations between component development performance and automakers' patterns for managing diverse activities for component development both externally and internally. Although some elements in this framework have been analyzed by previous studies, this study is probably the first attempt to systematically examine the linkages between different elements of supplier management and performance in a single framework to capture strategic implications. A key feature of this framework is its attention to both inter-firm and intra-firm levels. Note that the boundary of the firm is not addressed in this framework. It is given that an automaker outsources some portion of detailed design of a component to a supplier. Also, the inter-firm relations are assumed to be collaborative to the degree that an automaker has a supplier involved in component development.³

Now let me turn to each element and present hypotheses to be examined in this study.

Integrated Problem Solving

To jointly develop a component, an automaker and its supplier are involved in various tasks (Table 1), and the automaker needs to coordinate those tasks effectively with the supplier. One key element for such external coordination is the automaker's problem-solving pattern with the supplier. A central message of Clark and Fujimoto (1991) is the importance of *integrated problem solving* in product development.

Viewing product development as a system of interconnected problem-solving cycles, Clark and Fujimoto demonstrated that effective product development requires the integration of problem-solving activities across different functional groups and engineering disciplines from the earlier stages of development. Without such integration, the automaker could not achieve a high level of product integrity in an efficient manner. While their message was implied to apply to effective development of a new vehicle, it is also suggestive for effective component development.

INSERT TABLE 1 ABOUT HERE

Required for effective component development is integrated problem solving for component coordination and product-process and design-cost linkages. First, a component needs structural and functional coordination — fitting and working well together — with other components within the vehicle to achieve a high level of product integrity. Second, effective component development needs to link *product and process* engineering as well as *design and cost* consideration in order to achieve a lower cost, a better design for manufacturability, and a higher conformance quality. In other words, the design of a component cannot be separated from, and thus should be *integrated* with, the design of other components, the manufacturing process, and cost management.

Furthermore, such integration should be pursued from the earlier stage of component development. Front loading of problem-solving activities would allow engineers to examine potential problems as much as possible at the earlier stage. Such efforts could reduce otherwise unnecessary design changes at the later stages, which are

more costly particularly after releasing tooling orders, improve design and manufacturing quality, and shorten engineering lead time (Fujimoto 1997b).

Hypothesis 1: A component development project in which an automaker exercised a higher level of early, integrated problem solving with a supplier should exhibit a higher level of component design quality.

Communication

Along with problem solving, communication is another key variable for product development research (Brown and Eisenhardt 1995). The importance of both internal and external communication for the performance of product development organizations has been long emphasized by various researchers (Allen 1977; Ancona and Caldwell 1992).

Obviously, when a supplier is involved in product development, effective coordination through frequent communication between the automaker and the supplier is critical to successful product development. Dyer (1996a) reported that Toyota and Nissan had more frequent face-to-face contact with their suppliers than U.S. automakers, and that this contributed to their shorter model cycle. He also found that the two Japanese automakers had more guest engineers at their sites than the U.S. firms, indicating the importance of extensive communication between co-located engineers.

Hypothesis 2: A component development project in which an automaker and a supplier communicate face-to-face more frequently should exhibit a higher level of component design quality.⁵

Knowledge

Although outsourcing product development to suppliers can bring many benefits as reported, it does not come without risks. Clark and Fujimoto (1991) pointed out that assemblers dependent on suppliers' engineering capabilities may lose some negotiation power, and losing engineering expertise in core component areas can render a car maker vulnerable in technological capability over the long term. Without appropriate knowledge, which is one of key elements associated with organizational capabilities (Leonard-Barton 1992; Nonaka and Takeuchi 1995), automakers cannot evaluate suppliers' products and capabilities and thus they can become more dependent on them.

As Fine and Whitney (1996) have argued, it is important, therefore, to distinguish *dependence for capacity* and *dependence for knowledge*. In the former case, the company presumably can make the item in question and may indeed already do so, but for reasons of time, money, space or management attention, chooses to extend its capacity by means of a supplier. In the latter case, the company presumably needs the item but lacks the skill to make it, and thus seeks an expert supplier to fill the gap. It is possible for automakers to retain knowledge, even while outsourcing the components in development and manufacturing, if its dependency is for capacity, not for knowledge.

Empirically, Liker, Kamath, Wasti and Nagamachi's (1995) survey revealed that about 22 percent of U.S. subsystem suppliers complained that their customer lacked technical knowledge. In comparison, about 9 percent of the Japanese suppliers made this complaint, and only about 5 percent of Toyota's suppliers mentioned such. This indicates that the level of component knowledge indeed varies among automakers.

Hypothesis 3: A component development project in which an automaker's engineers had a higher level of knowledge about the component should exhibit a higher level of component design quality.

Internal Coordination

Another important element of automakers' internal capabilities is internal coordination. The literature on boundary-spanners and organizational buying behavior has shown that those units that deal with external organizations face conflicts with other units within its organization. Adams (1980) pointed out that boundary-spanning units face two types of conflicts — one with outsiders and the other within insiders — and are "at the crunode of a dynamic, dual conflict in which elements of one conflict become inputs to a second conflict, of which some elements become new inputs to the first, perhaps for several cycles." Also, Hillebrand (1996) argued that in order to perform well in external cooperation, the firm has to cooperate internally as well. In other words, to effectively carry out product development with suppliers, an automaker needs to resolve conflicts not only *externally* with a supplier but also *internally* among various internal departments.

Supplier involvement in product development requires much more extensive coordination within the firm boundaries than the traditional arm's-length relationships. In the traditional relationships, suppliers are rarely involved in product development and primary interactions between an automaker and its supplier are assigned to the former's purchasing department and the latter's sales department. To manage supplier involvement, by contrast, various groups and departments inside an automaker need to coordinate various tasks with each other. The coordination involves engineering, purchasing, production, and quality assurance departments.

Coordination within the organization is not an element of direct interactions with external suppliers. However, without effective internal coordination, an automaker cannot achieve a higher level of integrated problem solving with a supplier. Internal coordination would thus affect component development performance indirectly through problem-solving pattern.

Hypothesis 4: A component development project in which an automaker exercises a higher level of internal coordination should exhibit a higher level of integrated problem solving.

Inter-Firm Relations

Another important factor is the nature of inter-firm relations between an automaker and a supplier. As discussed in the previous section, many studies have paid attention to this element.

There are multiple dimensions for inter-firm relations. One is the degree of an automaker's ownership of a supplier. In Japan, it is not uncommon for an automaker to own a certain portion of its supplier's stock. It is likely that when the automaker has some financial control of the supplier, it can control the supplier's behavior and the component's price, thus positively affecting supplier management and performance. Another dimension is a supplier's sales dependency on an automaker. When a supplier is highly dependent on an automaker in sales, the automaker may have power to ask more of the supplier's efforts in component development (Pfeffer and Salancik 1978), thus positively affecting performance.

Hypothesis 5a: When an automaker owns a part of a supplier's stock, a component development project should exhibit a higher level of component design quality.

Hypothesis 5b: The higher a supplier's sales dependency on an automaker, the higher is the level of component design quality of a component development project.

Note that many studies have found the importance of long-term, collaborative nature of the relations. However, this study is primarily concerned with differences within the mode of such relations, and there are indeed limited variances in these aspects among Japanese automakers, which are this study's sample. This study therefore does not pay attention to such dimensions (length and collaborativeness) of inter-firm relations.

SAMPLE AND DATA

Sampling Design

The empirical setting is the Japanese auto industry, which has some advantages for this study's sample. First, since the Japanese auto industry pioneered supplier involvement in component development, the practice has been widely diffused. Second, Japanese automakers and suppliers are widely seen to have cooperative, long-term interfirm relations, hence providing a convenient empirical field for exploring differences in managing collaborative inter-firm relations.

When the subject involves a pair of firms, rather than a single firm, empirical research needs a careful sampling design. To control for the impact of the difference in suppliers' capability and component types, I selected those suppliers that design and manufacture their components for many automaker customers, and collected from those suppliers data on differences among automakers in their supplier management patterns, capabilities, and performance. When a particular supplier supplies the same component

to a number of automakers, the performance difference among those automakers in component development performance would be more attributable to the variance in their patterns and capabilities for supplier management. Those suppliers are preferable data source since they can comparatively observe their customers through everyday interactions.

This sampling design, however, has some disadvantages. First, it excludes certain types of components from the sample. Those components where automakers procure components from dedicated suppliers cannot be included in the sample. To reduce the possibility of idiosyncratic data dependent on the type of component, I made an effort to include a variety of components within this constraint. A second possible disadvantage is that component manufacturers serving many customers may transfer critical technological and managerial information from one automaker to others, thereby reducing the variance among automakers. In fact, according to my interviews, one supplier's strategy is to first develop a new technology with a leading automaker and then use it for others later. Another supplier even teaches effective ways of managing suppliers to some automakers based on its experiences with leading automakers. Also, some automakers intentionally ask suppliers to bring only component designs already verified by other leading automakers.

However, if the data from this sampling design find some differences among automakers, it can provide more robust evidence to identify strategic elements of automakers' supplier management. It is interesting to identify what kinds of capabilities and knowledge are inimitable even when there are favorable opportunities for auto companies to learn from competitors through the mechanism of common suppliers. This

sampling design therefore provides a preferable, if not perfect, setting for a natural experiment to examine the proposed framework in a conservative manner.

Research Methods and Data

Since most of the necessary data are not publicly available, this study relied on interviews with automakers and suppliers, and a questionnaire survey to suppliers as the primary methods of data collection. Company documents and publicly available materials are also used as supplementary sources.

The purpose of the supplier survey was to collect data on automakers' supplier management patterns and component development performance, as observed by suppliers with multiple customers. Based on IRC's (1997) data on component transactions in the Japanese auto industry, I selected 15 suppliers, which satisfied the condition that at least seven Japanese automakers and four of the top five (Toyota, Nissan, Honda, Mitsubishi, and Mazda) purchased a component from the supplier in 1996. After I contacted and visited them, nine suppliers agreed to participate in the survey with a strict confidentiality agreement. I distributed the survey to them in April 1997. Each supplier was asked to select one component development project that was recently done for a new vehicle, for each of its major customers. While the component for each supplier was specified by me, automakers and projects were selected by the respondents. The survey was filled in by the person who was actually in charge of and most familiar with the selected development project, such as the Chief Engineer for the project.

Table 2 reports the final responses. Each supplier gave five cases on average, providing 45 cases in total. All nine Japanese automakers are in the sample, but some of them have few cases. Due to my confidentiality agreement with the respondents, I cannot disclose the names of firms and component types in the sample. There are eight types of components, with one answered by two suppliers. The components include those related to engine, brake, chassis, body, and electrical systems. Most suppliers were either the largest or second largest supplier in Japan in production volume for the component.

INSERT TABLE 2 ABOUT HERE

The year of market introduction of the sample vehicles ranges from 1989 to 1997, with most introduced during the past five years (mean: 1995). All the sample suppliers had designed and manufactured the components for each automaker in the sample for more than ten years. All the suppliers stated that they expected that the automaker would continue to procure the component from them as long as production of the vehicle continues (that is, until the next model change). Thus the inter-firm relationships in the sample could be regarded as long-term. The mean of the supplier's design ratio is 73%, implying that approximately three-quarters of the detailed drawings were made by the supplier. In summary, the sample provides appropriate data to empirically examine recent practices of supplier involvement between Japanese automakers and suppliers with long-term relationships.

I also conducted interviews to supplement the survey data and further probe into the background behind the survey results. More than 100 managers and engineers at both automakers and suppliers were interviewed.

Variables

Table 3 lists the variables to be used in the following statistical analysis.

Details of variable construction and measurement are explained in Appendix. Below I briefly describe key research variables.

INSERT TABLE 3 ABOUT HERE

CDQ (component design quality), this study's dependent variable, measures the design quality of the developed component (output performance), based on multiple items, including performance, costs, conformance quality and structural and functional coordination with other components. Each item was evaluated by the respondent in terms of his/her satisfaction with the outcome, and the relative position in comparison with the same type of component used for competing vehicle models in the market, to capture both

engineering excellence and market competitiveness.

PSP measures the level of early, integrated problem-solving process with a supplier. This variable scores high when, for example, the supplier's initial price/cost estimate was examined very carefully by the automaker from the beginning of the project, and the automaker examined the supplier's manufacturing process and design for manufacturing at the earlier stage. COM (the frequency of face-to-face

communication between the automaker and the supplier) measures the frequency (in days per year) of mutual visits by the automaker's engineers and purchasing staff and the supplier's engineers and sales staff.

EKN measures the knowledge level of the automaker's engineers about the component, and is the mean of two sub-components: engineers' component-specific knowledge (EKN1) and architectural knowledge (EKN2). EKN1 measures the level of knowledge specific to a component, including technology, cost, and manufacturing process. EKN2 measures the level of knowledge about structural and functional coordination with other components and design for manufacturing. This variable indicates the level of knowledge about the component's coordination and linkage with other components, and was thus named architectural knowledge (Henderson and Clark 1990). INC measures the level of the automaker's internal coordination, and consists of three sub-components: internal coordination within engineering departments (INC1), internal coordination between engineering and purchasing departments (INC2), and external consistency of the automaker's various engineering functions and purchasing department toward the supplier during the project (INC3).

Two variables were constructed for inter-firm relations. SLD (the supplier's sales dependency on the automaker) measures the supplier's sales dependency on the automaker. STK (the automaker's ownership of the supplier's stock) is a dummy variable set to 1 if the automaker owned a part of the supplier's stock; otherwise 0.

For some other factors that might affect component design quality, two control variables were constructed: NWT and CMP. NWT (technological newness of the project) is set to 1 if the supplier used a new technology in product or process for the

project; otherwise 0. CMP (computer system usage) measures the level of three-dimensional CAD (Computer-Aided Design) and CAE (Computer-Aided Engineering) usage for the project.

Table 4 shows summary statistics for key variables. Note that, to control for the supplier's capabilities and the component type, the score of every variable used in the following analysis was normalized across responding suppliers. It was normalized by removing each supplier's mean, which varies across suppliers reflecting the differences in suppliers' capabilities and the nature of component types. The mean was removed, as shown below, either by taking a difference from the mean, or a ratio to the mean in the case where the magnitude of a variable's score differs substantially across suppliers:

$$X_{ij}^* = X_{ij} - \overline{X}_i$$
 or $X_{ij}^* = X_{ij} / \overline{X}_i$

where

 X_{ij}^* = the normalized score of indicator X by supplier j about the project with automaker i

 X_{ij} = the original score of indicator X by supplier j about the project with automaker $\frac{i}{X_j}$ = the mean score of indicator X by supplier j

INSERT TABLE 4 ABOUT HERE

RESULTS

Component Design Quality

Table 5 reports the regression results for CDQ. Model DQ1 includes two control variables: technological newness (NWT) and computer usage (CMP). Model DQ2 adds two variables for inter-firm relations: the supplier's sales dependency on the

automaker (SLD) and the automaker's ownership of the supplier's stock (STK). Model DQ3 adds three supplier management variables. The results basically support the hypotheses 1, 2, and 3 — integrated problem-solving pattern (PSP), communication frequency (COM), and the level of engineers' knowledge (EKN) are all positively related to component design quality (CDQ). As shown in Table 4, COM has a negative correlation coefficient with PSP and EKN, suggesting that communication may sometimes be needed because engineers did not have enough knowledge about the component (low EKN) or did not solve the problems in an integrated manner (low PSP). However, the regression results imply that when PSP and EKN are controlled for, more frequent communication would lead to better performance. The finding that these three variables for automakers' patterns of supplier management are all important in developing a better component echoes the following comments by interviewees:

Company A is a relatively small automaker in Japan, and its engineers do not have a high level of technological knowledge about our component. This company's strategy is communicating a lot. Their engineers come to our site and our engineers visit their site much more frequently than in the case of other automakers. We think that's their strategy to compensate for their limited engineering knowledge (supplier engineer).

Automaker B's engineer for our component had extensive knowledge of the component, and was a great communicator, coming frequently to our site not only to have business meetings but also to play golf and "karaoke" with our engineers. Yet the outcome of the project was far less satisfactory for us. It was largely due to his style of project management. He occasionally changed his requirements drastically in the later stage of the project for one reason or another, such as using a newly available technology. We could not spend enough time to examine and verify such changes and ended up with a problematic component design (supplier engineer).

INSERT TABLE 5 ABOUT HERE

In Model DQ3, supplier's sales dependency on the automaker (SLD) has a positive and statistically significant coefficient. Higher sales dependency on the automaker would motivate the supplier to make more extensive efforts to satisfy that important customer, for example, by assigning more capable engineers to the project. This supports the hypothesis 5b. On the other hand, the automaker's ownership of the supplier's stock (STK) has a negative effect on component design quality, contrary to the hypothesis 5a, although not statistically significant. My follow-up interviews suggested that a financial tie with an automaker may make the supplier feel secure about the business with the automaker. More secured business would not induce as much efforts as when the supplier does not have a financial tie and has to compete with other potential suppliers to win the business.

Model DQ4 estimates the effect of sub-components of EKN. It has turned out that engineers' architectural knowledge (EKN2) has a larger effect on CDQ than component-specific knowledge (EKN1). EKN1's coefficient is not statistically significant at the 10% level, and its standardized coefficient (beta) is 50% smaller than EKN2's. If we understand that component-specific knowledge is provided by the supplier, who is involved in the project because of its expertise in the component, then a more critical role for architectural knowledge, which is supposed to be the automaker's domain and beyond the supplier's reach, would be a natural consequence.

Further analysis has uncovered a vital role of engineers' knowledge when a project involves new technology. Model DQ5 adds the interaction term of NWT and EKN to Model DQ3. While NWT has a negative sign, the interaction term has a positive sign. A change in R² from Model DQ3 to DQ5 is statistically significant. This

seems to indicate that, while it is difficult to develop technologically new components, engineers' knowledge plays an important role to improve CDQ in such cases. It is even more interesting to observe in Model DQ6 that the magnitude of the interaction coefficient is larger for component-specific knowledge than for architectural knowledge. Again, a change in R² from Model DQ4 is statistically significant. This seems to indicate that engineers' component-specific knowledge plays a more positive effect than architectural knowledge in the case of using new technology. How important technological leadership at the component level is in today's auto industry, is beyond this study's scope. However, if an automaker wants to lead or keep up with component innovations, it is important that its engineers have a high level of both architectural and component-specific knowledge.

Integrated Problem-Solving Process

As shown above, an automaker's problem-solving process with a supplier (PSP) has a significant effect on component design quality. An early, integrated problem-solving process enables the automaker and the supplier to examine and solve many problems, including not only those specific to the individual component design but also those related to coordination with other components, cost-design linkage, and design for manufacturing, from an earlier stage of the development project. Engineers cannot foresee and solve every possible problem at the beginning, but front loading would allow engineers to avoid otherwise unnecessary problems in later stages and thereby focus on more value-added problem solving. For example, a supplier engineer commented in my interview:

We cannot avoid design changes at the later stage, whoever the customer is. That's our life. However, the quality of design changes varies by automaker. When a customer emphasizes early problem solving, we are quite busy at the earlier stage but we have a smooth process at the later stage and the production launch goes smoothly. We have to make many design changes for such customers, but the purpose is to improve the design quality from 80% to 100% satisfaction. If a customer leaves many problems unsolved until the later stage, we are very busy toward the deadline just making design changes to satisfy the minimum design quality (supplier engineer).

What factors would facilitate an integrated problem-solving pattern? Table 6 displays regression results for integrated problem-solving process (PSP). Model PS1 contains the two control variables: NWT and CMP. Model PS2 adds two variables for inter-firm relations: SLD and STK. SLD has a positive and significant effect on problem-solving pattern. This may suggest that a higher sales dependency would facilitate the automaker's integrated problem-solving process through the supplier's higher commitment and/or the automaker's higher power to request more information and efforts of the supplier from the beginning.

INSERT TABLE 6 ABOUT HERE

Model PS3, which adds INC (internal coordination), shows that integrated problem-solving process (PSP) is positively related to the level of internal coordination (INC). The results support the hypothesis 4 and demonstrate the importance of internal capability for effective supplier management.⁸ Interviewees at some suppliers explained that they were sometimes required to make design changes at a later stage because some automakers found it easier to request the supplier to make adjustments than to coordinate internally with other engineering departments even if the latter approach could bring about a better solution. This observation indicates that a limited ability for

internal coordination is likely to hamper an effective problem-solving process with the supplier.

Model PS4 estimates the effect of three sub-components of internal coordination: INC1 (coordination within engineering), INC2 (coordination between engineering and purchasing), and INC3 (external consistency of engineering and purchasing departments toward the supplier). The results show that coordination both within engineering and between engineering and purchasing has a positive and statistically significant effect on PSP, while external consistency does not.

Sources of Heterogeneity

The foregoing analysis provides two sets of intriguing findings. One is the relationships among variables, as identified and discussed above. The other is the fact that there still remain variances across projects as well as across automakers in supplier management patterns despite the sample projects and automakers share the sample suppliers. As mentioned before, some suppliers intentionally transfer technological and managerial information from one automaker to another, and some automakers try to learn new technology and effective practices from others through the common suppliers.

Why do we still observe heterogeneity under those apparently favorable conditions for understanding and copying effective practices? This question is particularly interesting from the viewpoint of strategy research, which has been concerned with inimitability of competitive advantage. My interviews, in particular with automakers, have revealed that some practices are difficult to imitate since they often

involve long-term career development policies, conflict with existing corporate values, and trade-offs with other objectives.

For example, a well-known approach to improve internal coordination within engineering division is to have a capable and influential product manager who could coordinate and solve problems across engineering functions, the so-called "heavyweight product manger" (Clark and Fujimoto 1991). However, heavyweight product managers are required to play various roles, such as a direct market interpreter, multilingual translator, direct engineering manager, and concept infuser, and they tend to have been trained as apprentices by senior project managers over a long period of time (Clark and Fujimoto 1991). Such a wide range of expertise cannot be obtained within a short period of time. As Dierickx and Cool (1989) point out, a particular asset involves "time compression diseconomies" and thus provides early-mover advantages.

Also, the influence or power of project managers is not determined solely by formal organizational structure. At some automakers, where product managers exercise relatively strong power, there is a tradition that stresses the importance of product managers in product development. One interviewee at such an automaker said, "In our company, product leaders have had absolute power for a long time." However, at other automakers, traditional values have long emphasized technological superiority in individual technologies, providing functional managers with more authority and power in relation to individual engineers. In such cases, it is difficult for product managers to establish influence. As Leonard-Barton (1992) argues, values and norms constitute a critical dimension of a firm's core capability but can also be a source of core rigidity. When a firm needs technical skills, which are traditionally less well respected in the

company, such a tradition has an inhibiting effect. Those automakers that have historically valued functional expertise would find it difficult to imitate the practice of heavyweight product managers,

even if the effectiveness of this practice is well publicized.

Another approach to improve coordination among engineering functions and enhance architectural knowledge is to rotate individual engineers across different types of component over time (Nonaka and Takeuchi 1995; Aoki 1990; Kusunoki and Numagami 1997). Through own experiences in designing other related components in the past, individual engineers could obtain a high level of architectural knowledge and coordinate effectively with other engineers. However, as in the case of capable product managers, it takes time for an automaker to have individual engineers experience a wide range of component types. Furthermore, automakers cannot pursue individual engineers' broader experiences too much. Rotating individual engineers across many components quickly may impede their accumulation of component-specific knowledge. Many automakers recognize the importance of rotating engineers but cannot implement such a policy consistently because if development projects are carried out by engineers without much experience in the assigned components, efficiency and output quality may be sacrificed. In fact, a scatter plot of architectural and component-specific knowledge in Figure 2 shows a slight, though not statistically significant, trade-off relation between two types of knowledge. It is not easy for automakers' engineers to have a high score for the both types.

INSERT FIGURE 2 ABOUT HERE

However, there is an automaker whose engineers score higher for both architectural and component-specific knowledge on average. According to my interviews, this automaker has a definite policy of rotating engineers across different components over a certain period of time. Yet, this automaker also takes other measures to retain component-specific knowledge. First, the range of rotation is limited. For example, engineers in the chassis design division are usually transferred within the division and rarely transferred to other divisions, such as the engine and body design divisions. Also, this firm recently started to establish a new career path where individual engineers could stay, if they want, in the same component over a very long period of time as a specialist. Further, this automaker attempts to accumulate component-specific knowledge through documentation such as design standards and know-how reports. When engineers are assigned to a new component, they take internal training classes for the component. Such training classes are not frequently offered at other automakers. In this manner, this automaker seems to have been able to enhance both architectural and component-specific knowledge. Without a set of these long-term, well-balanced mechanisms and policies, an automaker cannot have a high level of both architectural (EKN2) and component-specific knowledge (EKN1), thus scoring high in total (EKN).

CONCLUSION

Overall, the results imply that *outsourcing does not work effectively without* extensive internal effort. To gain competitive advantage from outsourcing, managers should "Ask not what your suppliers can do for you; Ask what you can do with your suppliers." The quality of the component design developed jointly by an automaker and

a supplier is related to three areas of the automaker's supplier management — problem-solving pattern, communication pattern, and knowledge level. In particular, the automaker's early, integrated problem-solving process with the supplier, frequent face-to-face communication between the automaker and the supplier, and the level of architectural knowledge for component coordination by the automaker's engineers, all have a positive effect on component design quality. The analysis has further indicated that the automaker's integrated problem-solving process with the supplier is related to effective internal coordination inside the automaker's organization — within various engineering functions and between engineering and purchasing functions, implying that effective external coordination needs effective internal coordination.

While collaborating with suppliers would probably bring an organization some benefits such as reducing fixed costs and using specialists' expertise, a firm still needs to develop, maintain, and improve its own capabilities to effectively coordinate diverse activities both externally with a supplier and internally within its own organization in order to outperform competitors. To build those capabilities, automakers need to design and implement a wide set of organizational mechanisms. These mechanisms cover both internal and external management, both top managers (influential product managers) and front engineers (individual engineers with broader task experiences), and from personnel policies (engineers' career development) through project management (integrating problem solving) to corporate values (informal influence of product managers). Because these mechanisms may often involve long-term efforts, have conflict with existing corporate values, and face trade-offs with other objectives, it is

difficult for some automakers to imitate effective practices and capabilities in spite of favorable conditions for learning from competitors through shared suppliers.

The nature of inter-firm relations also has some impact on component design quality by affecting the supplier's motivation. The more dependent is the supplier on the automaker for sales, the more effort the supplier seems to make. Interestingly, an automaker's ownership of a supplier's stock has a negative, though not statistically significant, effect on performance, probably because the financially-tied relationships make the supplier feel more secure. ¹⁰

The finding that architectural knowledge is a critical source of competence and hard to imitate implies that firms should take into consideration how to hold such architectural knowledge internally when determining its boundaries. When a firm relies heavily on outside suppliers for such knowledge, it may lose its ability to differentiate itself from competitors who may also share the same suppliers. This argument sounds a warning about the recent trend at some automakers to procure from "system" suppliers, who design and coordinate a set of components as a system. ¹¹ This trend, on the other hand, could be

beneficial to suppliers.

Different from Lawrence and Lorsch (1967) and Henderson and Cockburn (1994), who showed that both integrative capabilities (architectural knowledge) and specialized capabilities for individual functions and components (component-specific knowledge) are important, this study has found that automakers' component-specific knowledge is generally less important for component design quality. This is because this study deals with inter-firm division of labor in which component-specific

knowledge is mainly provided by the supplier. Indeed, this is one important reason why suppliers are involved in development. Yet at the same time, component-specific knowledge seems to play an important role for projects using new technologies.

Efficient partitioning of knowledge domains between an automaker and a supplier may not work effectively for developing technologically new components. This observation is consistent with Cohen and Levinthal's (1990) concept of absorptive capacity. They argued that some firms conduct basic research because such investment in deep, specialized knowledge equips the firm with the capacity to evaluate, assimilate, and apply new technologies to commercial ends when the technologies are available outside. In a similar vein, this study's results suggest that although component-specific knowledge is not important for every project, investment in this knowledge would enable the automaker to quickly evaluate and use new component technologies when available.

This study has demonstrated the importance of linking different levels of analysis. Not only *inter-firm* variables, on which most existing interorganizational research has focused, but also *intra-firm* variables are important in studying inter-firm division of labor and relations. This finding echoes recent argument in strategy research that both the industry-based view and the firm-based view are important for understanding competitive advantage (Henderson and Mitchell 1997). Teece and Pisano (1994) argued that both internal coordination and external coordination are important for the firm's competence. This study has indicated that they are related to each other — the former facilitates the latter. Internal coordination is important not only for managing

the intra-firm division of labor (Lawrence and Lorsch 1967; Clark and Fujimoto 1991; Henderson and Cockburn 1994) but also for managing the inter-firm division of labor.

While this study provides the foregoing implications, one should carefully examine how generally applicable some of this study's findings are. Also, some questions have remained unanswered. First, a high level of architectural knowledge may not be always important. Although architectural knowledge is found valuable in the auto industry, the importance of architectural knowledge depends on the nature of the product as well as innovation. For products based on modular design with standardized interfaces (Ulrich 1995), such as personal computers and bicycles, architectural knowledge may be of little importance, and effective pattern of supplier management may be different from what this study has identified (Fine 1998). Also, when a firm faces an innovation which involves changes in the product architecture, existing architectural knowledge may become an impediment, rather than an asset, since architectural knowledge is often deeply embedded in the firm's organizational values, structure, and processes, and cannot be easily changed (Henderson and Clark 1990; Leonard-Barton 1992).

Second, this study examined relatively simple hypotheses on relations among component development performance, automakers' internal capabilities, and automaker-supplier relations, based on a cross-sectional data set. However, it is likely that these factors are related in a more complicated and dynamic manner. For example, a certain nature of inter-firm relations would allow automakers to improve certain internal capabilities, which then improve the quality of inter-firm relations in the next stage. We need to further investigate how much and what types of internal

capabilities and inter-firm relations are important for effective inter-firm division of labor in what situations, and how they interact with each other over time. Extending this study to different types of products and industries in a dynamic setting is a promising direction for future research.

Finally, this study did not examine the cost of policy implementation. Although certain practices are found effective for component design quality, I cannot evaluate the impact of those practices on financial performance without cost analysis. And costs should be measured at both the automaker and the supplier. For example, additional analysis, though not reported in this paper, has indicated that the automaker's knowledge level and communication frequency, which contribute to component design quality, result in the supplier's longer engineering hours and thus entail more costs for the supplier. Also, while this study demonstrated the importance of having a high level of both architectural and component-specific knowledge, it has remained unknown whether it is possible to pursue both types of knowledge without incurring heavy costs. Without full cost-benefit analysis, effectiveness of particular management practices cannot be fully examined. It is difficult to fully capture costs and benefits, but such analysis should be critical and deserves extensive research efforts.

REFERENCES

- Abernathy, William J., Kim B. Clark, and Alan M. Kantrow (1983). *Industrial Renaissance: Producing a Competitive Future for America*. New York, NY: Basic Books.
- Adams, J. Stacy (1980). "Interorganizational Processes and Organization Boundary Activities." In Bary M. Staw and Larry L. Cummings (eds.), *Research in Organizational Behavior* (Vol. 2). Greenwich, CT: JAI Press, pp. 321-355.
- Aldrich, Howard E. and Diane Herker (1977). "Boundary Spanning Roles and Organizational Structure." *Academy of Management Journal* 2 (2):217-230.
- Allen, Thomas J. (1977). *Managing the Flow of Technology*. Cambridge, MA: MIT Press.
- Ancona, Deborah G. and David F. Caldwell (1992). "Bridging the Boundary: External Process and Performance in Organizational Teams." *Administrative Science Quarterly* 37:634-665.
- Aoki, Masahiko (1990). "Toward an Economic Model of the Japanese Firm." *Journal of Economic Literature* XXVIII (March):1-27.
- Asanuma, Banri (1988). "Japanese Manufacturer-Supplier Relationships in International Perspective: The Automobile Case." Working Paper #8, Faculty of Economics, Kyoto University.
- Asanuma, Banri (1989). "Manufacturer-Supplier Relationships in Japan and the Concept of Relation-Specific Skill." *Journal of the Japanese and International Economies* 3 (1):1-30.
- Barclay, Donald W. (1991). "Ieterdepartmental Conflict in Organizational Buying: The Impact of the Organizational Context." *Journal of Marketing Research* XXVIII (May):145-59.
- Barney, Jay B. (1986). "Strategic Factor Markets: Expectations, Luck, and Business Strategy." *Management Science* 6 (June):1231-1241.
- Bertodo, R. (1991). "The Role of Suppliers in Implementing a Strategic Vision." *Long Range Planning* 24 (3):40-48.
- Brown, Shona L. and Kathleen M. Eisenhardt (1995). "Product Development: Past Research, Present Findings, and Future Directions." *Academy of Management Review* 20 (2):343-378.
- Clark, Kim B. (1989). "Project Scope and Project Performance: The Effect of Parts Strategy and Supplier Involvement on Product Development." *Management Science* 35 (10):1247-1263.
- Clark, Kim B. and Takahiro Fujimoto (1991). *Product Development Performance:* Strategy, Organization, and Management in the World Auto Industry. Boston, MA: Harvard Business School Press.
- Cohen, Wesley M. and Daniel A. Levinthal (1990). "Absorptive Capacity: A New Perspective on Learning and Innovation." *Administrative Science Quarterly* 35:128-152.
- Cole, Robert and Taizo Yakushiji (1984). *The American and Japanese Auto Industry in Transition*. Ann Arbor, MI: University of Michigan Press.

- Cusumano, Michael A. (1985). *The Japanese Automobile Industry: Technology & Management at Nissan and Toyota*. Cambridge, MA: Council on East Asian Studies, Harvard University Press.
- Cusumano, Michael A. and Akira Takeishi (1991). "Supplier Relations and Management: A Survey of Japanese, Japanese-Transplant, and U.S. Auto Plants." *Strategic Management Journal* 12 (8):563-588.
- Dertouzos, Michael L., Richard K. Lester, Robert M. Solow, and The MIT Commission on Industrial Productivity (1989). *Made in America: Regaining the Productivity Edge*. Cambridge, MA: MIT Press.
- Dierickx, Ingmar and Karen Cool (1989). "Asset Stock Accumulation and Sustainability of Competitive Advantage." *Management Science* 35 (12):1504-1511
- Dyer, Jeffrey H. (1996a). "Specialized Supplier Networks as a Source of Competitive Advantage: Evidence from the Auto Industry." *Strategic Management Journal* 17 (4):271-291.
- Dyer, Jeffrey H. (1996b). "How Chrysler Created an American Keiretsu." *Harvard Business Review* 74 (4):42-56.
- Eisenhardt, Kathleen M. and Behnam N. Tabrizi (1995). "Accelerating Adaptive Processes: Product Innovation in the Global Computer Industry." *Administrative Science Quarterly* 40:84-110.
- Ellison, David J., Kim B. Clark, Takahiro Fujimoto, and Young-suk Hyun (1995). "Product Development Performance in the Auto Industry: 1990s Update." Working Paper 95-066, Harvard Business School.
- Evan, William M. (1993). *Organizational Theory: Research and Design*. New York, NY: MacMillan.
- Fine, Charles H. (1998). "Clockspeed: Winning Industry Control in the Age of Temporary Advantage." Reading, MA: Perseus Books.
- Fine, Charles H. and Daniel E. Whitney (1996). "Is the Make-Buy Decision Process a Core Competence?" Paper submitted to MIT IMVP Sponsors' Meeting, at Sao Paulo, Brazil.
- Fujimoto, Takahiro (1997a). Seisan Shisutemu no Shinkaron: Toyota Jidosha ni miru Soshiki Nouryoku to Souhatsu Purosesu [The Evolution of a Manufacturing System: Organizational Capabilities and Their Emergent Processes at Toyota]. Tokyo: Yuhikaku.
- Fujimoto, Takahiro (1997b). "Jidosha Seihin Kaihatsu no Shin Tenkai: Furonto Rodingu ni yoru Nouryoku Kaihatsu Kyoso [Japanese Automobile Product Development in the 1990s: Capability-Building Competition by Front-Loading]." Discussion Paper Series 97-J-15, Faculty of Economics, University of Tokyo.
- Gold, Bela (1987). "Approaches to Accelerating Product and Process Development." Journal of Product Innovation Management 4:81-88.
- Gomes-Casseres, Benjamin (1996). *The Alliance Revolution: The New Shape of Business Rivalry*. Cambridge, MA: Harvard University Press.
- Helper, Susan (1996). "Incentives for Supplier Participation in Product Development: Evidence from the U.S. Automobile Industry." In Toshihiro Nishiguchi (ed.),

- *Managing Product Development*. Oxford, U.K.: Oxford University Press, pp. 165-189.
- Helper, Susan and Mari Sako (1995). "Supplier Relations in Japan and the United States: Are They Converging?" *Sloan Management Review* 36 (4):77-84.
- Henderson, Rebecca M. and Kim B. Clark (1990). "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms." *Administrative Science Quarterly* 35 (1):9-30.
- Henderson, Rebecca M. and Iain Cockburn (1994). "Measuring Competence? Evidence from the Pharmaceutical Drug Discovery." *Strategic Management Journal* 15 (Winter Special Issue):63-84.
- Henderson, Rebecca M. and Will Mitchell (1997). "The Interactions of Organizational and Competitive Influences on Strategy and Performance." *Strategic Management Journal* 18 (Summer Special Issue):5-14.
- Hillebrand, Bas (1996). "Internal and External Cooperation in Product Development." Paper submitted to 3rd International Product Development Conference, at Fontainebleau, France.
- Imai, Ken-ichi, Ikujiro Nonaka, and Hirotaka Takeuchi (1985). "Managing the New Product Development Process: How Japanese Learn and Unlearn." In Kim B. Clark, Robert H. Hayes, and Christopher Lorenz (eds.), *The Uneasy Alliance: Managing the Productivity-Technology Dilemma*. Boston, MA: Harvard Business School Press, pp. 337-381.
- IRC (1994). *Automotive Parts Sourcing in Japan*. (in Japanese) Nagoya, Japan: IRC. Itami, Hiroyuki (with Thomas W. Roehl) (1987). *Mobilizing Invisible Assets*. Cambridge, MA: Harvard University Press.
- Japan Automobile Manufacturers Association and Motor & Equipment Manufacturers Association (1991). "Introduction to the Design-In Process: Practiced by Japanese Vehicle Manufacturers (A Guide to U.S. Suppliers)." Japan Automobile Manufacturers Association and Motor & Equipment Manufacturers Association.
- Jarillo, J. Carlos (1988). "On Strategic Networks." Strategic Management Journal 9:31-41
- Johnston, Russell and Paul R. Lawrence (1988). "Beyond Vertical Integration the Rise of the Value-Adding Partnership." *Harvard Business Review* 66 (4):94-101.
- Kanter, Rosabeth Moss (1989). When Giants Learn to Dance: Mastering the Challenges of Strategy, Management, and Careers in the 1990s. New York, NY: Simon and Schuster.
- Kanter, Rosabeth Moss and Paul S. Myers (1991). "Interorganizational Bonds and Intraorganizational Behavior: How Alliances and Partnerships Change the Organizations Forming Them." In Amitai Etzioni and Paul R. Lawrence (eds.), *Socio-Economics: Toward a New Synthesis*. Armonk, NY: M.E. Sharpe, pp.329-344.
- Kochan, Thomas A. (1975). "Determinants of the Power of Boundary Units in an Interorganizational Bargaining Relation." *Administrative Science Quarterly* 20 (September):434-452.

- Kusunoki, Ken and Tsuyoshi Numagami (1997). "Intrafirm Transfers of Engineers in Japan." In Akira Goto and Hiroyuki Odagiri (eds.), Innovation in Japan. Oxford, U.K.: Oxford University Press, pp. 173-203.
- Lawrence, Paul R. and Jay W. Lorsch (1967). *Organization and Environments: Managing Differentiation and Integration*. Boston, MA: Division of Research, Graduate School of Business Administration, Harvard University.
- Leonard-Barton, Dorothy (1992). "Core Capabilities and Core Rigidities: A Paradox in Managing New Product Development." *Strategic Management Journal* 13 (Summer Special Issue):111-125.
- Liker, Jeffrey K., Rajan R. Kamath, S. Nazli Wasti, and Mitsuo Nagamachi (1995). "Integrating Suppliers into Fast-Cycle Product Development." In Jeffrey K. Liker, John E. Ettlie, and John C. Cambell (eds.), *Engineered in Japan*. New York, NY: Oxford University Press, pp. 152-191.
- Mabert, Vincent A., John F. Muth, and Roger W. Schmenner (1992). "Collapsing New Product Development Times: Six Case Studies." *Journal of Product Innovation Management* 9:200-212.
- Martin, Xavier, Will Mitchell, and Anand Swaminathan (1995). "Recreating and Extending Japanese Automobile Buyer-Supplier Links in North America." *Strategic Management Journal* 16:589-619.
- Miles, Reymond E. and Charles C. Snow (1984). "Fit, Failure and the Hall of the Fame." *California Management Review* 26 (3):10-28.
- Nishiguchi, Toshihiro (1994). *Strategic Industrial Sourcing: The Japanese Advantage*. New York, NY: Oxford University Press.
- Nonaka, Ikujiro and Hirotaka Takeuchi (1995). *The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation*. Oxford, U.K.: Oxford University Press.
- Peteraf, Margaret A. (1993). "The Cornerstones of Competitive Advantage: A Resource-Based View." *Strategic Management Journal* 14 (3):179-191.
- Pfeffer, Jeffrey and Gerald R. Salancik (1978). The External Control of Organizations. New York, NY: Harper & Row.
- Piore, Michael J. and Charles F. Sabel (1984). *Second Industrial Divide: Possibilities for Prosperity*. New York, NY: Basic Books.
- Porter, Michael E. (1980). Competitive Strategy: Techniques for Analyzing Industries and Competitors. New York, NY: Free Press.
- Powell, Walter W. (1990). "Neither Market Nor Hierarchy: Network Forms of Organization." In Barry M. Staw and Larry L. Cummings (eds.), *Research in Organizational Behavior* (Vol. 12). Greenwich, CT: JAI Press, pp. 295-336.
- Prahalad, C. K. and Gary Hamel (1990). "The Core Competence of the Corporation." *Harvard Business Review* 68 (3):79-91.
- Rousseau, Dennis M. (1985). "Issues of Level in Organizational Research: Multi-level and Cross-level Perspectives." In Barry M. Staw and Larry L. Cummings (eds.), *Research in Organizational Behavior* (Vol. 7). Greenwich, CT: JAI Press, pp. 1-37.
- Smith, Ken G., Stephan J. Carroll, and Susan J. Ashford (1995). "Intra- and Interorganizational Cooperation: Toward a Research Agenda." *Academy of Management Journal* 38 (1):7-23.

- Strauss, George (1962). "Tactics of Lateral Relationship: The Purchasing Agent." *Administrative Science Quarterly* 7:161-186.
- Teece, David J. and Gary Pisano (1994). "The Dynamic Capabilities of Firms: An Introduction." *Industrial and Corporate Change* 3 (3):537-556.
- Thompson, James D. (1967). Organizations in Action. New York, NY: McGraw-Hill.
- Ulrich, Karl (1995). "The Role of Product Architecture in the Manufacturing Firm." Research Policy 24:419-440.
- Van de Ven, Andrew H. and Diane L. Ferry (1980). *Measuring and Assessing Organizations*. New York, NY: John Wiley & Sons.
- von Hippel, Eric (1988). *The Sources of Innovation*. New York, NY: Oxford University Press.
- Webster, Frederick E., Jr. and Yoram Wind (1972). "A General Model for Understanding Organizational Buying Behavior." *Journal of Marketing* 36 (April):12-19.
- Wernerfelt, Birger (1984). "A Resource-Based View of the Firm." *Strategic Management Journal* 5 (2):171-180.
- Wheelwright, Steven C. and Kim B. Clark (1992). *Revolutionizing Product Development*. New York, NY: Free Press.
- Williamson, Oliver E. (1991). "Comparative Economic Organization: The Analysis of Discrete Structural Alternatives." *Administrative Science Quarterly* 36:269-296.
- Womack, James P., Daniel T. Jones, and Daniel Roos (1990). *The Machine that Changed the World*. New York, NY: Rawson Associates.

Table 1: Component Development Tasks

	Automaker's Tasks	Supplier's Tasks	Joint Tasks		
Planning Stage	Creation and presentation of development concept (performance, functions, and requirements)	Proposal on the best way to realize the development concept	Finding optimum fit between vehicle development concept and component design		
Development & Prototype Stage	Presentation of the development objectives (schedule, specification, and target cost) Approval and issue of approved drawing Evaluation of component in complete vehicle Confirmation of ease of installation Feedback of the evaluation results Issue of design changes	Kaizen proposals Detailed design Drafting of approved drawing and detailed cost estimate Prototype production and cost estimate Tests on individual components' performance, functions Assessment of manufacturability under mass production conditions Implementation of design changes VE, Kaizen Cost and weight management	Setting development objectives Assessing ease of component installation on vehicle assembly line Agreement on the prototype production method Implementation of cooperative VE Confirmation of mass production specifications		
Production Preparation Stage	Sourcing decision Tooling order Preparation of basic inspection standards Final confirmation of the ease of installation Production validation tests (on the vehicle)	Implementation of tooling Production validation tests (on individual component) Preparation of detailed inspection standards	Supply contract signed (including quality assurance) Assessment and improvements of mass production processes		

Note: This table shows typical task assignments for "black-box components." VE=Value Engineering. Source: Adapted with some modifications from Japan Automobile Manufacturers Association, Inc. and Motor & Equipment Manufacturers Association (1991).

Table 2: Supplier Questionnaire Responses

Supplier	# of projects			Autom	akers i	n respo	nses (c	ompan	y code)		
(company code)		AA	AB	AC	AD	ΑE	AF	AG	AH	ΑI	NA
SA	6										6
SB	5	1	1		1		1			1	
sc	5	1	1	1	1				1		
SD	7		1	1	1	1	1	1		1	
SE	5	1	1	1		1			1		
SF	4		1	1	1				1		
SG	5	1		1	1				1	1	
SH	3	1		1			1				
SI	5	1	1	1	1				1		
Total	45	6	6	8	6	2	3	1	5	3	6

The names of the suppliers and the automakers in the sample cannot be disclosed due to the confidentiality agreement with the respondents.

Sample components include those related to engine, brake, chassis, body, and electrical systems. NA = not available because SA did not reveal the name of the automakers in its sample. Another supplier participated in the survey but is not included here since it gave only one case and its data were not used in the analysis.

Table 3: List of Variables

Area	Construct	Variab	le
Component development performance	Design quality	CDQ:	Design quality of the component
A's external coordination	A's problem-solving pattern with S	PSP:	A's early, integrated problem-solving pattern with S
with S	Communication	COM:	Communication frequency between A and S
A's internal capabilities	Level of A's engineers' knowledge	EKN: EKN1: EKN2:	
	Level of A's internal coordination	INC: INC1: INC2: INC3:	Internal coordination Internal coordination within engineering dept's Internal coordination between eng. and purchasing External consistency toward S
Inter-firm relations	S's dependency on A	SLD:	S's sales dependency on A
	Financial tie	STK:	A's ownership of S's stock
Task and tools	Technological newness	NWT:	Technological newness in product or process of the component for S
	Computer usage	CMP:	Level of CAD/CAE usage for the component development

A: automaker; S: supplier.

Details of variable specifications and measurement are described in Appendix.

A variable with a number at the end is a sub-component of the variable of the same name without a number.

Table 4: Descriptive Data and Correlation Matrix

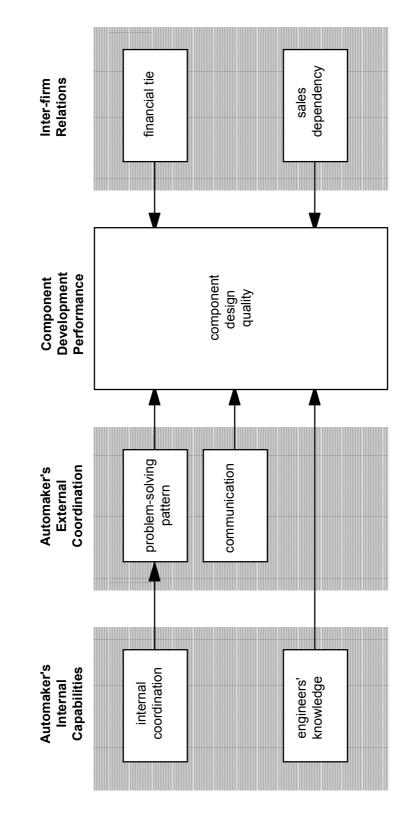
	mean	s.d.	CDQ	PSP	СОМ	INC	EKN	SLD
CDQ : Component design quality	0.00	0.34	-					
PSP : Integrated problemsolving pattern	0.00	0.41	0.36 **	-				
COM : Communication frequency	0.00	10.35	0.36 **	-0.25	-			
EKN : Engineers' knowledge	0.00	0.36	0.10	0.30 **	-0.52 ***	-		
INC : Internal coordination	0.00	0.54	0.21 **	0.49 ***	-0.44 ***	0.43 ***	-	
SLD : Sales dependency on the automaker	1.00	0.71	0.33 **	0.30 **	-0.09	0.12	0.16	-
STK : Stock ownership by the automaker	0.16	0.37	-0.08	-0.14	0.13	0.00	-0.11	0.26 *

N=45 *: p-value < 0.1 (two-tailed test), **: p-value < 0.05, ***: p-value < 0.01.

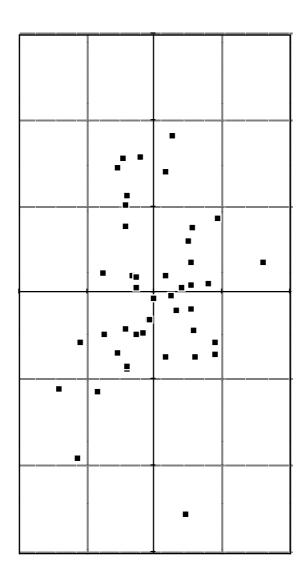
Table 5: Regression Results for Component Design Quality

Model #	DQ1	DQ2	DQ3	DQ4	DQ5	DQ6
Intercept	0.017	-0.143	0.157	0.160	-0.087	-0.088
SLD : Sales dependency on the automaker		0.182 ** (0.072)	0.145 ** (0.061)	0.146 ** (0.062)	0.113 ** (0.058)	0.117 * (0.061)
STK : Stock ownership by the automaker		-0.148 (0.142)	-0.174 (0.115)	-0.177 (0.116)	-0.092 (0.111)	-0.101 (0.120)
PSP : Integrated problem-solving pattern			0.256 ** (0.111)	0.247 ** (0.113)	0.381 *** (0.113)	0.376 *** (0.118)
COM : Communication frequency			0.021 *** (0.005)	0.022 *** (0.005)	0.018 *** (0.004)	0.018 *** (0.005)
EKN : Engineers' knowledge			0.297 ** (0.137)		0.132 (0.142)	
EKN1 : Component-specific knowledge				0.115 (0.095)		0.019 (0.089)
EKN2 : Architectural knowledge				0.173 ** (0.081)		0.092 (0.082)
NWT : New technology	-0.258 (0.208)	-0.238 (0.200)	-0.199 (0.167)	-0.204 (0.169)	-0.315 ** (0.161)	-0.310 * (0.177)
CMP : CAD/CAE usage	-0.176 (0.411)	-0.183 (0.391)	-0.179 (0.316)	-0.160 (0.321)	-0.196 (0.293)	-0.168 (0.303)
NWT ×EKN					1.274 * (0.484)	
NWT ×EKN1						0.683 * (0.352)
NWT xEKN2						0.579 (0.476)
Adjusted R square	0.003	0.094	0.422	0.412	0.502	0.481
R square change					(DQ5)-(DQ3) 0.078 **	(DQ6)-(DQ4) 0.080 **

N=45. Standard errors in parentheses. *: p-value < 0.1; **: p-value < 0.05; ***: p-value < 0.01.


Table 6: Regression Results for Integrated Problem-Solving Process

Model #	PS1	PS2	PS3	PS4
Intercept	0.017	-0.157	-0.140	-0.165
SLD : Sales dependency on the automaker		0.185 ** (0.086)	0.155 ** (0.078)	0.181 ** (0.080)
STK : Stock ownership by the automaker		-0.074 (0.169)	-0.077 (0.152)	-0.114 (0.154)
INC : Internal coordination			0.334 *** (0.105)	
INC1 : Coordination within engineering				0.202 * (0.118)
INC2 : Engineering- purchasing coordination				0.213 ** (0.080)
INC3 : External consistency				-0.123 (0.087)
NWT : New technology	-0.372 (0.244)	-0.074 (0.169)	-0.173 (0.223)	-0.100 (0.227)
CMP : CAD/CAE usage	0.301 (0.481)	0.300 (0.467)	0.406 (0.422)	0.463 (0.422)
Adjusted R Square	0.012	0.070	0.244	0.252


N=45.

Standard errors in parentheses.
*: p-value < 0.1; **: p-value < 0.05; ***: p-value < 0.01.

Figure 1: Analytical Framework

Note: Controlling factors such as the supplier's capabilities and component types are omitted simplicity.

APPENDIX: VARIABLE CONSTRUCTION

Most variables used in the statistical analysis were constructed based on data set from the supplier survey. Multiple items (indicators) were designed to measure various aspects of each construct and were included in the survey questions. Items used for each variable are shown in Appendix Table.

To examine if there are underlying key dimensions within a set of indicators for a construct, a principal component analysis was conducted. When I found multiple dimensions that are both statistically significant and conceptually meaningful, subcomponent variables were constructed, as in the case of EKN (EKN1 and EKN2) and INC (INC1, INC2, and INC3). For each dimension for a construct, the items having a higher coefficient with the dimension were grouped, and the mean of those items' original scores¹³ was defined as a subcomponent variable (e.g. EKN1 and EKN2). The mean of those subcomponent variables was defined as the main variable (e.g. EKN) for the construct.

It should be noted that many variables are based on the respondents' perceptions. Perceptual measurement raises a concern with bias and reliability of the responses. However, those variables for the automakers' supplier management patterns are otherwise difficult to measure, and the respondent suppliers are in the best position to observe the patterns through everyday operations. Also, the respondents were asked to evaluate outside organizations (customers) rather than own organization and colleagues, mostly about recent projects, with the strict confidentiality agreement. These conditions and procedures are expected to have reduced the risk of bias and improved the reliability.

Appendix Table: Variable Specification and Measurement

Variable	Specification	Measurement
CDQ: Component Design Quality	The mean score of 13 items for both satisfaction and relative position	Q: How would you evaluate the component developed in this project in terms of (1) your satisfaction with the outcome of the project; and (2) relative position in comparison with the same type of component used for competing vehicle models in the market? (Responses on 5-point scale for "satisfaction" with 1= unsatisfied; 3= somewhat satisfied; 5= very much satisfied, and 6-point scale for "relative position" with 1= much worse (the bottom quarter in rank); 2= below average (the third quarter in rank); 3= average; 4= above average (the second quarter in rank); 5= much better (the top quarter in rank); 6= the best) 1. Functional performance 2. Structural simplicity (fewer constituent parts) 3. Technological innovativeness 4. Structural coordination with other parts 5. Functional coordination with other parts 6. Lower costs 7. Light weight 8. Durability 9. Design for manufacturability (for your process) 10. Design for manufacturability (for assembly) 11. Manufacturing quality 12. Maintainability 13. Fit to the target customers' needs (Cronbach's alpha: 0.858)
PSP: Integrated problem solving	The mean score of 18 items	 Q: How much would you agree with the following statements as the description of the project's development process? (Responses on 5-point scale with 1= strongly disagree; 5= strongly agree) (*=scale was reversed) 1. The automaker's early engineering requirements were too vague and your company didn't have a clear direction for design*. 2. The automaker's requirements started with a certain range of design tolerance and then the range gradually narrowed. 3. The initial requirements were not stable and changed substantially in the subsequent stages.* 4. The target price initially given by the automaker took full consideration of engineering requirements. 5. The automaker's cost data on which the initial target price was based was accurate and updated. 6. Your initial price/cost estimate was examined very carefully by the automaker from the beginning. 7. Engineering activities and price setting were not linked well and conducted independently.* 8. When the automaker changed its requirements, the target price was also revised accordingly. 9. The automaker examined your manufacturing process and design for manufacturability from earlier stage (before the first prototype). 10. The automaker's earlier engineering requirements took full consideration of structural and functional coordination with other components. 11. The automaker's earlier engineering requirements took full consideration of manufacturability for their assembly process. 12. Structural and functional coordination of the component remained as critical, unsolved problems until later stage (after the first mass trial).* 13. Earlier examination of foreseeable problems enabled smooth engineering activities after starting prototype reviews 14. Earlier examination of foreseeable problems enabled smooth engineering activities after starting mass trial reviews 15. Design changes after the first mass trial.* 17.
		changes after the first mass trial.* (Cronbach's alpha: 0.812) (to be continued)

Variable	Specification	Measurement
COM: Communication Frequency	of days per year for mutual visits between the	Q: How frequently did the following visits for the project happen during the development process? Please indicate the average frequency during the project, by circling one number. (0= never; 1= once per two or three months or less; 2= monthly; 3= twice, three times, or less per month; 4= weekly; 5= twice, three times, or less per week; 6= almost everyday) 1. The automaker's engineers visited your engineering site 2. The automaker's engineers visited your production site 3. The automaker's buyers visited your engineering site 4. The automaker's buyers visited your production site 5. Your engineers visited the automaker 6. Your sales people visited the automaker
EKN : Engineers' knowledge	The mean of EKN1 and EKN2	
EKN1: Component- specific knowledge		Q: How would you describe the level of knowledge of the automaker's engineers, with whom you and your colleagues worked for the project, compared with the level of your and your colleagues' knowledge? (Responses on 5-point scale with 1= much lower; 3=about the same; 5= much higher) 1. Materials of the component 2. Functional design of the component 3. Structural design of the component 4. Durability design of the component 5. Core technology of the component 6. Design for manufacturing (for your company's process) 7. Customers' needs and preference about the components 8. Manufacturing process of the component 9. Production management of the component 10. Quality management of the component 11. Constituent parts costs of the component 12. Material costs of the component 13. Manufacturing process costs of the component 14. Labor costs of the component 15. Other costs of the component 16. Other costs of the component 17. Other costs of the component 18. Other costs of the component 19. Other costs of the component
EKN2: Architectural knowledge	The mean score of 3 items	 Q: the same as above. Design for manufacturing (for the automaker's assembly) Structural coordination with other components Functional coordination with other components (Cronbach's alpha: 0.764)
INC: Internal coordination	The mean of INC1, INC2, and INC3	
INC1: Internal coordination within eng. dept.'s	The mean score of 6 items	 Q: How much would you agree with the following statements as the description of knowledge sharing and coordination between various functions within the automaker for this project? (Responses on 5-point scale with 1= strongly disagree; 5= strongly agree) 1. Engineers within the same component engineering group shared knowledge (e.g. experiences in other projects) well. 2. The component engineering and advanced engineering of the component and related technology shared knowledge well. 3. The component engineering and other related engineering groups were coordinated effectively for structural coordination. 4. The component engineering and other related engineering groups were coordinated effectively for functional coordination of the component. 5. The component engineering and other related testing groups were coordinated effectively for functional coordination. 6. The component engineering and process engineering were coordinated effectively for manufacturability for assembly process. (Cronbach's alpha: 0.871)
INC2: Internal coordination.	The mean score of 2 items	Q: the same as above.The component engineering and purchasing shared knowledge for cost

Variable

Specification

Measurement

Variable	Specification	Measurement
between eng. and purch.		management well. 2. The component engineering and purchasing were coordinated effectively for cost management. (Cronbach's alpha: 0.793) (to be continued)
INC3: External consistency toward supplier	The mean score of 2 items	Q: the same as above. (*=scale was reversed) 1. What your company heard from the automaker's various engineering functions lacked consistency.* 2. What your company heard from the automaker's engineering and purchasing lacked consistency.* (Cronbach's alpha: 0.678)
SLD: Sales dependency on the automaker	The supplier's sales volume to the automaker/ the supplier's total sales volume of the component (%)	Based on industry data on 1996 transactions, published by IRC (1997).
STK: stock ownership by the automaker	Set to 1 if the supplier's stock is owned wholly or partially by the automaker	Based on the supplier's annual report.
NWT: Technological newness	Set to 1 if one of the answers to the two questions at right is "4"; otherwise 0.	 Q: How would you describe the engineering newness of the project? Please circle one number? Minor modification (changes were less than 20%) of a component design that had been already developed at your company. Major modification (20-80%) of a component design that had been already developed at your company. Completely new design (more than 80%), but its design was based on a technology that had been demonstrated in another project. Technologically new to your company and a completely new design. Q: How would you describe the process newness of the project? Please circle one number? Existing process layout and equipment with minor modification of dies and tooling. Existing process layout and equipment with new dies and tooling. New process layout and equipment, but based on established process engineering, in your company. Technologically new process to your company and completely new process layout and equipment.
CMP : Computer usage	Ratio (%) of "yes" for the answers to the four questions at right;.	 Q: Did your company use the following computer and information systems for the project? (1. yes; 2. no) 1. Drawing by 3-D CAD 2. Simulation and evaluation by CAE 3. Provide engineering drawings by 3-D CAD data to the automaker 4. Receive engineering information by 3-D CAD data from the automaker

than the Japanese in their survey data, for example, Liker, Kamath, Wasti and Nagamachi (1995) argued that frequency of communication does not necessarily reflect the quality of the communication. This issue

¹ He observed, for example, that Smith, Carroll and Ashford (1995), in their introduction to the special issue of *Academy of Management Journal* on "Intra- and Interorganizational Cooperation," treated the two subjects as separate.

² It should be noted that there has been some research that links interorganizational relations and internal organizations, such as the research on boundary-spanning roles and activities (Thompson 1967; Aldrich and Herker 1977; Adams 1980), organizational buying behavior (Strauss 1962; Webster and Wind 1972; ◆Barclay 1991), and interorganizational bargaining (Kochan 1975). These researchers have focused on the relations between the characteristics of boundary units and the focal organization's behavior and environment. They discussed, for example, how environmental uncertainty affects the role and influence of a boundary unit in an organization, and how internal conflicts affect the decision of an organization's buying center or bargaining unit. They have not, however, turned toward internal organization's effects on performance and competitiveness of the inter-firm division of labor.

³ Helper (1996) showed that suppliers are more likely to participate in product development when an automaker shows a certain commitment to the relationships. However, since there are some differences in the nature of inter-firm relations even when a supplier is involved, the effect of inter-firm relations on product development performance is analyzed.

⁴ An individual component should be coordinated with other related components both structurally and functionally. Structural coordination is necessary to achieve, for example, efficient packaging of components in a given space. Functional coordination is necessary to achieve various functional targets, such as maximizing handling and ride performance, and minimizing noise and vibration. The key is that better coordination cannot be achieved by merely putting good individual components together; related components should be integrated with mutual adjustments. Component coordination and product integrity of a vehicle are, therefore, in a sense, two sides of the same coin, although product integrity requires more than component coordination; it also requires, for example, good styling and fit with customer's needs.

⁵ Communication frequency, however, may not always be an indicator of effective management — more communication may be an indication that there are more problems to solve or a lack mutual understanding. Observing more frequent communication between U.S. automakers and their suppliers

will be empirically examined later.

⁶ Architectural knowledge generally includes knowledge about entire architectural structure of a product, whereas in this study it refers only to knowledge about the linkage between a component and other components in a product.

⁷ The standardized coefficient for NWTxEKN1 (component-specific knowledge) is 50% larger than for NWTxEKN2 (architectural knowledge). When only one interaction term was entered, rather than two together, the difference in R-square between the equation with the interaction term and without (Model DQ4) is significant at the 5% level for NWTxEKN1, but not at the 10% level for NWTxEKN2. These results also indicate that component-specific knowledge plays a more important role than architectural knowledge for those projects involving new technology.

It should be noted, however, that internal coordination may not always positively affect component design quality. As shown in Table 4, INC has a negative correlation with COM (communication frequency), indicating that higher INC is associated with lower COM, which would lead to lower CDQ (Table 5), other things being equal. The negative correlation between INC and COM may be observed because when an automaker's engineers spent more time on internal coordination, they do not have enough time for external communication (another possible reason would be that effective internal coordination would reduce the necessary amount of communication with a supplier). In fact, when INC is regressed directly on CDQ, INC has a positive but not statistically significant coefficient, whereas when it is regressed together with COM on CDQ, it has positive and statistically significant one. To capitalize on a higher level of internal coordination, an automaker needs to keep the level of communication with a supplier.

I examined the differences among automakers in their scores for key supplier management variables. Most of the differences were not statistically significant at the 10% level according to the Bonferroni test, probably because the sample size for each automaker was limited (one to seven). However, the

differences observed in the survey data and my interviews with suppliers consistently suggest that there are distinctive differences in supplier management among automakers.

- ¹⁰ This does not necessarily mean that a financial tie has only a negative effect on component development performance. Automakers tend to give a larger sales volume to financially-affiliated suppliers (see a positive correlation between SLD and STK in Table 4), and a higher sales dependency encourages more efforts of the supplier. Also, according to my interviews, a close, long-term relations based on a financial tie would allow the automaker and the supplier to have more open, earlier, and extensive exchange of information. Yet, the statistical results suggest that when those possible benefits of financial ties are controlled for, a financial tie by itself may have a negative effect, or, at least, does not have a positive effect, due to a reduced competitive pressure. Some Western automakers have reduced the number of suppliers drastically, moving from competitive sourcing from multiple suppliers toward single sourcing from a particular supplier. The results of this study point out a possible danger of such policy limited competitive pressure can reduce the supplier's motivation.
- ¹¹ For example, the *Financial Times* reported that because suppliers of vehicle parts have been concentrated in the hands of just a few specialists, vehicle makers are questioning the benefits to them of this trend (Financial Times Review of the Auto Industry, June 12, 1997, p.1). This concern apparently is based on the issues of losing architectural knowledge and competitive pressure by relying on a very limited number of system suppliers.
- ¹² More complicated relations among variables could be examined by a structural modeling approach, such as LISREL. However, a small size of this study' sample does not allow me to take such an approach. Instead, this study has focused on examining hypotheses derived from past research in a straightforward way.
- ¹³ Another approach is to use the principal component scores, instead of original scores. In order to check the robustness of the analysis, I have constructed another set of variables using this approach and conducted another series of regressions for sensitivity analysis. It has turned out that the basic results for the main research variables remain the same. Thus the primary results and discussions presented in this paper remain unchanged when the second approach is adopted.