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Like-charged macroions in aqueous electrolyte solution can attract each other because of the presence of
inter- and/or intramolecular correlations. Poisson-Boltzmann theory is able to predict attractive interactions
if the spatially extended structure (which reflects the presence of intramolecular correlations) of the mobile
ions in the electrolyte is accounted for. We demonstrate this for the case of divalent, mobile ions where each
ion consists of two individual charges separated by a fixed distance. Variational theory applied to this symmetric
2:2 electrolyte of rodlike ions leads to an integro-differential equation, valid for arbitrary rod length. Numerical
solutions reveal the existence of a critical rod length above which electrostatic attraction starts to emerge.
This electrostatic attraction is distinct from nonelectrostatic depletion forces. Analysis of the orientational
distribution functions suggests a bridging mechanism of the rodlike ions to hold the two macroions together.
For sufficiently large rod length, we also observe “overcharging”, that is, an over-compensation of the macroion
charges by the diffuse layer of mobile rodlike ions. Our results emphasize the importance of the often rodlike
internal structure that condensing agents such as polyamines, peptides, or polymer segments exhibit. The
results were compared with Monte Carlo simulations.

1. Introduction

Electrostatic interactions between charged macroions in
electrolyte solutions are omnipresent in colloid science, cellular
biology, and technological applications; an extensive body of
studies, both experimental and theoretical, exists.1 Electrolytes
consisting of multivalently charged ions are among the most
interesting systems as they are often found to mediate attractive
interactions between like-charged macroions. A well-docu-
mented example is the condensation of DNA by a multitude of
condensing agents such as the polyamines spermine and
spermidine, cationic polypeptides or proteins, multivalent metal
cations,2,3 and nanoparticles.4 Some of these condensing agents
can have a variable shape as is the case for cationic amphiphiles
or polymers. In addition, they are often able to adjust their
charge distribution, even if subjected to the hypothetical
constraint of a fixed shape. For example, the lipids in mixed
cationic membranes are mobile and thus may optimize their
lateral distribution through a diffusive process.5 On the other
hand, in certain cationic polymers such as polyethylenimine
(PEI),6 the local charge density is adjustable via the degree of
ionization.7 Complexation of macroions other than DNA is also
frequently observed, examples include network formation in
actin solutions8 and the aggregation of rodlike M13 virus,
induced by a divalent tunable diamin ion.9 As a common feature
in almost all cases, the condensing agent is not simply a
multivalent pointlike ion but has an internal structure with its

individual charges well-separated from each other and with
possibly additional internal ionic degrees of freedom.

The observation of attractive interactions between like-
charged macroions in aqueous solution has initiated considerable
theoretical interest. One reason is that the mean-field level
theoretical description, Poisson-Boltzmann theory, does not
predict attraction between equally charged surfaces.10,11Hence,
in order to obtain attraction, correlations need to be included.
The fact that interionic correlations, correlations between mobile
ions, can lead to attraction was realized early by Kirkwood and
Shumaker12 and Oosawa,13 later studied by Monte Carlo (MC)
simulations,14 and various other methods.15-17 A simple inter-
pretation of the mechanism that leads to attraction can be given
in the low-temperature limit where condensed counterions form
two-dimensional Wigner crystals on the surface of each mac-
roion. Interlocking of the crystals then gives rise to a short-
range attractive force. However, Linse has shown that correlation
attraction occurs even if no Wigner Crystal arrangement is
present.18 Experimentally observed attractive forces, such as
those between like-charged mica or clay surfaces in a solution
of divalent ions,19,20 are in agreement with this interpretation.

Attractive interactions between like-charged macroions can
also arise through intra-ionic correlations, that is, correlations
between the spatially separated charges of a single multivalent
microion. A notable example is the ability of polyelectrolytes
to complex oppositely charged macroions21 as is observed for
the condensation of DNA induced by cationic polymers.22 Direct
experimental observations of attractive, polyelectrolyte-induced
forces, based on the surface force apparatus, have also been
reported.23 To understand the emergence of attractive interac-
tions in these systems, no correlations between polymers need
to be included. That is, a theoretical model on the Poisson-
Boltzmann level already produces attractive interactions, given
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that the segment connectivity within the polymer chains (which
reflects the presence of intra-ionic correlations within the
polyelectrolyte) is accounted.24-26 Two related physical effects
predicted for polyelectrolytes interacting with macroions are
overcharging27,28 and bridging.29,30 The former implies charge
inversion, that is, an accumulation of excess charge above that
needed to neutralize the surface charges of the macroions. The
latter describes the mechanism of individual polyelectrolytes
being adsorbed onto two macroions at the same time. Both
effects are intimately connected to the existence of a stable
equilibrium distance between the two like-charged macroions.

Perhaps the most simple multivalent ion with a spatially
extended charge distribution would consist of two individual
point-charges separated by a fixed distancel. This rodlike ion
type was the subject of a recent study31 in which a nonlinear
Poisson-Boltzmann equation was derived in the limit of
sufficiently small rod lengthl (resulting from a Taylor expansion
and being strictly valid only forl , lD, wherelD is the Debye
screening length). The possibility of attractive interactions
between two like-charged planar macroions was indeed pre-
dicted, but only if the rod is longer than a critical valuelc with,
generally,lc > lD. Clearly, because our previous approach was
based on smalll, the presence of attraction is still questionable.
One of our goals is thus to extend our previous approach to
arbitrary rod lengthl and to study if attractive interactions still
exist.

In particular, we shall develop the theory for the case of
arbitrary long rodlike ions sandwiched between two like-charged
planar surfaces. Any correlations between the mobile rodlike
ions will be neglected. Yet, the internal structure of each rodlike
ion is fully accounted for. Numerical solutions of the resulting
integrodifferential equation corroborate the possibility of at-
tractive electrostatic interactions between the two like-charged
macroions. In the limit of weak macroion charge density, they
emerge forl > lc ≈ 2lD. Below, we shall present an interpreta-
tion of the electrostatic attraction in terms of the above-
mentioned bridging mechanism.

2. Theory

The system we consider is schematically displayed in Figure
1 and consists of two planar, like-charged surfaces immersed
in a symmetric 2:2 electrolyte. The mobile ions residing between

the two surfaces are in equilibrium with a bulk reservoir of
concentrationn0. The two surfaces, each of areaA ) Na with
N fixed positive charges attached, are parallel and separated by
distanceD. We note the corresponding (positive) surface charge
densityσ ) e/a, wheree is the elementary charge anda is the
cross-sectional area per charge on each planar macroion. Our
choice of the planar geometry is guided by simplicity rather
than by any particular application; it ensures that all average
properties of the system depend only on the normal direction
of the macroion’s planar surfaces, thex axis. The special feature
of our system is the structure of the divalent ions. Instead of
having point-like ions, each one consists of two individual
charges separated by a fixed distancel. The electrolyte thus
contains two structurally equivalent but oppositely charged
rodlike ionic species that are free to optimize their spatial
distribution and orientations everywhere between the two planar
surfaces.

Let us describe the locations and orientations of the positively
and negatively charged rodlike ions by the ionic distribution
functionsn+(x, s) andn-(x, s), respectively. We refer to one of
the two charges of a rodlike ion as a reference charge. The local
concentration of the reference charges for the positively charged
rodlike ions is thenn+(x) ) 〈n+(x, s)〉, where we define the
average value

of any given functiong(s) in the region-l e s e l. Similarly,
the conditional probability density to find the second charge of
a positively charged rodlike ion atx + s if the first is located
at x is given byp+(s|x) ) n+(x, s)/〈n+(x, s)〉. Hence, the ionic
distribution function appears as the familiar joint probability

Analogous quantitiesn-(x) ) 〈n-(x, s)〉 and p-(s|x) ) n-(x,
s)/〈n-(x, s)〉 are introduced for the negatively charged rodlike
ions.

Let us discuss the free energy of the system. It will contain
an expression for the electrostatic energy, a nonelectrostatic
potential that accounts for the presence of the walls, and entropy
terms (for both ionic species, positively and negatively charged
rodlike ions) that describe the translational and orientational
degrees of freedom. Within our approach, the translational
entropy is simply that of an ideal gas. Concerning the orienta-
tional entropy, all ion orientations in the absence of any external
potential must have the same probability. Averaging over two
spatial coordinates (they andzdirection) then leads to a constant
density of states in the region-l e s e l along thex axis. Of
course, the total orientational space for a single ion with fixed
reference charge, namely, the area of a sphere of radiusl, is
obtained by also averaging over the remaining spatial direction,
2πl ∫-l

l ds ) 4πl2.
We are now in the position to write down the electrostatic

free energy of the system,F, measured in units of the areaA
and of the thermal energykT (herek is Boltzmann’s constant
andT is the absolute temperature). It can be expressed as

Figure 1. Schematic illustration of two like-charged planar surfaces,
located at positions 0 and D along the horizontal axis withσ denoting
the corresponding surface charge density. The surfaces are immersed
in an electrolyte solution that contains negatively and positively charged
rodlike divalent counter- and co-ions. The separation between the
individual charges of each rodlike ion is denoted byl. The coordinates
x andx + s specify the instantaneous positions of the two charges in
a given rodlike ion along the horizontal axis.

〈g(s)〉 )
1

2l
∫-l

l
ds g(s) (1)

n+(x, s) ) n+(x)p+(s|x) (2)

F

AkT
) ∫-∞

∞
dx[Ψ′(x)2

8πlB
+

∑
i){+,-}

〈ni(x, s)(ln ni(x, s)

n0

- 1 + U(x, s))〉 + 2n0] (3)
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where the sum runs over “+” and “-” and wherelB ≈ 0.7 nm
is the Bjerrum length in water. The symbolΨ denotes the
commonly used dimensionless electrostatic potential, and a
prime denotes the derivative with respect to the argument.
Hence, the first term in eq 3 is the total electrostatic energy of
the system. The second term accounts for all nonelectrostatic
interactions. It contains, first, the entropy of the rodlike ions

where the second line is the decomposition into the translational
and orientational entropy. (Note that the above-mentioned
uniformity of orientational states along thex axis is expressed
by the absence of a degeneracy term in the expression for the
orientational entropy). It contains, second, an additional potential
U(x, s) (expressed in units ofkT) that specifies an external
nonelectrostatic interaction for a rodlike ion whose two charged
ends reside at positionsx1 ) x andx2 ) x + s. Because of the
symmetry of the rodlike ions, the external potential should not
distinguish between the two charges. Therefore, we require
symmetry ofU(x, s) with respect to exchanging the positions
x1 f x2 andx2 f x1. This gives rise to the relationU(x, s) )
U(x + s, -s). Apart from this symmetry relation, we do, at this
point, not need to further specify the external potential. Below
we shall defineU(x, s) so as to describe the presence of the
macroion’s planar surfaces.

In thermal equilibrium, the ionic distribution functions
n+(x, s) andn-(x, s) are free to adjust such thatF in eq 3 adopts
a minimum. We find the corresponding optimal distributions
by performing the first variation ofF with respect ton+(x, s)
andn-(x, s). Using Poisson’s equation,Ψ′′(x) ) -4πlBF(x)/e,
this gives rise to

The local charge density, appearing in Poisson’s equation and
in eq 5,

accounts for both individual charges of positively (i ) +) and
negatively charged (i ) -) rodlike ions that make a contribution
at positionx. That is, the local charge density has contributions
from the reference charges that are located atx (first term in
the sum in eq 6) and from the second, orientationally mobile,
charges (second term in the sum in eq 6) of the rodlike ions.
We have also included intoF(x) an additional fixed charge
densityFfix(x) which is independent ofn+(x, s) andn-(x, s). At
this point, we need not specifyFfix(x); below, we shall use it to
describe the fixed charges on the macroion’s planar surfaces.

To carry out the variationδF(x) in eq 5, we note the equality

valid for both i ) + and i ) -. With this, the final result for

the variation becomes

Hence, in thermal equilibrium, the optimal ionic distribution
functions are

with i ) + and i ) -. Once theni(x, s) are known, we can
calculate the local concentrations and the conditional probability
densities defined above, yielding

Moreover, upon insertingni(x, s) into eq 6, we can calculate
the charge density

Replacings with -s in the last term of eq 12

and recallingU(x + s, -s) ) U(x, s) on the right-hand side of
eq 13, we obtain the final expression for the charge density

Using this expression forF(x) in Poisson’s equation yields the
nonlinear integrodifferential equation

where we have defined the Debye lengthlD ) 1/κ throughκ2

) 4 × 8πlBn0. This definition of the Debye length is equivalent
to that of a symmetric 2:2 electrolyte containing divalent
pointlike ions. Inserting the equilibrium distributions forn+(x,
s) andn-(x, s) into the free energy in eq 3, we obtain

Equation 15, together with the corresponding result for the
free energy, eq 16, are major results of the present work, valid
for any choice ofU(x, s) andFfix(x). For our specific system of
two charged planar surfaces, located at positionsx ) 0 andx
) D, we may now specify these functions,

S) -k∫-∞

∞
dx ∑

i){+,-}
〈ni(x, s)(lnni(x, s)

n0

- 1)〉 )

-k∫-∞

∞
dx ∑

i){+,-}
ni(x)[ln ni(x)

n0

- 1 + 〈pi(s|x) ln pi(s|x)〉]
(4)

δF

AkT
) ∫-∞

∞
dx[Ψ(x)δ(F(x)

e ) +

∑
i){+,-}

〈δni(x, s)(ln ni(x, s)

n0

+ U(x, s))〉] (5)

F(x) ) e ∑
i){+,-}

i〈ni(x, s) + ni(x - s, s)〉 + Ffix(x) (6)

∫-∞

∞
dx〈Ψ(x)δni(x - s, s)〉 ) ∫-∞

∞
dx〈Ψ(x + s)δni(x, s)〉 (7)

δF

AkT
) ∫-∞

∞
dx ∑

i){+,-}
〈δni(x, s)(iΨ(x) + iΨ(x + s) (8)

+ ln
ni(x, s)

n0
+ U(x, s))〉 (9)

ni(x, s) ) n0 e-i[Ψ(x)+Ψ(x+s)]-U(x,s) (10)

ni(x) ) 〈ni(x, s)〉 ) n0〈e
-i[Ψ(x)+Ψ(x+s)]-U(x,s)〉

pi(s|x) )
ni(x, s)

〈ni(x, s)〉
) e-iΨ(x+s)-U(x,s)

〈e-iΨ(x+s)-U(x,s)〉
(11)

F(x) ) Ffix(x) + e ∑
i){+,-}

in0〈e
-i[Ψ(x)+Ψ(x+s)]-U(x,s) +

e-i[Ψ(x-s)+Ψ(x)]-U(x-s,s)〉 (12)

〈e-i[Ψ(x)+Ψ(x-s)]-U(x-s,s)〉 ) 〈e-i[Ψ(x)+Ψ(x+s)]-U(x+s,-s)〉 (13)

F(x) ) -4en0〈e
-U(x,s) sinh[Ψ(x) + Ψ(x + s)]〉 + Ffix(x) (14)

2Ψ′′(x) ) κ
2〈e-U(x,s) sinh[Ψ(x) + Ψ(x + s)]〉 -

8πlB
Ffix(x)

e
(15)

F
AkT

) 2n0 ∫-∞

∞
dx〈e-U(x,s)[Ψ(x + s) sinh[Ψ(x) +

Ψ(x + s)] - cosh[Ψ(x) + Ψ(x + s)]] + 1〉 +

1
2∫-∞

∞
dx Ψ(x)

Ffix(x)

e
(16)
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andFfix(x) ) σ[δ(x) + δ(x - D)], where we recallσ ) e/a to
be the surface charge density of the two planar surfaces;δ(x)
is the delta function, anda is the cross-sectional area per charge
on each surface. Equation 15 then gives the integrodifferential
equation

Note that eq 15 also yields the boundary conditions

where we have defined the dimensionless measurep ) 2πlBlD/a
for the charge density of the macroion surfaces. With our
particular choices forU(x, s) andFfix(x), the free energy in eq
16 reads

In the present work, we will also consider the linear regime,
applicable in the limitΨ , 1. In this case, we obtain the
linearized integrodifferential equation

and the free energy,F (see eq 20), reduces to

The first term on the rhs of eq 22 is the electrostatic contribution
to the free energy. Obtaining the surface potential,Ψ(0),
involves solving the linearized integrodifferential equation, eq
21. The second term on the rhs of eq 22 is of nonelectrostatic
origin and represents the steric depletion interaction due to
entropic confinement of the rodlike molecules between the rigid
walls. The corresponding integration can be carried out, yielding

For D > l, eq 23 gives the constantl/2, while for D < l, eq 23
gives -D2/(2l) + D. In the latter case, the integral in eq 23
decreases quadratically for decreasingD and approaches 0 for
D f 0; see curve g in Figure 3B. Note that the simple expression
for the depletion energy, based on neglecting all intermolecular
steric interactions, is strictly valid only in the dilute regime.

The linearized case has a well-known closed solution in the
limit of vanishing length,l, of the rodlike ions. This limit
corresponds to pointlike divalent ions for which the linearized
integrodifferential equation readsΨ′′(x) ) κ2Ψ(x), implying
(with boundary conditions given in eq 19) the solution

and the corresponding free energy reads

Clearly, for pointlike ions, the interaction energy between the
two like-charged surfaces is repulsive. This is also the case in
the nonlinear regime.

3. Results

The following analysis is based on numerical solutions of
either the nonlinear (see eq 18) or the linearized (see eq 21)
integrodifferential equation. The method of solving these
integrodifferential equations is outlined in the Appendix; for
an isolated surface, an approximate analytical solution is also
known.32 It is convenient to present our results in terms of
reduced, dimensionless, spatial coordinates, scaled by the Debye
length lD. Hence, we definexj ) x/lD, Dh ) D/lD, lh ) l/lD, sj )
s/lD, and so forth.

Let us first consider the linear regime (see eq 21) at large
separation,Dh ) 20, between the two charged planar surfaces.
Figure 2A shows the reduced electrostatic potentialΨ(xj)/p as
a function of the distancexj away from the macroion. The
different curves correspond to different rod lengthlh. Plotting
Ψ(xj)/p is convenient becauseΨ(xj) ∼ p in the linear regime.
Clearly, for lh ) 0 the potential is given by eq 24. Note that the
potential increases more rapidly for nonvanishinglh than for lh
) 0, which is in agreement with the previous findings33 for a

U(x, s) ) {0 x > 0 & x + s > 0 & x < D & x + s < D
∞ elsewhere

(17)

2Ψ′′(x) ) κ
2 1

2l ∫-min(l,x)

min(l,D-x)
ds sinh[Ψ(x) + Ψ(x + s)] (18)

Ψ′(0) ) -Ψ′(D) ) -2κp (19)

F
AkT

)
Ψ(0)

a
+ 2n0 ∫0

D
dx{1 + 1

2l ∫-min(l,x)

min(l,D-x)
ds[Ψ(x + s) ×

sinh[Ψ(x) + Ψ(x + s)] - cosh[Ψ(x) + Ψ(x + s)]]} (20)

2Ψ′′(x) ) κ
2 1

2l ∫-min(l,x)

min(l,D-x)
ds[Ψ(x) + Ψ(x + s)] (21)

F
AkT

)
Ψ(0)

a
+ 2n0 ∫0

D
dx[1 - 1

2l ∫-min(l,x)

min(l,D-x)
ds] (22)

∫0

D
dx[1 - 1

2l ∫-min(l,x)

min (l,D-x)
ds] ) min(l,D) [1 -

min(l,D)
2l ] (23)

Ψ(x) ) 2p
cosh[κ(x - D/2)]

sinh(κD/2)
(24)

Figure 2. Results for the linearized theory (see eq 21), derived forp
) 0.1, and large distanceDh ) 20 between the two surfaces. A:
Electrostatic potentialΨ(xj)/p as a function of the distancexj from the
charged surface. The inset shows the scaled integrated charge according
to eq 26. B: Local concentration of reference chargesn-(xj)/n0 as a
function of xj. Dashed lines display corresponding calculations where
electrostatics is excluded (p ) 0). In all diagrams, the different curves
correspond tolh ) 5 (a), lh ) 2 (b), andlh ) 0 (c).

Figure 3. Scaled free energyF as a function of the distance between
the two charged planar surfaces,Dh , for lh ) 5. In both diagrams, the
solid curves are derived using nonlinear theory, while the dashed curves
are based on linearized theory. The charge parameters correspond top
) 2 (a, b),p ) 1 (c, d), andp ) 0.1 (e, f). Finally, for curve g, it is
p ) 0, and no electrostatic interactions are present.

F
AkT

)
Ψ(0)

a
) 2p

a
coth(κD/2) (25)
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single planar macroion (corresponding toDh f ∞). Upon
increasing lh beyond lh > lhc ≈ 2, the potential develops
nonmonotonic behavior. This behavior directly implies “over-
charged” regions where the charges from the rodlike ions over-
compensate the macroion charge density at a certain distance
away from the macroion. This conclusion follows
from the scaled integrated charge (charge per unit area) at
distancexj,

which generally adopts the valuesQ(0) ) 0 andQ(Dh /2) ) 1.
In addition,Q(xj) > 1 signifies “overcharging”. RewritingQ(xj)
) 1 + Ψ′(xj)/(2p) we see that regions withΨ′(xj) > 0 imply
Q(xj) > 1. The inset of Figure 2A displaysQ(xj) corroborating
“overcharging” forlh J 2. Note that forlh J 2, there is no critical
charge parameterp at which the overcharging first appears.

Even though the potentialΨ(xj) in Figure 2A is smooth, the
corresponding ionic densitiesn((xj) (see eq 11) are not. That
this is so for anylh > 0 can be seen directly in the limit ofp )
0 where no electrostatic interactions are relevant any more;Ψ
≡ 0 andn+(xj) ) n-(xj). The steric interactions of the rodlike
ions still lead to a depletion from the macroions; forDh > 2lh
the densities aren((xj)/n0 ) (1 + xj/lh)/2 for 0 e xj e lh and
n((xj)/n0 ) 1 for lh e xj e Dh /2. These functions are plotted in
Figure 2B (dashed curves, for different rod lengthslh) together
with the corresponding results (solid curves) forn-(xj) in the
presence of electrostatic interactions (that is, forp ) 0.1 as in
Figure 2A). Again, the different curves a, b, and c correspond
to different rod lengthslh.

Knowing Ψ(xj) allows us to calculate the free energyF (eq
20 in the nonlinear regime and eq 22 in the linear case). Figure
3 shows results for a characteristic case of long ions;lh ) 5.
Note that, in Figure 3, the scaled free energyF × 16πlBlD/
(AkT) ) F/(AkT2n0lD) is displayed, normalized so as to simply
produce the result in eq 23 in the limitp ) 0 where electrostatic
interactions are irrelevant; see curve g in Figure 3. Thus, in
this limit (p ) 0) and forDh > lh, we find F × 16πlBlD/(AkT) )
lh/2, (or, equivalently,F/(AkT) ) ln0), indicating that the two
flat surfaces no longer interact with each other. For small
distances,Dh < lh, there is entropy loss of the mobile rods because
of their interaction with both surfaces. The corresponding
depletion attraction continues to dominate the system for weakly
charged surfaces wherep , 1, leading to a minimum inF(Dh )
at smallDh < lh. For larger surface charge density,p J 1, a
depletion minimum is absent. A second minimum, located
roughly atDh ≈ lh, is weak forp , 1 but dominates the system
for p J 1. This second minimum is distinct from the depletion
minimum; it is electrostatic in origin and can be ascribed to a
bridging mechanism as analyzed below (see Figure 5). In
support of this notion, the bridging minimum occurs for highly
charged surfaces almost exactly atDh ) lh; see curve a in Figure
3. The linearized integrodifferential equation (see the dashed
curves in Figure 3) makes, qualitatively, the same predictions
as the full, nonlinear theory (see the solid curves in Figure 3).
Yet, as for pointlike mobile ions, the free energies of the former
are much larger ifp J 1.

Similar considerations as forlh ) 5 (on which Figure 3 is
based) apply to different rod lengthlh. Our numerical results
are summarized in Figure 4 which shows the positionsDh )
Dh eq whereF(Dh ) exhibits an absolute minimum. These positions
are shown as a function oflh for different choices ofp. Consider
first the limit of weakly charged macroions withp ) 0.1; see
curve a in Figure 4. As pointed out above, for sufficiently large

lh, we observe two local minima, one reflecting the interplay
between depletion attraction and electrostatic repulsion and the
other one corresponding to an electrostatic bridging mechanism.
The bridging minimum is the stable one for sufficiently small
lh, namely, for lh j 3.8. The stable minimum reflecting the
interplay between depletion attraction and electrostatic repulsion
is adopted forlh J 3.8 (see curve a in Figure 4). The position
where the two minima exhibit the same depth is at aboutlh ≈
3.8. This is indicated in Figure 4 by the vertical broken line;
the corresponding scaled free energy forlh ≈ 3.8 is shown in
the inset of Figure 4. Position and depth of the depletion
minimum depend onp; for p ) 0.1 we obtain an equilibrium
separationDh eq ≈ 2.3; see curve a in Figure 4. Upon an increase
of p (with p , 1), this position shifts to largerlh. For p J 0.5,
only the bridging minimum is left; see curve b in Figure 4.

The location of the bridging minimum is the more interesting
one because within linearized theory it is independent ofp.
Curve b in Figure 4 shows it forp ) 0.5 where no stable
depletion equilibrium is found anymore. (The position of the
local bridging minimum forp ) 0.1 andlh J 3.8 is not shown;
it would coincide with curve b). Forp ) 0.5, the free energies
in linear and nonlinear theory are still fairly close as is evident
from the proximity of curves b and c in Figure 4. Curve b of

Q(xj) ) -
lD
σ ∫0

xj
F(xc) dxc (26)

Figure 4. Stable equilibrium distances between the charged surfaces
Dh eq as a function oflh. The scaled macroion charge densities arep )
0.1 (a),p ) 0.5 (b, c), andp ) 1 (d). Curves a and b are derived using
linearized theory; for curves c and d, we have used the nonlinear
version. Note that the smallest rod length that allows for attraction is
lh ) lhc ≈ 2. Note also that, for curve a, the position of the stable
minimum jumps atlh ≈ 3.8, indicated by the vertical dashed line. The
inset shows the corresponding (forlh ) 3.8 andp ) 0.1) scaled free
energy as a function of the distanceDh between the charged planar
surfaces.

Figure 5. Conditional probability densityp-(sj|xj) as a function of the
projectionsj of the rodlike ions with respect to thexj axis for two different
coordinates of the reference charge;xj ) 0 for curves a and c, andxj )
4 for curves b and d. The length of the divalent rodlike ion islh ) 8,
and the scaled surface charge density isp ) 0.5. The dashed lines
show corresponding calculations with excluded electrostatics (p ) 0).
The distance between the charged walls isDh ) 20 in diagram A, and
Dh ) 8.47 in diagram B.
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Figure 4 is a major result of the present study. Its qualitative
features are identical to those derived in a previous work31 where
rodlike ions were considered in the limitlh , 1, leading to the
prediction of attraction forlh > lhc ) 2.45 (see the inset in the
right diagram of Figure 2 in Bohinc et al.31). Our present
approach, being valid for arbitrarylh, results in the numerically
somewhat different predictionlhc J 2. Another similar feature
is Dh eq ) lh for lh . 1, motivating the interpretation of this
minimum to originate in a bridging mechanism.

Increasing the surface charge density ultimately renders the
system nonlinear, and the locations,Dh eq ) Dh eq(lh), of the bridging
minimum will depend onp. Curves b and c in Figure 4, both
derived forp ) 0.5 using the linear and nonlinear approaches,
respectively, exhibit the same behavior,Dh eq ) lh, for lh . 1. They
also roughly predict a minimal lengthlhc ) 2 needed for attractive
electrostatic interactions to occur.

Our final analysis characterizes bridging of the rodlike ions
as the mechanism that leads to the stable minimum between
the like-charged surfaces atDh eq ≈ lh. To this end, we consider
the conditional probability densityp-(sj|xj) (see eq 11) that
directly reflects the orientational distribution of the rodlike
counterions. As everywhere in this section,p-(sj|xj) is expressed
in terms of the rescaled coordinatesxj ) x/lD andsj ) s/lD; the
normalization condition then reads

valid for xj in the region 0e xj e Dh . For allsj outside that region,
it is p-(sj|xj) ≡ 0. Figure 5 showsp-(sj|xj) at large lh for two
different cases, largeDh (with Dh . lh . 1) corresponding to an
isolated macroion andDh ) Dh eq≈ lh where the rodlike ions bridge
between the two planar macroions (see Figure 6). In Figure 5,
we have specifically chosenp ) 0.5 andlh ) 8, as well asDh )
20 (see diagram A) andDh ) 8.47 (see diagram B). In the latter
case,Dh ) Dh eq; see Figure 4. In both diagrams, we display
p-(sj|xj) for the two positionsxj ) 0 andxj ) lh/2 ) 4.

For Dh ) 20 (see diagram A of Figure 5), we observe an
enhanced probability to find the second charge of the rodlike
ion close to the macroion surface, irrespective of whether the
first is located atxj ) 0 or xj ) 4. Clearly then, the rodlike ions
exhibit a tendency to align parallel to the macroions’ surface.

For Dh ) 8.47 (see diagram B of Figure 5), there are two
regions of enhanced probability densityp-(sj|xj), corresponding
to the location of the rodlike ion’s second charge close to either

one of the macroion surfaces. Again, this observation applies
for both locations of the reference charge atxj ) 0 or xj ) 4.
Hence, our finding is that two different orientations are
preferred, with the rodlike ion either parallel or normal to the
macroions. It is the latter case that signifies the bridging
transition. We thus redisplay, in Figure 6, the schematic
representation in Figure 1 for the case ofDh ) Dh eq ) lh,
highlighting the preferred parallel and normal orientations of
the rodlike ions. We note that the orientational ordering is
induced by electrostatics. For uncharged surfaces, corresponding
to p ) 0, the probability distribution,p-(sj|xj), is uniform as
shown in Figure 5 (broken lines). In the opposite case, for
strongly charged surfaces, withp J 1, the variations inp-(sj|xj)
are much stronger than those displayed in Figure 5 (results not
shown).

We also discuss the probability density distribution of coions
and their contribution to the interaction between equally charged
surfaces. First note that the concentration of coions is much
smaller than the concentration of counterions. In the caseDh ≈
lh, p ) 0.5 andlh ) 8 the concentration of counterions close to
the charged surface isn-(x ) 0)/n0 ≈ 3.88, while the
concentration of coions close to the charged surface isn+(x )
0)/n0 ≈ 0.07. With increasing surface charge density the
concentration of coions becomes negligibly small compared with
the concentration of counterions. This means that the coions
have a very small influence on the attraction between equally
charged surfaces. In the case ofDh ≈ lh, the most probable
location of the second charge of the coions is in the midplane
of the system regardless of the position of the reference charge.

Our approach accounts for intra-ionic correlations, that is,
correlations between the two charges within a given rodlike ion.
But it neglects inter-ionic correlations, that is, correlations
between charges of different rodlike ions. As is well-known,
interionic correlations can be neglected for monolvalent salt
solutions (of reasonably low densities). But they become
important for pointlike divalent ions. We thus expect our
approach to work better for long rodlike ions where the two

Figure 6. Schematic illustration of the bridging mechanism. For long
rodlike ions,lh . 1, there exists a stable equilibrium between the two
macroions atDh ≈ lh. Here, the ions preferentially orient either parallel
or normal to the macroion surfaces. Those aligning normal give rise to
the bridging equilibrium.

Figure 7. Local concentration of reference chargesn((x) as a function
of x. Curve (a) refers to positively charged rodlike ions, and curve (b)
refers to negatively charged rodlike ions. Dashed lines display the
theoretical approach, whereas full lines display results of MC simulation.
The model parameters are: the length of the rodlike ionsl ) 2 nm,
their bulk concentrationn0 ) 0.1 mol/L, the charge parameterp ) 1
and the plate-to-plate separationD ) 10 nm. In MC simulations, both
ion types are modeled as two charged hard spheres of radius 0.05 nm
(separated by the fixed distancel).

1
2lh ∫- lh

lh
p-(sj|xj) dsj ) 1 (27)
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charges of each ion are spatially separated so that the electrolyte
behaves effectively similar to a monovalent salt. For vanishingly
small l, the charges merge into one divalent pointlike ion. Then,
correlations between these ions tend to be strong and our
approach fails. This notion is supported by Monte Carlo
simulations that we have carried out (as described in section
4). We finally note that our approach predicts overcharging
independently of the macroion’s surface charge density. This
is qualitatively different for multivalent pointlike ions where
overcharging is a function of the ion radius and involves a
critical surface charge density34,35 (which has been suggested
to diverge with decreasing ion radius36). The situation considered
in the present work is qualitatively different because intra-
(instead of inter-) molecular correlations lead to the overcharg-
ing.

4. Comparison with Monte Carlo Simulations

Canonical Monte Carlo (MC) simulations were performed
using the integrated Monte Carlo/molecular dynamic/Brownian
dynamic simulation suite Molsim37 following the standard
Metropolis scheme. Both positive and negative rod-like ions
were placed randomly into the Monte Carlo simulation box.
The MC box was made electroneutral and average concentra-
tions of both positive and negative charges exactly matched
those obtained from the PB calculations. A trial move consists
of both random displacement and random rotation. Displacement
parameters were chosen to obtain approximately 50% acceptance
rate. Thirty thousand attempted moves per particle were used
for equilibration followed by 100 000 attempted moves during
production runs. Interparticle interactions were calculated as
described elsewhere.38 To calculate single particle distributions,
the z axis was divided into 200 bins of width 0.05 nm. The
standard deviation of values in histograms was less than 0.5%
for each separate bin in all cases. Because the MC simulations
cannot be performed using a mixture of pointlike positive and
pointlike negative charges, we modeled both ion types as
charged hard spheres of radius of 0.05 nm. A small but
inevitable difference of the density profiles in the vicinity of
charged walls arose due to finite ionic radii.

The comparison between the Monte Carlo simulations and
the theory shows that for sufficiently long divalent rodlike ions
(in our casel ) 2 nm) there is a good agreement for the
concentration profile of reference chargesn((x) (Figure 7). Also
the noncontinuous derivatives ofn((x) (the concentration of the
reference charges) at the positionsx ) l andx ) D - l obtained
in the theory is reproduced by our MC simulations. But in the
limit of small divalent ions, there is a large discrepancy between
our theory and Monte Carlo simulations (not shown).

Our comparison clearly suggests the usefulness of the theory
in the limit of long divalent rodlike ions. It also suggests that
the overcharging for fixed length of divalent rodlike ions is
present for any parameterp. In other words, we did not find a
critical surface charge density at which overcharging first
appears. Hence, for sufficiently long divalent rodlike ions, the
attraction between equally charge surfaces is present for any
surface charge density.

5. Conclusion

In summary, we have developed a density functional theory
for rodlike ions of arbitrary length,l, subject to an additional
nonelectrostatic external potential. The specific application to
the case of two interacting, like-charged, planar macroions
reveals the possibility of attractive interactions, introduced
entirely by correlations within the rodlike ions, rather than

between them (the latter being neglected in the mean-field
Poisson-Boltzmann approach). Our results qualitatively cor-
roborate previous findings on the interactions induced by rodlike
ions that were based on a Taylor expansion with respect to the
rod length.31 Specifically, there is a minimal rod length,lc, above
which the electrostatic interactions can be attractive. In our
present approach, this minimal rod length,lc ≈ 2lD, is roughly
given by twice the Debye length,lD, that characterizes the
electrostatic screening length. In the limit of large rod length,
l . lD, an optimal distance,D ≈ l, between the macroions results
from a bridging interaction. We expect that our present results
contribute to better understand the often rodlike structure of
common condensing agents such as polyamines and certain
linear peptides that are able to condense DNA2,39 and other
macroions.40
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Appendix

Analytical solution of the integrodifferential eq 18 with
boundary conditions (eq 19) is not available in a closed form.
A numerical solution is obtained in the following way. The
integrodifferential boundary value problem (eqs 18 and 19) is
restated as a fixed point equation

where F(Ψ) is the solutionΥ of the ordinary differential
boundary value problem

with boundary conditionsΥ′(x ) 0) ) -Υ′(x ) D) ) 4πlB/a.
The fixed point eq 28 is then discretized by replacing the domain
[0, D] of eq 18 by a mesh

of N Chebyshev nodes, the functionΨ by an N-dimensional
vectorΨN of values at the mesh nodes, and eq 28 by the finite
dimensional algebraic equation

wherepN(ΨN) is the polynomial interpolating the values in the
vectorΨN at the mesh nodes andπN(Υ) is theN-dimensional
vector of the values of the functionΥ at the mesh points. Note
that, by denoting withΨN,i the ith component,i ) 1, ...,N, of
the vectorΨN, eq 30 reads componentwise as the nonlinear
algebraic system

of N scalar equations in theN unknownsΨN,i, where the
functionslN,j, j ) 1, ...,N, are the Lagrange coefficients relevant
to the nodes inΩN.

Ψ ) F (Ψ) (28)

2Υ′′(x) ) κ
2 1

2l ∫-min[l,x]

min[l,D-x]
ds sinh[Υ(x) + Ψ(x + s)] (29)

ΩN ) {θN,i: i ) 1, ...,N}

θN,i ) D
2

+ D
2

cos(2i - 1
2N

π)

ΨN ) πN(F (pN(ΨN))) (30)

ΨN,i ) F (∑
i)1

N

lN,j(θN,i )ΨN,j), i ) 1, ...,N
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We use MATLAB software for the numerical computation.
The discretized fixed point eq 29 is solved by the “fsolve”
MATLAB function (present in the optimization toolbox), which
finds solutions of systems of nonlinear algebraic scalar equations
by a least-squares method.

The function “fsolve” requires the computation of values of
the operatorF, and so, it requires the solution of the second
order ordinary boundary value problems (eq 29). Such problems
are restated as first-order equations and then solved by the
“bvp4c” MATLAB function, which finds the solution of two-
point ordinary boundary value problems by collocation. Finally,
we remark that the integral in eq 29 is computed by the “quad”
MATLAB function.
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