
 Open access  Journal Article  DOI:10.1007/S10791-012-9214-Z

Bridging memory-based collaborative filtering and text retrieval — Source link 

Alejandro Bellogín, Jun Wang, Pablo Castells

Institutions: Autonomous University of Madrid, University College London

Published on: 01 Dec 2013 - Information Retrieval (Springer Netherlands)

Topics: Information retrieval applications, Recommender system, Visual Word, Collaborative filtering and
Vector space model

Related papers:

 Evaluating collaborative filtering recommender systems

 A Comprehensive Survey of Neighborhood-based Recommendation Methods

 Information filtering and information retrieval: two sides of the same coin?

 Relevance-based language modelling for recommender systems

 Precision-oriented evaluation of recommender systems: an algorithmic comparison

Share this paper:    

View more about this paper here: https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-
3s6l7d9exq

https://typeset.io/
https://www.doi.org/10.1007/S10791-012-9214-Z
https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq
https://typeset.io/authors/alejandro-bellogin-3zo4qtldw5
https://typeset.io/authors/jun-wang-fil7328qdk
https://typeset.io/authors/pablo-castells-36hbfqkslh
https://typeset.io/institutions/autonomous-university-of-madrid-2p62roku
https://typeset.io/institutions/university-college-london-269wra00
https://typeset.io/journals/information-retrieval-1ytirsv4
https://typeset.io/topics/information-retrieval-applications-3l6tmzen
https://typeset.io/topics/recommender-system-3179d5wg
https://typeset.io/topics/visual-word-hcmr99f5
https://typeset.io/topics/collaborative-filtering-287u9x00
https://typeset.io/topics/vector-space-model-1s255wqi
https://typeset.io/papers/evaluating-collaborative-filtering-recommender-systems-au0a9p6z94
https://typeset.io/papers/a-comprehensive-survey-of-neighborhood-based-recommendation-1bo4fhkvw8
https://typeset.io/papers/information-filtering-and-information-retrieval-two-sides-of-zycsi977zk
https://typeset.io/papers/relevance-based-language-modelling-for-recommender-systems-guygavci8x
https://typeset.io/papers/precision-oriented-evaluation-of-recommender-systems-an-21nx32f6kp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq
https://twitter.com/intent/tweet?text=Bridging%20memory-based%20collaborative%20filtering%20and%20text%20retrieval&url=https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq
https://typeset.io/papers/bridging-memory-based-collaborative-filtering-and-text-3s6l7d9exq


 

 

 

 

Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es  

Esta es la versión de autor de la comunicación de congreso publicada en: 
This is an author produced version of a paper published in: 

 
Information Retrieval 16.6 (2013): 697-724 

 
DOI:    http://dx.doi.org/10.1007/s10791-012-9214-z  
 
Copyright: © Springer-Verlag Berlin Heidelberg 2013 
 
El acceso a la versión del editor puede requerir la suscripción del recurso 

Access to the published version may require subscription 
 

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s10791-012-9214-z


Noname manuscript No.

(will be inserted by the editor)

Bridging Memory-Based Collaborative Filtering and Text

Retrieval ⋆
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Abstract When speaking of information retrieval, we often mean text retrieval.
But there exist many other forms of information retrieval applications. A typical
example is collaborative filtering that suggests interesting items to a user by taking
into account other users’ preferences or tastes. Due to the uniqueness of the prob-
lem, it has been modeled and studied differently in the past, mainly drawing from
the preference prediction and machine learning view point. A few attempts have
yet been made to bring back collaborative filtering to information (text) retrieval
modeling and subsequently new interesting collaborative filtering techniques have
been thus derived.

In this paper, we show that from the algorithmic view point, there is an even
closer relationship between collaborative filtering and text retrieval. Specifically,
major collaborative filtering algorithms, such as the memory-based, essentially
calculate the dot product between the user vector (as the query vector in text
retrieval) and the item rating vector (as the document vector in text retrieval).
Thus, if we properly structure user preference data and employ the target user’s
ratings as query input, major text retrieval algorithms and systems can be directly

used without any modification. In this regard, we propose a unified formulation
under a common notational framework for memory-based collaborative filtering,
and a technique to use any text retrieval weighting function with collaborative
filtering preference data. Besides confirming the rationale of the framework, our
preliminary experimental results have also demonstrated the effectiveness of the
approach in using text retrieval models and systems to perform item ranking tasks
in collaborative filtering.

Keywords Collaborative filtering · Recommender systems · Text retrieval models

⋆ This paper is an extended version of a short paper accepted at ECIR ’11 (see (Belloǵın
et al 2011b)).
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1 Introduction

In the Information Retrieval (IR) community, information retrieval often means
text retrieval by default, either intentionally or unintentionally. This might be
due to historical reasons (Singhal 2001) or simply because text retrieval has been
the most predominant information retrieval application. But, nonetheless, there
exist many other forms of information retrieval applications. A typical example
is collaborative filtering, which aims at finding information items a target user is
likely to like by taking into account other users’ preferences or tastes. Unlike text
retrieval, collaborative filtering (CF) does not necessarily need textual descriptions
of information items and user needs. It makes personalized recommendations by
aggregating the opinions and preferences of previous users. Originally, the idea of
collaborative filtering was derived from heuristics and coined by Goldberg et. al
when developing an automatic filtering system for electronic mail (Goldberg et al
1992). Due to the uniqueness of the problem, it has been modeled and studied
differently since then, mainly drawing from the preference prediction and machine
learning view point (Breese et al 1998).

Despite the differences, the underlying goal of information filtering (and thus,
collaborative filtering) is, nonetheless, essentially equivalent to other information
retrieval tasks. They are all aimed at fulfilling user information needs (Belkin
and Croft 1992). In fact, there are well known links between content-based rec-
ommender systems and text retrieval. In content-based recommender systems,
information items are represented by a set of features. Usually these features are
textual, such as tags or genres in movie recommendation, news content and URLs
in news recommendation, and so on (Adomavicius and Tuzhilin 2005). Then, the
match between a user profile and documents can be established by the techniques
employed in text retrieval (Xu et al 2008).

Unfortunately, less research has been conducted to establish the possible equiv-
alences between not only the task principles but also structures used in information
retrieval and those in collaborative filtering. In (Wang et al 2008) and (Wang et al
2006), the authors find interesting analogies between implicit (frequency-based)
CF and IR, introducing the concept of binary relevance into CF and applying the
Probability Ranking Principle of IR to it. But the attempts at unification have
been partial, and are focused purely on the model level. System level comparison
and unification have rarely been studied. Moreover, standard neighborhood-based
CF formulations (as the main class of memory-based algorithms in CF) are not
yet fully integrated within the IR theories, and, thus, we cannot interpret them
by means of IR techniques or methods (Desrosiers and Karypis 2011).

In this paper, we address those issues by taking both the algorithmic and
systematic view points. We show that there is a close relationship between the
two formulations. We found that the major collaborative filtering algorithms, such
as the memory-based, essentially employ the same algorithmic framework as those
of text retrieval. More specifically, to predict a user’s preference, the memory-based
collaborative filtering essentially calculates the dot product between the user vector
(similar to the query in text retrieval) and the item vector (similar to the document
vector as in text retrieval) –the vector elements either be similarity measures,
ratings or some other weights depending on the specific weighting scheme that
has been employed, as we shall describe in Section 3.3. In this regard, the main
contribution of our work is a common notational framework for IR and memory-
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based CF, which enables to define a technique to use any text retrieval weighting
function with CF preference data. We demonstrate that if we properly structure
user preference data and use the target user’s ratings as query input, major text
retrieval algorithms and systems, such as the Terrier1 and Lemur2 IR platforms,
can be directly used for the collaborative filtering task without any modification.

Moreover, based on this unified framework, we evaluate how well IR methods
perform against standard CF techniques in two different recommendation tasks,
namely, item ranking (returning a ranking for each user) and rating prediction
(predicting the rating for each user-item pair). We believe a distinction between
these two tasks is needed because they have different requirements, for example,
in the item ranking task the score predicted by the algorithm does not have to live
in any specific interval, while in the rating prediction task the final performance
depends heavily on the output range of the recommender. Our experiments show
that IR methods perform particularly well in the item ranking task (which is
equivalent to the classic ad-hoc IR task), while they are competitive in the rating
prediction, obtaining results statistically equivalent to those of the state-of-the-art.

The remainder of the paper is organized as follows: we begin by placing our
work into the broader context of collaborative filtering and information retrieval
models in Section 2. We then formalize in Section 3 a new algorithmic framework
of collaborative filtering and use it to build up a recommendation system where
the state-of-the-art retrieval algorithms can be employed. We then provide an
empirical evaluation for the item ranking and rating prediction tasks in Section 4,
and, finally, Section 5 concludes our work by pointing out the future directions.

2 Related Work

Text retrieval techniques have been widely used in many different areas such as
web retrieval (Agichtein et al 2006), image and video retrieval (Sivic and Zisserman
2003), or content-based recommendation (Xu et al 2008). Among many techniques,
one of the most commonly used are the term weighting function: the system in-
dexes documents for a vector representation of the documents and queries in the
term space (Salton et al 1975). The vector space model (VSM) measures the sim-
ilarity of a document with regard to the query as the similarity between the two
vectors, using for instance the cosine similarity. The simplicity and flexibility of
this model have resulted in many different applications. Probabilistic models have
also been proposed to calculate the probability of relevance using document terms
(Robertson and Sparck Jones 1988), while others estimate text statistics in the
documents and queries and then build up the term weighting function through
them (Amati and Van Rijsbergen 2002). In fact, it has been shown that most
IR models can be unified and represented as a parametric term weighting form
(Metzler and Zaragoza 2009).

More or less in parallel, collaborative filtering (CF) techniques were indepen-
dently developed (Breese et al 1998). CF algorithms can be grouped into two
general classes: the memory-based (or heuristic-based) and the model-based. The
model-based approaches use the collection of ratings to learn a model, which is then

1 http://terrier.org/
2 http://www.lemurproject.org/
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used to make rating predictions. Different approaches have been proposed, based
on methods such as probabilistic CF (Yu et al 2004), neural networks (Pazzani
and Billsus 1997), Markov chains (Salakhutdinov and Mnih 2008), or maximum
entropy models (Pavlov et al 2004). Recently, mixture models proved to be effec-
tive in terms of reducing the RMSE (Rooted Mean Squared Error) as shown in
the Netflix competition (Takács et al 2008). Examples include probabilistic La-
tent Semantic Indexing (Hofmann 2004) and Matrix Factorization (MF) methods
(Koren et al 2009).

We focus here on the memory-based algorithms as they are heavily used in
practice. They predict ratings based on the entire collection of previously rated
items by the user. This type of recommenders typically predict the votes of the ac-
tive user based on some partial information regarding that user and a set of weights
calculated from the entire dataset, where they can reflect distance, correlation, or
similarity. This can be done in two ways, known as user-based or item-based rec-
ommendation, depending on how the neighborhood is defined, as a set of users or
items very similar to the target user (or item). Neighborhood-based CF methods
typically compute the predicted ratings by using a weighted average between the
neighbor’s rating and the neighbor’s similarity with respect to the target user (or
item) (Adomavicius and Tuzhilin 2005).

Connections to IR model elements can be already found in the state-of-the-art
of CF approaches. Breese et al (1998) use the IR cosine formula as the similarity
function, according to how they rate, as a special case of vector similarity. This can
be seen as a first attempt to relate memory-based CF with IR, though it is only
valid for the user-based approach. More importantly, in (Soboroff and Nicholas
2000), the authors present a formal relationship between neighborhood-based CF
and text retrieval, by using the generalized vector space model. They, however,
do not evaluate or implement their approach, and besides, although the model
proposed could make use of the rating matrix, they suggest to use content-based
profiles in order to overcome sparsity, and thus, this model would not rely only on
explicit ratings. Finally, another problem in which IR and CF have been identi-
fied and techniques from the former have been used in the latter is the scalability
problem: in (Cöster and Svensson 2002), the authors propose the use of inverted

indexes for CF in order to speed up the execution time. In that work, different
heuristics are used in order to efficiently search in a user’s neighborhood; in this
way, memory-based algorithms can perform fast rating predictions by using disk
based inverted files. Despite this identification, no formal theory is presented, and
the authors simply cast the CF problem into an IR setting. A similar approach
applied to personalized IR is proposed in (Pickens et al 2010). Furthermore, in (Co-
hen and Lewis 1999), the use of inverted files is able to accelerates any application
involving (sparse) matrix multiplications, which is very common in recommenda-
tion techniques such as MF.

Other approaches, such as (Wang et al 2008) and (Wang 2009) have presented
analogies between frequency-based CF and IR models. For instance, in (Wang et al
2008) the authors introduce the concept of binary relevance into CF and apply
the Probability Ranking Principle of IR to it. Wang (2009) adapts the language
modeling framework to frequency-based CF, introducing a risk-averse model that
penalizes the less reliable scores. However, none of these approaches can be easily
translated from frequency-based to memory-based CF, which is typically based on
ratings. No definitive method exists for transforming implicit preference data into
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explicit ratings, so it is unclear whether this mapping can make any sense (Hu et al
2008), since they inherently represent different information gathered from the user
(for example, negative preferences can only be elicited using explicit data).

Additionally, Deshpande and Karypis (2004) use a linear algebra formulation
to describe their item-item collaborative filtering algorithm, an approach related
with the algebraic framework proposed in Section 3.2. Moreover, Rölleke et al
(2006) describe several concepts and retrieval models from IR in a general matrix
framework, where the main operation is the dot product. As we have mentioned
before, we obtain an equivalent algorithmic framework between memory-based
CF and IR models by means of the dot product function. Our approach could be
considered as an extension to the field of collaborative filtering of that work, where
personalized IR were also considered as well as algebraic formalizations.

3 A New Algorithmic Framework

We can obtain a new insight into the current collaborative filtering approaches by
reformulating them using a vector space model (Salton et al 1975). To do that,
we need to acknowledge the fact that the input data and the immediate goal are
different: in IR, we have queries and documents represented by terms; whereas in
memory-based CF, we have a set of ratings, which are used to infer the preferences
of users towards items. Apart from that, the objective of IR systems is to generate
a document ranking for each query, while, in general, standard CF models tend to
predict a rating as accurately as possible.

3.1 Representing items and users in a common space

Formally, the user’s ratings can be regarded as a query. Each of the rated items may
be considered as a query term. In the next sections, we propose how to represent
rating information into different spaces, depending on the elementary components
serving as a basis for the space: items or users.

3.1.1 Item space

If we have a space with as many dimensions as items, we could use the following
vector to represent a user:

uI = (ru1, · · · , ruk, · · · , run) (1)

where uI denotes user’s preferences in the item space. We use subscript I to
indicate this user is in the item space. The value ruk represents user u’s rating of
item3 k, where k ∈ {1, n}. It is equal to 0 when item k is not rated by the user, or
any other value not within the natural range of ratings in the system. Thus, if R

is the maximum rating value, each coordinate of these vectors live in the interval
[1, R], and thus, uI ∈ [1, R]n. In practice, the ratings are usually normalized with

3 For the sake of clarity, when the candidate user or item is ambiguous, we will note it as
uk or ik, denoting we are referring to the user or item k in the collection; otherwise, we will
simply represent it as u or i.
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respect to the users’ or items’ mean, which would increase the computational
complexity of the algorithm but, at the same time, such normalization would
allow the method to predict a default rating for any user and item (alleviating in
this way the sparsity problem).

By contrast, the item representation is different from the typical representation
in text retrieval, which is easily represented using the same space as the query, i.e.,
the term space. In collaborative filtering we do not have a common feature space
and a reference dimension should be selected. In this case, taking into account
Eq.(1), the equivalence holds if we project an item into the same feature space as
users (queries) by using its similar items. That is,

iI = (si1, · · · , sik, · · · , sin) (2)

where sik is the similarity between the candidate item i and item k. Since similari-
ties usually range in the interval [−1, 1], then these vectors would fulfil iI ∈ [−1, 1]n.
In practice, it has proven useful to select top-N similar items as opposed to using
all the similar items. We have to note that the use of top-N similar items simply
would produce more sparse item (or similarity) vectors, but user and item vectors
would still be of equal length, since they are represented in the item space.

Using item-item similarities as the item coordinates in the item-based vector
space produces an equivalence between the memory-based rating estimation in CF
and a common retrieval function in the vector space IR model, as we will see next.
Not only does the similarity-based projection find motivation in just getting this
equivalence, but we shall show in Section 3.2 that there is a formal algebraic basis
to this representation.

Now, let us see how the retrieval function equivalence is derived. Given the vec-
tor representations of Eq.(1) and Eq.(2), a query-document (user-item) similarity
value can be obtained by comparing the corresponding vectors, using for example
the conventional inner product:

Score(uI , iI) =
∑

k

ruk · sik (3)

The system can produce a ranked recommendation output by the decreasing
order of the above retrieval function between uI and iI , providing an answer to
the item ranking task. For the rating prediction task, the similarity score can be
normalized to produce the rating prediction for an unspecified item.

r̂(u, i) =

∑n
k=1 ruk · sik

∑

∀k:ruk 6=0 sik

=
Score(uI , iI)
∑

∀k:ruk 6=0 sik

=
Score(uI , iI)

Score (δ (uI) , iI)
(4)

where function δ (uI) is a binary version of the user uI . It can be easily seen that
Eq.(4) is indeed an item-based collaborative filtering approach, but rather in a
vector space formulation.

3.1.2 User space

In the previous section, we have shown that it is possible to represent users and
items in an item space. Similarly, we can do the same but in the user space. Let
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us define now the user’s preference vector as follows:

uU = (su1, · · · , suk, · · · , sum) (5)

the value suk in this situation represents the similarity between the current user
u and user k. As before, typically only the top-N similar users are considered.
Likewise subscript U indicates it is defined in a common space of users. In con-
trast with the user vectors presented in the previous section, now we would have
uU ∈ [−1, 1]m. Again, Section 3.2 will provide an algebraic generalization which
particularizes to the expression above in order to project users into the user-based
vector space.

Items are projected in this user space by considering how each user (one for
each dimension) rated each item:

iU = (r1i, · · · , rki, · · · , rmi) (6)

Thus, iU ∈ [1, R]m. In order to compute rating predictions given a specific
user-item pair, we need to normalize their dot-product properly, as follows:

r̂(u, i) =

∑m
k=1 rki · suk

∑

∀k:rki 6=0 suk

=
Score(uU , iU )
∑

∀k:rki 6=0 suk

=
Score(uU , iU )

Score (uU , δ (iU ))
(7)

As in the previous case, we can see that Eq.(7) is indeed a user-based collabo-
rative filtering approach, but in a vector space formulation. Again, if we just want
to provide a ranked recommendation, it would be sufficient to generate a ranking
by decreasing order of the function Score(uU , iU ) for all different iU in the system
(not previously evaluated by the user).

Usually, the ratings are normalized with respect to the users’ mean (Adomavi-
cius and Tuzhilin 2005). Equivalences with this kind of techniques can also be
found. We first need a vector of user’s rating averages, i.e. m = (r̄1, · · · , r̄k, · · · , r̄m),
where r̄k is the average rating of user k. Thus, the predicted rating can be cal-
culated using a slight modification of the previous formula for only considering
known rating values:

r̂(u, i) = r̄u +
Score(uU , iU − mi)

Score (uU , δ (iU ))
= r̄u +

∑

∀k:rki 6=0 suk · (rki − r̄k)
∑

∀k:rki 6=0 suk

where mi is a transformed version of vector m that is zero wherever i contains an
unknown rating value.

3.2 Algebraic generalization

As mentioned in the previous sections, we now show that item-item and user-user
similarity arise as special cases of a more general way to represent items in the
item-based vector space and users in the user-based vector space, respectively. In
this section, we provide a formal motivation from linear algebra in which different
recommender formulations fit as an IR VSM retrieval function (the dot product),
such as memory-based CF and matrix factorization methods.
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Tom John 

Item 1 5 1 

Item 2 1 5 

Item 3 5 1 

Item 4 1 5 

ID Index Candidate. Doc 

1 Item 1 Item 3 (similarity 1)  

2 Item 2 Item 4 (similarity 1) 

3 Item 3 Item 1 (similarity 1) 

4 Item 4 Item 2 (similarity 1) 

Item 1 Item 2 Item 3 Item 4 

Item 1 1.0 -1.0 1.0 -1.0 

Item 2 -1.0 1.0 -1.0 1.0 

Item 3 1.0 -1.0 1.0 -1.0 

Item 4 -1.0 1.0 -1.0 1.0 

User-item 

matrix 

Similarity 

matrix 

Inverted index (similarity 

stored as term frequency) 

(a) Similarity stored in inverted index

User Profile Processing 

Item 

Similarity 

Text 

Retrieval 

Engine 

Output Inverted 

Index 

User 

Profiles 

(User-item 

matrix) 

A new user 

profile as query 

(b) The algorithmic framework

Fig. 1 Collaborative filtering as text retrieval.

First, let us assume we have an orthonormal basis in a common vector space
of dimension l in which we can express users and items, that is, ∃{ei}

l
1 such that

u
v = λ

v
1e1 + · · · + λ

v
l el = (λv

1, · · · , λ
v
l )

i
j = µ

j
1e1 + · · · + µ

j
l
el = (µj

1, · · · , µ
j
l
)

Now, we take matrix X = (rvj) as the rating matrix (where unknown values
are, as before, considered zero), and rvj as the rating given by user uv towards item

ij. Let us take the space of items as the common space; an analogous formulation
can be similarly derived from the user space and will be discussed later. Although
the item space is not generally orthonormal, we now present a method to obtain
an orthonormal basis by means of the spectral theorem.

In this situation, the item covariance matrix is defined as CI = cov(X), since
each column (items) is considered as the random variable. More specifically, the
element aij of that matrix is aij = E[(Xi − µi)(Xj − µj)] where Xi denotes the
i-th vector (related with item i) and µi = E(Xi). Since the covariance matrix is a
positive semidefinite, symmetric matrix, the spectral theorem grants that there is
an orthonormal basis of eigenvectors of dimension n of CI . This yields the following
basis for items: ij = µ

j
1e1 + · · · + µ

j
nen = (µj

1, · · · , µ
j
n). In order to obtain a user

representation in this space, we make use of the following identity in the original
item space, uv = rv1i

1 + · · ·+ rvnin. We can then replace the previously obtained
representations for items as follows:
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u
v = rv1i

1 + · · · + rvni
n = rv1

∑

j

µ
1
jej + · · · + rvn

∑

j

µ
n
j ej

= (rv1µ
1
1 + · · · + rvnµ

n
1 , · · · , rv1µ

1
n + · · · + rvnµ

n
n)

= (rv1 + · · · + rvn) · CI

As we can observe from the previous equations, CI is indeed the change of basis
matrix from the user space to the item space. Moreover, the matrix X̂ = X · CI

provides the new representations of each user in the item space.
Furthermore, in this common space we can compare user vectors against item

vectors using distances based on, for example, the cosine, the Euclidean distance,
or the inner (dot) product of those vectors, as follows:

u
v · ij =

n
∑

p=1

µ
j
p(rv1µ

1
p + · · · + rvnµ

n
p ) =

n
∑

p=1

µ
j
p

n
∑

k=1

rvkµ
k
p =

n
∑

k=1

rvk

n
∑

p=1

µ
j
pµ

k
p (8)

The distance between the target user and item could, hence, be used as the
retrieval system score for this user-item pair. Indeed, if we encapsulate

∑n
p=1 µ

j
pµk

p

as sjk, then, we obtain an equivalent formulation to the one presented in Eq.(3),
that is, an item-based CF. Note that the similarity term defined in this way would
be equivalent to the inner product between the vectors representing both items.
Furthermore, if the original rating matrix (X) is pre-processed appropriately, the
term sjk can be made equivalent to the cosine distance —by normalizing the item
vectors to norm 1— or to the Pearson correlation —by centering item ratings on
their mean value, and normalizing the item vectors. However, we have to note that
this pre-processing could be computationally expensive.

The derivations in this section thus show that the formulations proposed in
Section 3.1.1 and Section 3.1.2 are special cases of a more general algebraic formu-
lation where users and items are represented in the same space. When the common
space is the space of items, it has as many dimensions (n) as items in the collec-
tion. If the user space is taken instead, an m-dimensional space would be derived
by using CU = cov(XT) instead of CI at the beginning of the procedure, where
CU is the user covariance matrix and XT is the transpose matrix.

It is also interesting to highlight how this procedure may introduce the notion
of subspace in CF. This concept arises, for instance, when users and items are
represented in an item-space and n < m, i.e. there are less items than users. In
this case, there must be some linear dependency between users in terms of the item
space components, although this situation may occur also when n ≥ m. It has
been proposed recently (Desrosiers and Karypis 2011) that, when there are less
items than users (i.e., such a subspace must exist), item-based algorithms tend to
perform better, in general, than user-based methods. Similarly, when users and
items are represented in the user space and there are less users than items, linear
dependencies occur between items in terms of user-based coordinates. In the same
way, in the latter situation, user-based algorithms are generally more effective than
item-based CF (Desrosiers and Karypis 2011). These results may suggest that the
existence of a subspace, and in particular, the dimension of such subspace, is key for
the performance of memory-based algorithms, since the more linearly dependent
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elements exist in the vector space, more information would be contained in the
(user or item) covariance matrix, and thus, the better are the recommendations
generated by the algorithm.

Finally, note that this is not the first attempt to use algebraic formulation in
CF, like the item-based approach described in (Deshpande and Karypis 2004). Be-
sides, in the IR literature we can find theoretical methods where queries and items
are formally represented in the same space. Wong et al (1985) propose a general-
ized vector space model, and Demartini et al (2009) introduces a common space
for entities and documents in the context of expert finding and entity ranking.
Additionally, the CF literature also provides alternative approaches to represent
users and items in a common space, namely as a space of latent features and the
use of matrix factorization techniques (Hofmann 2004; Koren et al 2009). There-
fore, the formulation presented in Eq.(8) could be further generalized by assuming
that users and items live in an l-dimensional common space; in that way,

u
v · ij =

n
∑

p=1

µ
j
p(rv1µ

1
p + · · · + rvnµ

l
p) =

l
∑

p=1

µ
j
p

n
∑

k=1

rvkµ
k
p (9)

This generalization would provide an alternative basis to draw equivalences to
the vector space model. However, these different techniques introduce additional
non-trivial operations in the formulation (the ones involved in factorization and
latent analysis, which in turn lend themselves to alternative instantiations and
variants), whereby the equivalence is less direct and straightforward. Nonetheless,
from that point on, the remainder of our formulation would be applicable: the user
and item matrices produced by matrix factorization are the projection matrices
(providing thus the λ’s and µ’s). Hence, it is worth highlighting that both memory-
based and matrix factorization CF approaches fit nicely in the same framework,
the difference being the transformation matrices: in memory-based CF, these are
the covariance matrix and the ratings matrix; in matrix factorization CF, they are
the item and user matrices resulting from the factorization.

In particular, specific adaptations to the approaches found in the literature
could be derived. For instance, the standard rating prediction computation using
matrix factorization techniques (Koren et al 2009) is based on the product of some
projection matrices. Using the above formulation and the one presented in (Koren
et al 2009), the p-th component of the vector product qT

j pv (where the vectors qi

and pu are associated with the item i and user u) can be derived as an instantiation
of Eq.(9) by computing µ

j
prvkµk

p. In this situation, the l dimensions of the space
represent the dimensionality of the latent factor space.

Furthermore, the latent semantic model proposed in (Hofmann 2004) could
also be seen as another example of this formulation, by defining µ

j
p as p(ij |zp)

(according to the notation used in that paper) and
∑n

k=1 rvkµk
p as p(zp|uv)p(uv).

Here, the l dimensions represent the different hidden variables z introduced in the
model.

3.3 Indexing and retrieval

From an information retrieval view point, the candidate item can be regarded
as a document; and all its similar items construct its document representation,



Bridging Memory-Based Collaborative Filtering and Text Retrieval ⋆ 11

Table 1 Different weighting schemes used in Information Retrieval. qf(t) denotes the fre-
quency of term t in the query, tf(t, d) the frequency in document d, N is the number of
documents, df(t) is the number of documents that contain t, dl(d) is the document length of
d, and d̄l is the average document length. Besides, k1, k3, b, λ,, and µ are parameters of the
different models.

Method w
q
t wd

t
Binary 1 if t ∈ q 1 if t ∈ d

TF qf(t) tf(t, d)

TF-IDF qf(t) (1 + log (tf(t, d))) log
(

N
df(t)

)

BM25
(k3+1) qf(t)

k3+qf(t)
log

(

N−df(t)
df(t)

)

(k1+1) tf(t,d)

k1((1−b)+b·dl(d)/d̄l)+tf(t,d)

Language Model (Jelinek-Mercer) qf(t) (1 − λ)p(t|d) + λp(t|C)

Language Model (Dirichlet) qf(t) tf
dl(d)+µ

+ µ
p(t|C)

dl(d)+µ

Table 2 Weighting schemes under the unified framework for item-based CF. The rating from
the (query) user u is denoted as ruk, the similarity between the target item and item k is sik,
N is the number of items, Nk is the number of items similar to item k, il(i) is the number of
similar items of the target item, and īl is the average il.

Method wu
k wi

k
Binary 1 if rated 1 if similar

TF ruk sik

TF-IDF ruk sik log
(

N
Nk

)

BM25
(k3+1)ruk

k3+ruk

log
(

N−Nk

Nk

)

(k1+1)sik

k1((1−b)+b·il(i)/īl)+sik

Language Model (Jelinek-Mercer) ruk (1 − λ)p(k|i) + λp(k|C)

Language Model (Dirichlet) ruk
sik

il(i)+µ
+ µ

p(k|C)
il(i)+µ

as shown in Eq.(3). In text retrieval, term frequency (TF) is the basic element,
whereas in memory-based collaborative filtering, and in particular, in item-based
CF, similarity is employed for document representation and ratings are used for
query representation –in the user space, the situation is obviously the other way
around. Thus, the standard item-based scoring approach in Eq.(3) is, computation-

ally, equivalent to the simplest TF text retrieval model. It should be emphasized
that the underlying physical meaning of term frequency and item similarity is dif-
ferent –in particular, they are not supposed to represent the same concept, since
the equivalence is at the formal level– and their discussions are given in Section 3.4.

It would be, thus, straightforward to employ any text retrieval engine/system
to index and perform a collaborative filtering task. It will immediately make many
information retrieval techniques ready to use. An algorithmic framework of index-
ing and retrieval for collaborative filtering is presented in Figure 1. Note that the
figure illustrates the item space representation, while the procedure for the user
space representation can analogically be derived.

More specifically, we can incorporate the formulation used in (Metzler and
Zaragoza 2009) and generalize the score function presented in Eq.(3) as follows:

Score(u, i) =
∑

k

w
u
k · wi

k (10)

Hence, we can use any IR retrieval model as a memory-based collaborative
filtering technique by using any weighting scheme among those defined in Table 2,
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Fig. 2 Distribution of similar items in Collaborative Filtering.

where qf(t) has been replaced from the original IR models (Table 1) with ruk, and
tf(t, d) with sik

4. One difference, however, lies in the problem of memory-based
CF where a normalization is needed to obtain the rating prediction, as shown in
Eq.(4). The prediction task is done by querying any text retrieval engine twice.
Firstly, obtaining Score(u, i) as in Eq.(4) by using u as a query. Secondly, obtaining
Score(δ(u), i) by querying the binary query δ(u). It should be noted, however, that
both scores can be computed algorithmically at the same time, with no added cost.

In the following paragraphs, we present how we can make use of such frame-
work, as well as the analogies and differences with respect to text retrieval. Al-
though more complex uses of inverted index in CF can be done, like in (Cöster and
Svensson 2002), we want to focus on presenting the basic equivalences between our
framework and text retrieval. Actually, the equivalence in representation presented
above induces an equivalence when creating the inverted index. It is important to
note that, however, the distribution of similar terms does not follow a Zipf distri-
bution as it is usually assumed in IR (Manning et al 2008). We present in Figure 2
the distribution of similar items (terms in the item space representation) in a stan-
dard CF collection. We can observe how this distribution is clearly different from a
Zipfian distribution, which has implications for the way the queries are processed
(probably more accesses to the index are required for each query). Besides, it could
also affect the index compression effectiveness, although this should not be critical
because the vocabulary size in CF (number of items or users, depending on the
representation) is much smaller than that in IR (Manning et al 2008).

In general, an inverted index in text retrieval is composed of a vocabulary and
its occurrences or postings, that is, the list of all the texts where each word or term

4 We write the TF-IDF equation where a logarithm is applied to the term frequency because
it helps to reduce the impact of the very frequent terms (Croft et al 2009). However, since
similarities and ratings are not large numbers, we have decided to keep its original formulation
in Table 2 (Baeza-Yates and Ribeiro-Neto 1999).
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appeared (Baeza-Yates and Ribeiro-Neto 1999); additionally, the term frequency
in each document can also be stored. In our framework these basic structures can
be interpreted in the CF space as follows. For each item, i (document) we store the
items (now acting as terms) most similar to i. Since in our model, term frequencies
are equivalent to the similarity values between items, it makes sense to store them
also in the inverted index, as shown in Figure 1a.

Once the inverted index has been built, a typical text retrieval engine needs two
more operations in order to generate a document ranking for a particular query.
These operations are called query transformation and query processing (or scoring)
(Manning et al 2008). As we can see in Figure 1b, we perform a separate process
of the user’s preferences, similar to the query transformation in text retrieval, in a
user basis. In this process, and different from what is typical in text retrieval, we
cannot perform the same operation as in documents, despite the fact they live in
the same space, since the components of the user and item vector have different
semantics, and thus, they have to be computed separately. However, once this
process has been carried out, the standard scoring can be performed: for each
term in the query, the system retrieves all the documents containing that term,
computes a score for that term and that document, and repeats for the rest of
documents. In this critical step, the system can weight the importance of each term
in a document (with respect to the query) using several models, some of them are
presented in Table 1. In our case, since we have encoded the similarities as term
frequencies and the ratings as query frequencies, this process can be performed
with no difference with respect to the text retrieval process, i.e., any actual text
retrieval engine could be used based on the term and query frequencies defined
above.

3.4 Discussion

The formulations proposed in previous sections allow us to represent users and
items in the same space, as Salton did in (Salton et al 1975) with the vector
space model, where documents and queries are defined as term vectors, and each
component encodes the frequency of that term in a particular document or query.
We discuss here some fine details and variants in the fundamental terms and model
components, such as the cosine retrieval function, IDF, and BM25 parameters.

Although the cosine formula is usually normalized using the norms of both
vectors, the score is rank-equivalent if the query norm is omitted. Besides that,
many other different weighting functions of IR can be used such as those sum-
marized in Table 1. This allows us to fully take advantage of the techniques and
insights obtained from the IR research. As shown in Table 2, we establish a corre-
spondence between the TF technique in IR and the basic item-based collaborative
filtering. Moreover, while the CF technique based on language models is used to
smooth the similarity, the new CF models based on TF-IDF and BM25 explore
the discriminative power of an item, since the item’s similarity is penalized if it is
similar to many items.

It should be noticed though that some specific parameters may not be neces-
sarily suitable for the collaborative filtering problem. For instance, the k1 and k3

parameters in BM25 introduce a nonlinear function and are designed to deal with
the term frequency –by reducing the effect of a highly frequent term. In collabo-
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rative filtering, these parameters work well for frequency data (Wang et al 2008),
but they may not be suitable for rating data. For rating data, a larger value could
be chosen to remove this effect as follows

(k3 + 1)rk

k3 + rk

= rk

k3
k3+1

+
rk

k3+1

≈ rk when (k3 + 1) >> rk

When such a value is selected for parameter k3, the BM25 method is equivalent
to the rest of methods presented in Table 2 for weight wu

k (i.e., the query vector in
the item space representation); however, we prefer to maintain the original formu-
lation to allow for further derivations where such parameter could be exploited.
In Section 4.3.1, we will analyze in more detail the rest of the parameters of the
BM25 function, namely, k1 and b.

Inverse Document Frequency (IDF) is a very important function in IR (Baeza-
Yates and Ribeiro-Neto 1999). The IDF of a term is based on counting the number
of documents which contain that particular term. Different works have tried to
relate it with information theory metrics (Aizawa 2003) or different probabilistic
theories (Rölleke and Wang 2008). The intuition behind this function is that a
term which occurs in many documents is not a good discriminator, and should be
given less weight (Spärck Jones 1972). In its original formulation, it was a measure
of the statistical specificity of the term.

In rating-based collaborative filtering, however, this function has been barely
used. In (Breese et al 1998), the Inverse User Frequency function appears in order
to not to take into account universally liked items when computing similarities
between users. Authors report an average improvement of 2.4%, however other
authors indicate that the use of this weighting factor degrades performance (Jin
et al 2004). Herlocker et al (1999) introduces a similar weighting factor in the
similarity function, which takes into account the variance in ratings of the items,
however no significant effect on accuracy was found.

In our framework, the use of IDF appears in a natural way, and therefore we
can check whether it is so beneficial for recommendation as in IR. Specifically, in
the item space model it represents that items similar to many items should be
penalized. In the user space, on the other hand, a user obtains a higher IDF when
she has rated a lot of items, which a priori can be seem as counterintuitive, since
the more ratings the system has from a user, the more information, and better
defined, the user is; however, it may also be interpreted as a user more likely to
have inconsistent information (noise) in her preferences, and thus, it would be
interesting to dampen the influence of such kind of users.

It is interesting to note that, in our model, we do not obtain an equivalence
with the Inverse User Frequency mentioned above, since in that paper the authors
adopted IR formalisms for CF, but they considered users as documents, items as
words, and ratings as word frequencies. In this way, they could use standard dis-
tances in IR, such as cosine, for computing similarities between users, or extending
those distances by using the IDF.

Finally, the language modeling formulation also includes a parameter related
with the amount of smoothing applied to weighting functions. In this way, when the
parameter (λ or µ, depending on the model) is small, more emphasis on relative
term weights is assumed (Zhai and Lafferty 2001). Besides, it is worth noting
that when using the Dirichlet smoothing in the item space representation, we
may obtain a deterministic behavior if a fixed top-N similar items are considered.
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Table 3 Statistics about the datasets used in the experiments.

Dataset Users (m) Items (n) Ratings Sparsity
Movielens 100K 943 1, 682 100, 000 6.30%
Movielens 1M 6, 040 3, 900 1, 000, 000 4.24%
Movielens 10M 71, 567 10, 681 10, 000, 000 1.31%

This is because the probability derived by the Dirichlet LM model is related with
the average document length (Zaragoza et al 2003; Losada and Azzopardi 2008).
However, this is not the case in the user space representation, where a situation
more similar to the one in IR (with documents of different lengths) arises.

Furthermore, it is not clear whether more smoothing or less should be required
in collaborative filtering for rating data, although for frequency data it has been
observed that lower values are preferred (Wang et al 2006, 2008). We have used
the following estimations for the probabilities defined in Table 2:

p(k|i) =
sik

∑

k sik

, p(k|C) =
s(k, C)

∑

k s(k, C)

where s(k, C) is the accumulated similarity of item k in the collection.

4 Empirical Evaluation

Memory-based CF is generally used for predicting an unknown rating for a user-
item pair, given a set of ratings as input. Historically, this type of algorithms
has been evaluated using error metrics such as mean average error (MAE) or
root mean square error (RMSE), focused on the evaluation of the algorithm’s
predictive accuracy. Different from frequency-based CF (Wang et al 2008; Wang
2009), in this work, we aim to bring memory-based CF a step closer to IR by
incorporating not only IR models into the CF framework, but also the evaluation
methodology. Indeed, there is a growing consideration in the field that such metrics
have limitations as direct proxies of the user satisfaction one may ultimately wish
to measure. In this perspective, ranking quality evaluation metrics from the IR
field have started to be increasingly adopted (McLaughlin and Herlocker 2004;
Shani and Gunawardana 2011; Koren 2008).

Because of this we evaluate our approach using two different tasks: item rank-
ing and rating prediction. While the latter is based on error metrics, the former
uses precision-based metrics. The item ranking task is more similar to how IR al-
gorithms are usually evaluated. Besides that, we have less constraints with respect
to the output of the algorithms, and since we are dealing with different weighting
functions, it is very desirable to have this property. The second task, however,
measures how close is the predicted rating to the real one, which is very sensi-
tive to even slight variations of the original formula, and thus, it would limit the
number of variations introduced in our models that can be tested.
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4.1 Experimental setup

Our experiments have been carried out using three public datasets. First, we use
the Movielens 100K dataset to tune the different parameters needed by the models
and to analyze their sensitivity. Then, we use Movielens 1M and Movielens 10M

datasets to validate our approach, where the tuned parameters for the smaller
dataset are used. In the three cases, we perform a 5-fold cross validation. For
Movielens 100K we use the splits contained in the public package. These splits
retain 80% of the data (as a whole) for training, and the rest for testing. For the
other datasets we repeat this procedure in order to generate equivalent data splits.
Statistics about these datasets are summarized in Table 3.

The item ranking task was performed by computing a score for each user for
every item contained in the test set. We take as relevant items those contained
in the test set rated by the user with a value greater or equal than 4 (in a 5-
rating scale). In the case of non-binary metrics (such as the normalized discounted
cumulative gain, or nDCG), we use the real rating value as the relevance level,
that is, 4 or 5, although further transformations could be considered to smooth
those values and consider them as an utility function (Vargas and Castells 2011;
Breese et al 1998). We also include the Mean Average Precision (MAP) which is
known to be more robust and stable than other metrics when aggregating results
from different queries (Manning et al 2008), along with recall, mean reciprocal
rank (MRR) (Voorhees 1999), and bpref (Buckley and Voorhees 2004).

All the metrics for this task are calculated using the trec eval program5. We
have to note that, like (Wang et al 2008) and (McLaughlin and Herlocker 2004),
the rated items in the test users represent only a fraction of the items that the
user truly liked, and therefore, the measured metrics may underestimate the true
metric values.

On the other hand, the rating prediction task is evaluated using only the rated
items by each user, since we need to know the real rating values in order to use
error metrics.

Finally, we have used Pearson’s correlation (Adomavicius and Tuzhilin 2005) as
similarity measure, a neighborhood of 50 users for the user-based methods, and a
dimension of 50 with 100 iterations for the factor model in the matrix factorization
algorithm.

4.2 Generating recommendations using our framework

In this section, we explain the exact process we have to follow to generate rec-
ommendations using the framework described in Section 3. We also compare such
process against the traditional one by memory-based CF techniques. In particular,
we shall provide an instantiation of Figure 1(b) where the modules for user profile
processing, item similarity, and retrieval engine are specified.

In our framework, the first step in the process is to calculate all the similarities
between items or users, depending on the space representation. In order to simplify
the explanation, we present only the item-based approach, the user-based being
analogous. We compute all the similarities between items and store them in an

5 http://trec.nist.gov/trec eval/
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index using memory-efficient structures, as presented in Figure 1(a). This allows
reusing these intermediate results for different offline experiments. Moreover, since
the index can be updated using classic IR techniques (Tomasic et al 1994; Brown
et al 1994); whenever a new incoming item (or, in general, a rating) is added to
the system, the index could be updated. In that case, a trade-off between the cost
of these updates (and the consequent IDF and related weights precomputations)
and the advantage of using this framework also for online experiments should be
considered.

Once the index is built, the queries can be processed. In our framework, this
translates to the transformation of the observed user interest for items into a
term vector, which in the item space approach consists of the ratings given to
each item in the system. Then, the user is submitted –as a query– to a standard
retrieval engine against the aforementioned index. Basically, this engine retrieves
those documents which contains at least one query term (i.e., it finds the items
rated by that user), and obtains a score for each document. Depending on the
selected retrieval method (see Table 2), we would obtain the same scores as those
provided by the standard collaborative filtering techniques or different ones. After
that, a ranking is generated according to these generated scores.

In this process, any IR indexing technique could be plugged in into our model,
along with any other IR model apart from those considered in Tables 1 and 2. As a
matter of fact, we have built our framework on top of Lucene6’s index layer, and we
have used some of the models defined in the Terrier platform, by simply redefining
what term and query frequency, document length, etc. mean in CF according to
the rating data available.

Once the item similarities have been (pre-)computed and stored in the index, a
score is calculated by using Eq.(4) for every target item. By contrast, most of the
implementations of memory-based CF algorithms compute item or user similarities
on demand, storing for each user a very limited number of weights (Desrosiers and
Karypis 2011). However, due to the highly sparse data, this caching mechanism is
not very efficient, and these similarities are often used only once in the system.

When, instead of a predicted rating, a ranking is required, a score has to be
computed for every other item in the system (except for those already rated by
the user), and these predicted scores are aggregated and sorted accordingly. The
difference on which candidate items are considered for generating the final ranking
seems to be crucial for the efficiency of memory-based CF methods. For example,
if we compare the average time required to obtain the whole ranking for each
user when using our framework, against the time required by a public implemen-
tation of a memory-based CF algorithm (provided in the Mahout7 library), we
find improvements of up to 25% when all the similarities are pre-computed, from
139.60 ms when using our framework to 186.67 ms, which is consistent with the re-
sults reported in (Cöster and Svensson 2002). We have to note that this method,
although saves time, requires a large amount of memory that sometimes is not
available (Sarwar et al 2001). In that case, when the whole item-item matrix is
not pre-computed, our framework achieves improvements of up to 75%, depending
on the caching strategy.

6 http://lucene.apache.org/
7 http://mahout.apache.org
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Table 4 Different normalization alternatives when calculating the score between a query and
a document.

Query
Document

Normalization No normalization
Normalization n11 n10

No normalization n01 n00

4.3 Results

We have evaluated our approach on two alternative base spaces: the user space and
the item space. We test different weighting methods, more specifically, those shown
in Table 2. As described in Sections 3.1.1 and 3.1.2, the rating prediction task
requires a normalization of the score produced by the conventional dot-product,
in order to obtain retrieval scores in the range of ratings. This is not required,
however, in the item ranking task, which does not impose any constraint on the
score range. For this reason, we have experimented with different normalization
techniques along with different norms, namely L1 and L2.

Let us denote as nqd the different normalization strategies which are presented
in Table 4; that is, q is 1 in this notation when the norm of the query is used, or
0 otherwise, and similarly with d for the document norm. In general, when norm
Lj is used, we would denote such normalization as ||nqd||j

8. As an example, note
that Eq.(7) is equivalent to n10 in the user space (that is, where similarities are
encoded in the query and ratings in the document), while Eq.(4) is the same as n01

(and equivalent in ranking to n11) when the L1 norm and the item space are used
(i.e., the query encodes ratings and the document, similarities), that is, ||n10||1
and ||n01||1 respectively. Furthermore, normalization n11 with L1 norm (||n11||1)
is equivalent to the cosine similarity distance between the query and document
vectors.

Finally, in order to obtain scores (predicted preferences) in the range of ratings,
we have applied the different weighting methods only to the vector containing the
similarity values, since if we weight both vectors indistinctly, the ratings’ range
gets modified, and the result will not live in a proper range. In particular, this
means that, in the item space, the user vector will remain intact, whereas in the
user-based representation, the weighting methods will not affect to the item vector.

4.3.1 Parameter sensitivity

Before presenting the results obtained, we discuss an analysis performed in Movie-

lens 100K about the sensitivity of the different parameters used by the language
modeling approaches and the BM25 method. For this reason, we have evaluated
these models in the item space with varying parameters, in a similar way as it
was done in (Zhai and Lafferty 2001), and using a different split to that of the
subsequent evaluations in order to avoid overfitting.

Figure 3 shows the sensitivity of the smoothing parameters regarding the rec-
ommendation performance for the two language models evaluated: Dirichlet and
Jelinek-Mercer. Here, we can observe some agreement between both approaches,

8 For obvious reasons, when no normalization is used, i.e., n00, this notation is simplified by
removing the j index related to the Lj norm.
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Fig. 3 Parameter sensitivity for the language models evaluated in the item-based approach.

Fig. 4 Parameter sensitivity for the BM25 evaluated in the item-based approach.

so that best results are obtained when more smoothing is added from the collec-
tion. At the limit (the right end of the curve) the performance should be similar to
the performance of coordination level matching, which corresponds to the count
of matched terms in text retrieval. In collaborative filtering, this means the simi-
larity between the target item and item k is more smoothed, and, in this case, the
accumulated weight of item k in the collection is more emphasized.

For BM25, as we discussed in Section 3.4, larger values of k3 are preferred for
rating data, in order to obtain a similar representation of the query vector when
compared against other IR methods. Thus, we set k3 = 100 and performed a first
test with different values of b, that is, the parameter controlling how much weight
is given to the document (item) length. Then, with the best value found for pa-
rameter b, we performed another test with different values of k1. Figure 4 shows,
first, that best performance results are achieved when the document length is not
used. This is probably due to the original linguistic point of view which introduced
this parameter, by stating that longer documents tend to repeat information, in-
stead of assuming other reasons for varying length, such as more elaboration or
multitopicality (Spärck Jones et al 2000). In collaborative filtering, it seems this
assumption is no longer valid, since a document with more terms represents an
item similar to several other items in the collection, and it is not clear whether
this kind of items should be penalized or not. This, in fact, would probably need
to be an item-dependent parameter, since some items may get more benefit than
others when using length normalization. Furthermore, this result agrees with what



20 Alejandro Belloǵın et al.

Table 5 Performance results in the item space for the item ranking task (Movielens 100K ).

Methods P@5 P@10 nDCG@3 nDCG@5 nDCG@10 MAP
Item-based CF 0.0008 0.0008 0.0008 0.0007 0.0007 0.0139
TF ||n01||1 0.0008 0.0008 0.0008 0.0007 0.0007 0.0139
MF 0.0812 0.0748 0.0570 0.0755 0.0739 0.0522
TF-IDF n00 0.0831 0.0829 0.0585 0.0618 0.0653 0.0782
Dirichlet n00 0.0858 0.0910 0.0984 0.0881 0.0952 0.0821
BM25 ||n01||2 0.0925 0.0870 0.0772 0.0762 0.0758 0.0727
BM25 ||n11||1 0.1320 0.1462 0.0790 0.0904 0.1040 0.1406
TF-IDF ||n01||2 0.1594 0.1509 0.1409 0.1391 0.1389 0.1161
Jelinek-Mercer n00 0.1969 0.1878 0.1662 0.1598 0.1563 0.1485
BM25 n00 0.2052 0.1976 0.1619 0.1599 0.1619 0.1533
TF ||n01||2 0.2195 0.2016 0.2069 0.2000 0.1963 0.1452

Table 6 Performance results in the user space for the item ranking task (Movielens 100K ).

Methods P@5 P@10 nDCG@3 nDCG@5 nDCG@10 MAP
User-based CF 0.0240 0.0282 0.0201 0.0195 0.0223 0.0309
TF ||n10||1 0.0240 0.0282 0.0201 0.0195 0.0223 0.0309
MF 0.0812 0.0748 0.0570 0.0755 0.0739 0.0522
BM25 ||n10||2 0.1487 0.1254 0.1421 0.1348 0.1273 0.0713
TF-IDF ||n10||2 0.1488 0.1254 0.1420 0.1348 0.1272 0.0713
TF-IDF n00 0.1546 0.1299 0.1409 0.1355 0.1296 0.0733
TF-IDF ||n01||2 0.1571 0.1306 0.1391 0.1351 0.1295 0.0740
BM25 ||n01||2 0.1575 0.1311 0.1393 0.1355 0.1299 0.0741
Jelinek-Mercer n00 0.2279 0.1935 0.2011 0.1917 0.1773 0.0968
Dirichlet n00 0.2279 0.1935 0.2011 0.1917 0.1773 0.0968
BM25 n00 0.2279 0.1935 0.2011 0.1917 0.1773 0.0968

is described in adaptive filtering, where it is acknowledged that smaller values of
b are sometimes advantageous for filtering tasks (Robertson 2002).

Figure 4 also shows that the smaller parameter k1 is, the better performance
is obtained. This constant determines how much weight reacts to increasing term
frequencies (or similarity scale in our item space case) (Spärck Jones et al 2000). In
this situation, when k1 is small, it implies that the effect of TF is highly non-linear,
even more than in traditional text retrieval (where typical values for k1 are in the
range of 1.2-2.0). This is due to the fact that TF in the item space is defined as
the similarity between two items, ranging from −1 (completely dissimilar items)
to 1 (perfect similarity), where 0 represents that no similarity is found, which is
the most common situation. The situation in IR, by contrast, is different, since
the TF is typically positive and unbounded.

In the next sections, we evaluate these three methods using the best parameters
found in Movielens 100K, that is, λ = 0.8 and µ = 4000 for the language modeling
approaches, and k1 = 0.1, b = 0.0, and k3 = 100 for BM25. Then, we use these
tuned parameters in the other datasets (Movielens 1M and Movielens 10M ) to
check the robustness of our approaches.

4.3.2 Item ranking task

In Tables 5 and 6, we present results from the item ranking task in Movielens 100K.
We can see here that in both user and item spaces, several of our methods out-
perform the standard CF approaches, as well as a recommender based on matrix



Bridging Memory-Based Collaborative Filtering and Text Retrieval ⋆ 21

Table 7 Performance results in the item space for the item ranking task (Movielens 1M ).

Methods P@5 P@10 nDCG@3 nDCG@5 nDCG@10 MAP
Item-based CF 0.0001 0.0001 0.0001 0.0001 0.0001 0.0011
TF ||n01||1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0011
MF 0.0623 0.0586 0.0592 0.0606 0.0602 0.0307
BM25 n00 0.0044 0.0044 0.0032 0.0032 0.0032 0.0020
Dirichlet n00 0.0076 0.0073 0.0052 0.0050 0.0050 0.0021
TF-IDF n00 0.0121 0.0115 0.0077 0.0082 0.0082 0.0078
BM25 ||n11||1 0.0369 0.0383 0.0222 0.0225 0.0239 0.0340
BM25 ||n01||2 0.0530 0.0514 0.0424 0.0433 0.0433 0.0364
Jelinek-Mercer n00 0.0581 0.0572 0.0441 0.0447 0.0453 0.0407
TF-IDF ||n01||2 0.0799 0.0757 0.0733 0.0717 0.0699 0.0475
TF ||n01||2 0.1225 0.1138 0.1192 0.1149 0.1102 0.0643

Table 8 Performance results in the user space for the item ranking task (Movielens 1M ).

Methods P@5 P@10 nDCG@3 nDCG@5 nDCG@10 MAP
User-based CF 0.0274 0.0252 0.0224 0.0232 0.0224 0.0139
TF ||n10||1 0.0274 0.0252 0.0224 0.0232 0.0224 0.0139
MF 0.0623 0.0586 0.0592 0.0606 0.0602 0.0307
BM25 ||n01||2 0.0983 0.0863 0.0964 0.0914 0.0883 0.0379
TF-IDF ||n01||2 0.0984 0.0862 0.0963 0.0913 0.0882 0.0379
Dirichlet n00 0.1013 0.0892 0.1020 0.0953 0.0921 0.0395
BM25 n00 0.1013 0.0892 0.1020 0.0953 0.0921 0.0395
Jelinek-Mercer n00 0.1013 0.0892 0.1020 0.0953 0.0921 0.0395
TF-IDF n00 0.1013 0.0892 0.1020 0.0953 0.0921 0.0395
BM25 ||n10||2 0.1038 0.0902 0.1049 0.0982 0.0942 0.0397
TF-IDF ||n10||2 0.1041 0.0902 0.1051 0.0987 0.0944 0.0399

factorization denoted as MF and described in (Koren et al 2009). Besides, we can
observe how the TF method, when normalized appropriately (||n01||1), is equiv-
alent to one of the CF algorithms, although more cost-efficient, as explained in
Section 4.2. It is worth noticing the poor performance of standard CF algorithms
at top-N recommendation, something already illustrated in (McLaughlin and Her-
locker 2004). This is particularly evident in the item space, where the standard
item-based CF seems to be more sensitive to noise in the evaluation than other
techniques. We have considered different similarity functions such as Pearson’s
correlation and cosine similarity with mean centering, but the precision results
remained quite stable, with small variations depending on the similarity function.

We believe the main difference with respect to other studies reported in the
literature is in the performance metric: error-based vs. ranking-based. Error-based
metrics have been pervasive in field up to the last few years, whereas ranking-
oriented metrics have started to be used relatively recently. For instance, MAE is
used in (Sarwar et al 2001) whereas hit-rate is used in (Deshpande and Karypis
2004). In prior work (Belloǵın et al 2011a), we already observed an item-based
method with low (i.e. good) RMSE and a close to zero precision, evidencing that
a well performing method in terms of error metrics does not necessarily have a good
performance in terms of precision. Here again, we shall see later in Section 4.3.3
that our item-based baseline performs reasonably well (better than user-based CF)
in terms of MAE and RMSE (see Tables 11 and 12).

Table 5 shows the performance values of the framework in the item space,
where users and items are represented using item coordinates (see Section 3.1.1).
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For readability, only methods significantly different with respect to the baselines
(item-based CF and matrix factorization) are presented. In this case, the n01

normalization strategy combined with the L2 norm (||n01||2) produces the best
results. Besides, BM25 and language modeling approaches obtain very good results
with different normalization strategies.

In Table 5, we can check the assumption presented in Section 3.4, where IDF
is assumed to capture the extent to which items may be similar to too many other
items, penalizing them accordingly. Here, we can observe how TF-IDF obtains bet-
ter performance than the baselines in two experimental conditions, whereas TF is
better in only one of them. In the rest of the experiments (not presented in the
table), TF-IDF significantly outperforms TF. Therefore, the use of IDF function
seems to be beneficial for item-based recommendation, or at worst, it does not
degrade the performance. Furthermore, all the different proposed methods sta-
tistically outperform the item-based CF baseline; therefore, the integration of IR
weighting functions into rating-based CF by using text search engines not only
speed up the computation but, more importantly, it provides better recommenda-
tion accuracy in terms of precision metrics.

On the other hand, Table 6 shows results when we use our framework to repre-
sent users and items in the user space. In this situation, we can see that normalizing
only by the document vector (n01) along with the L2 norm –||n01||2– produces the
best results. Strategy n10 also produces good results, although worse when com-
pared with situations where no normalization is used. Interestingly, in this case
it is clear that the L2 norm produces better results than L1, as opposed to the
item-based approaches, where norm L1 also provided good performance.

In general, the results in the user space representation involve more ties, mainly
because the weighting methods are only applied to similarities, i.e., the query
vector, and thus different methods are generating similar (and even equal) rankings
for each user. Related with this fact, there is another difference with respect to
the item-based approach. In the user-based situation there is no difference between
using TF or TF-IDF methods, since they both leave the query vector intact. BM25
is the only weighting method which modifies the query vector, and thus, it produces
slightly different rankings with respect to TF (or TF-IDF) methods.

We should recall that, as already explained in Section 3.4, IDF captures differ-
ent situations in the item-based and user-based formulation. Whereas the latter
is related with penalizing users with lots of ratings (empirically found to have
negative effects), the former penalizes those items that are similar to many other
items (in the results this penalization turned out to be very useful).

Additionally, in order to further validate our results, we have evaluated the
methods introduced herein with two larger datasets, namely the 1M and 10M
versions of Movielens, using the optimal parameters obtained for Movielens 100K.
Tables 7 and 8 show the results regarding the item ranking task in Movielens 1M.
Here, we can see again that some methods outperform both baselines (MF and
standard memory-based CF), although in the item space there are several methods
which are not able to improve over the matrix factorization algorithm. In any case,
TF with strategy ||n01||2 proves to be the best performing method again in this
space; in the user space, BM25 and TF-IDF methods obtain the best results,
again with the L2 norm, which confirms the adequacy of this norm for the item
ranking task. A similar behavior is observed on the Movielens 10M dataset. As a
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Table 9 Performance results in the item space for the item ranking task (Movielens 10M ).

Methods P@5 R@5 nDCG@5 MAP MRR bpref
Item-based CF 0.0001 0.0001 0.0001 0.0001 0.0002 0.0046
TF ||n01||1 0.0001 0.0001 0.0001 0.0001 0.0002 0.0046
MF 0.0456 0.0103 0.0467 0.0162 0.1210 0.3303
Dirichlet n00 0.0012 0.0002 0.0008 0.0002 0.0037 0.0052
TF-IDF n00 0.0018 0.0002 0.0013 0.0006 0.0065 0.0189
BM25 n00 0.0062 0.0007 0.0046 0.0089 0.0205 0.4187
BM25 ||n11||1 0.0072 0.0003 0.0041 0.0064 0.0174 0.1367
BM25 ||n01||2 0.0087 0.0004 0.0065 0.0060 0.0222 0.1981
Jelinek-Mercer n00 0.0111 0.0007 0.0082 0.0063 0.0264 0.0919
TF-IDF ||n01||2 0.0338 0.0035 0.0303 0.0142 0.0841 0.3731
TF ||n01||2 0.0693 0.0080 0.0646 0.0258 0.1474 0.4795

Table 10 Performance results in the user space for the item ranking task (Movielens 10M ).

Methods P@5 R@5 nDCG@5 MAP MRR bpref
User-based CF 0.0124 0.0018 0.0102 0.0090 0.0425 0.4972
TF ||n10||1 0.0124 0.0018 0.0102 0.0090 0.0425 0.4972
MF 0.0456 0.0103 0.0467 0.0162 0.1210 0.3303
BM25 ||n01||2 0.0865 0.0272 0.0773 0.0381 0.2177 0.5983
TF-IDF ||n01||2 0.0865 0.0272 0.0773 0.0381 0.2177 0.5983
Dirichlet n00 0.0913 0.0279 0.0826 0.0388 0.2251 0.5800
BM25 n00 0.0913 0.0279 0.0826 0.0388 0.2251 0.5800
Jelinek-Mercer n00 0.0913 0.0279 0.0826 0.0388 0.2251 0.5800
TF-IDF n00 0.0913 0.0279 0.0826 0.0388 0.2251 0.5800
TF-IDF ||n10||2 0.0927 0.0275 0.0848 0.0382 0.2281 0.5705
BM25 ||n10||2 0.0928 0.0277 0.0850 0.0382 0.2285 0.5716

complement to the common performance metrics, we also report recall, MRR, and
bpref for MovieLens 10M in Tables 9 and 10, showing a similar trend.

The trend in performance is identical in the user space (Table 10) where most
of the methods outperform the MF technique using any of the reported metrics.
In Table 9, on the other hand, we can observe that in the item space only the
TF method with ||n01||2 normalization is able to outperform the MF technique in
terms of precision, recall, nDCG and MAP metrics, the BM25 method with n00

and TF-IDF with ||n01||2, however, outperform such technique in terms of MRR
and bpref evaluation metrics. This situation is again similar to that obtained for
the Movielens 1M dataset; we believe this reduction on performance may be due
to that the parameters used in BM25 and LM methods are not the optimal for
these datasets, since we are using those found optimal for the Movielens 100K, and
thus, there is still further room for improvement in these datasets.

Finally, we have to note that the results presented in this section are very
dependent on the selected normalization strategy. In general, normalizing only by
the document vector gives the best results for user and item approaches, though
sometimes no normalization at all also produces positive results.

4.3.3 Rating prediction task

Table 11 shows the results from the rating prediction task (using error metrics)
for the same dataset. In this task the retrieval score must range between 1 and
R (which in this dataset is 5). This is why, in this case, the only normalization
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Table 11 Results for the rating prediction task (Movielens 100K ). Letters denote statistically
significant different groups, performing a Wilcoxon paired test for each metric with p < 0.005.

Item-based User-based
Method MAE RMSE
Item-based CF 0.8362a 1.0439a

MF 0.7281b 0.9242b

BM25 0.8464c 1.0706c

TF-IDF 0.8362a 1.0439a

Dirichlet 0.8394d 1.0519d

Jelinek-Mercer 0.8399d 1.0503d

Method MAE RMSE
User-based CF 0.9317a 1.2021a

MF 0.7281b 0.9242b

BM25 0.9316a 1.2020a

TF-IDF 0.9316a 1.2020a

Dirichlet 0.9317a 1.2021a

Jelinek-Mercer 0.9317a 1.2021a

Table 12 Results for the rating prediction task (Movielens 1M ).

Item-based User-based
Method MAE RMSE
Item-based CF 0.8210a 1.0255a

MF 0.6747b 0.8687b

BM25 0.8236a 1.0408c

TF-IDF 0.8256c 1.0301a

Dirichlet 0.8284d 1.0359d

Jelinek-Mercer 0.8290d 1.0358d

Method MAE RMSE
User-based CF 0.9443a 1.2138a

MF 0.6747b 0.8687b

BM25 0.9443a 1.2138a

TF-IDF 0.9443a 1.2138a

Dirichlet 0.9443a 1.2138a

Jelinek-Mercer 0.9443a 1.2138a

techniques which make sense are ||n01||1 (for item-based) and ||n10||1 (for user-
based), which provide equivalences with Eq.(4) and Eq.(7), respectively. We can
see here that the proposed methods produce comparable (significantly similar)
results to that of the standard collaborative-filtering baselines.

Additionally, in Table 12 we present the results regarding the Movielens 1M

dataset. Here we can observe the same situation described above regarding the
user-based methods. In the item-based space, on the other hand, the method that
is not statistically different from the standard memory-based CF baseline is the
BM25 method instead of TF-IDF, like in Movielens 100K.

It should be emphasized that, as stated in (McLaughlin and Herlocker 2004),
it is difficult to define an algorithm that achieves good results in terms of both
rating prediction accuracy (as measured by error metrics) and item ranking qual-
ity (measured by usual IR metrics). While the new algorithmic framework only
obtains competitive results for error metrics with respect to memory-based base-
lines (where model-based techniques, such as MF, obtain much better prediction
accuracy), the ability of employing text retrieval insights and techniques signifi-
cantly speeds up the processes and also obtains much better performance in terms
of rank quality metrics, as presented in the previous section.

4.4 Discussion

The analysis of the results revealed that it is possible to use IR models effectively
as the basis for memory-based CF algorithms. Moreover, we have shown in previ-
ous sections that, from an algorithmic point of view, there is a close relationship
between IR and memory-based CF formulation. In particular, this relationship
enables us the definition of a framework in which several IR concepts can be
translated into the memory-based CF domain, such as inverted indices, weighting
functions, and IDF as a component of the latter.
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We test our framework on two related but different recommendation tasks:
rating prediction and item ranking. These experiments seem to indicate that it
is more difficult to obtain good results in the rating prediction task. Moreover,
many different weighting methods and normalization strategies can be used in our
framework to properly scale the system’s output scores, which introduces a deci-
sion to which the rating prediction accuracy is highly sensitive. Results, however,
confirm that our methods are competitive in this task –the differences with respect
to the memory-based baselines are not statistically significant– and, at the same
time, our approach has better computational times.

Performance on the item ranking task, on the other hand, is clearly improved
by the use of IR weighting methods and the introduction of the different normal-
ization strategies in the scoring equations. Both in user- and item-based situations,
strategy n01 (normalizing by the document norm only) leads to the best results,
as well as the L2 norm, which consistently achieves the best results in both ap-
proaches.

BM25 has proved to behave differently with respect to ad-hoc text retrieval.
The parameters of this model have been tuned, leading to different background
conditions from the usual ones in text IR. For instance, document length seems to
have no impact for rating data, since the optimal parameter b turned out to be 0.
Nevertheless, the BM25 method obtains good performance results in both spaces,
user- and item-based.

With respect to the inclusion of the Inverse Document Frequency (IDF) func-
tion in our framework, we have observed that its benefit depends on the actual
equivalence of its representation in the space of users or items. In the item space
it seems quite appropriate, while it does not improve the performance obtained by
the TF method in the user space. This can be attributed to what IDF captures in
each situation. In the user space, a term (user) with high IDF is a highly active
user (active rater), and it is empirically observed that penalizing this degrades the
performance. On the other hand, in the item space a term (item) with high IDF
is an item which is similar to many other items, a concept more similar to what is
captured by IDF in text retrieval –a lack of discriminative power– and hence, the
use of this function seems to sensibly improve the simple TF method.

Additionally, our results show that the use of negative information about the
user’s preferences (i.e., low ratings) is also beneficial when IR models are employed.
This is typically not the case in text retrieval, although similar conclusions have
been obtained when applying these models to video retrieval (Aly et al 2010).
This is consistent with results obtained when graph-based models are applied to
recommendation (Clements et al 2009).

Furthermore, we have validated our proposed methods in two larger datasets,
where they have proved their robustness by obtaining good performance results us-
ing the tuned parameters in a smaller dataset. Besides, the trend on recommender
performance was very similar among the three used datasets.

In summary, IR models outperform state-of-the-art recommendation approaches
in terms of precision (item ranking task); at the same time, when prediction ac-
curacy is required (rating prediction task) these methods are competitive with
respect to standard memory-based algorithms. This is true even when an exhaus-
tive search for the optimal parameters or better model formulations has not been
performed, neither for the IR methods (where different definitions of the TF com-
ponent exists, for example) nor for CF techniques (where other different rating
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normalization and similarity functions apart from Pearson’s correlation have been
proposed). We believe this is a sign of the robustness of our framework, and, also
provides several parameters to be explored in the future.

5 Conclusion and Future Work

We have proposed a general model for memory-based CF which can fit many
different algorithms, including different normalization techniques and weighting
functions commonly used in IR models. An analogy between IR and memory-based
CF has been found: in item-based CF, terms are seen as the items, while the term
frequencies are the user ratings (in the query representation) or the item similarity
(in the document representation). In user-based CF, the terms are equivalent to
users, and the term frequencies are the user similarities (in the query) or the user
rating for an item (in the document). The found equivalences introduce a new
perspective on CF strategies, aiming to bring new insights and perhaps a better
understanding of their relation to IR models, from which further IR researchers
might design new and effective recommender systems drawing from the rich body
of techniques, theories and principles in the IR field.

We have furthermore found that it is possible to directly apply IR models in
our framework obtaining better results than classic CF algorithms. Besides that,
different normalization techniques can fit into our framework and also lead to
good results, providing a more formal explanation than previous approaches to
the prediction of user preferences in memory-based CF.

In the experiments, we have explored two alternative recommendation tasks:
item ranking and rating prediction. We have found that IR models perform better
in the item ranking task, while they remain competitive with other classic CF
algorithms in the rating prediction task. Moreover, our methods have proved to
be more efficient than classic CF techniques in terms of average prediction time.

Moreover, the use of IDF has proved to be beneficial in the item-based rep-
resentation, while its effect in the user-based situation is unclear. This is because
IDF has a different meaning in each of these spaces, whereas in the latter is related
with penalizing users with lots of ratings, in the former it penalizes those items
that are similar to many other items.

In the future, we aim to extend the evaluation of the item ranking task with
evaluation metrics that handle better the large amount of unknown relevance in-
formation prevalent in Recommender Systems, for instance, by using the infAP
(Yilmaz and Aslam 2008) metric. We also aim to include more advanced text
retrieval techniques into our framework, such as those proposed in (Salton et al
1983) and extend our framework to integrate model-based approaches such as SVD
or LSA. Besides, as in many IR models where different frequency normalization
techniques can also be used, different rating normalizations and similarity metrics
could be explored in CF, such as using z-scores instead of ratings (Herlocker et al
1999) and adjusted cosine similarity instead of Pearson’s correlation for item sim-
ilarity (Sarwar et al 2001), which we envision as future work. Additionally, we aim
to also exploit implicit user feedback in our framework, since it is the more typical
input data in practical applications. Finally, we are also interested in testing these
models with other publicly available datasets, such as Netflix or the one released
for the KDD Cup 2011.
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