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Abstract

One crucial advantage of additive manufacturing regarding the optimization of lat-

tice structures is that there is a reduction in manufacturing constraints compared 

to classical manufacturing methods. To make full use of these advantages and to 

exploit the resulting potential, it is necessary that lattice structures are designed 

using optimization. Against this backdrop, two mixed integer programs are devel-

oped in order to use the methods of mathematical optimization in the context of 

topology optimization on the basis of a fitted ground structure method. In addition, 

an algorithm driven product design process is presented to systematically combine 

the areas of mathematical optimization, computer aided design, finite element analy-

sis and additive manufacturing. Our developed computer aided design tool serves 

as an interface between state-of-the-art mathematical solvers and computer aided 

design software and is used for the generation of design data based on optimization 

results. The first mixed integer program focuses on powder-based additive manufac-

turing, including a preprocessing that allows a multi-material topology optimization. 

The second mixed integer program generates support-free lattice structures for addi-

tive manufacturing processes usually depending on support structures, by consider-

ing geometry-based design rules for inclined and support-free cylinders and assump-

tions for location and orientation of parts within a build volume. The problem to 

strengthen a lattice structure by local thickening or beam addition or both, with 

the objective function to minimize costs, is modeled. In doing so, post-processing 

is excluded. An optimization of a static area load with a practice-oriented number 

of connection nodes and beams was manufactured using the powder-based additive 

manufacturing system EOS INT P760.
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1 Introduction

Additive Manufacturing (AM), originally referred to as rapid prototyping and 

commonly known as three-dimensional printing, is an additive process for 

rapid form manufacturing, where the final object is created by adding material 

in layers; each layer is a thin cross section of the part derived from the original 

3D-Computer Aided Design (CAD) data (Burns 1993; Gibson et al. 2014). This 

differs from conventional processes such as subtractive processes (i.e., milling or 

drilling), formative processes (i.e., casting or forging) and joining processes (i.e., 

welding or fastening), see Conner et al. (2014).

One crucial advantage of AM, in relation to optimization for lightweight con-

struction, is that there is a reduction in manufacturing constraints compared to 

classical manufacturing methods (Gibson et  al. 2014). As stated by Jared et  al. 

(2017), AM offers unprecedented opportunities to design complex structures 

optimized for performance envelops inaccessible under conventional manufactur-

ing constraints, so that a realization of engineered materials with microstructures 

and properties, that are impossible via traditional synthesis techniques, becomes 

possible.

Enthused by these capabilities, optimization design tools have experienced a 

recent revival (Jared et al. 2017). Optimization and AM are considered as ideal 

couples and optimization techniques can play a vital role in the future develop-

ment of the AM technology, if proper and efficient algorithms are developed 

(Gebisa and Lemu 2017). We focus on the optimization of lattice structures, as 

they offer some advantageous properties from a design perspective, such as lower 

weight, better performance and stability due to the large network of structural 

beams, good energy absorption and high thermal and acoustic insulation com-

pared to its solid counterpart (Gibson and Ashby 1997; Liu et al. 2018).

To make full use of the advantages of AM and to exploit the resulting poten-

tial, the parts have to be designed previously using new optimization methods, 

see Gibson et al. (2014). In accordance with Jared et al. (2017), geometric com-

plexity becomes truly free, or at least significantly cheaper, if capability gaps and 

challenges in materials, processes and optimization tools are addressed. For this 

reason, the advantage in complexity and the complete manufacturing freedom of 

AM, described in Conner et al. (2014), are used by our algorithm driven product 

design process, see Sect. 2.

Topology Optimization (TO) is an optimization method that employs math-

ematical tools to optimize the material distribution in a part to be designed (Geb-

isa and Lemu 2017). Since most TO results require post-processing, there are 

practical limitations for combining AM and TO techniques. Multiple agreements 

between the design and manufacturing experts are necessary, so that multiple 

optimal solutions, depending on the prioritization of manufacturability or design 

or both, occur. Accordingly, the final design often deviates from the global opti-

mum in terms of mass and stiffness (López and Stroobants 2019).

Research in the field of Design for Additive Manufacturing (DfAM) (Thomp-

son et  al. 2016) has been primary focused on parts design, taking advantage of 
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the design freedom of AM, driven by a better industrial adoption. Despite this 

development, AM is able to manufacture fully functional parts depending on lit-

tle or no assembly operations. For this reason, we focus on a DfAM methodology 

depending on part design and manufacturability. Considering manufacturability, 

design freedom and post-processing, we introduce two Mixed-Integer Linear Pro-

gram (MILP) optimizations to support the design and manufacturing experts with 

a global optimum.

From a design perspective, the global optimum is equivalent to using the com-

plete manufacturing freedom of AM. From a manufacturing perspective, any fea-

sible solution is manufacturable and implies a known or no post-processing effort. 

The interaction between the design and manufacturing experts is minimized, which 

implies time and cost-savings and a paradigm shift from production-ready (manu-

facturable) design to function-oriented design, which is a characteristic of AM 

(Hague et al. 2003; Langelaar 2016). In contrast to heuristics, mathematical optimi-

zation provides a duality gap. We offer this duality gap to design and manufactur-

ing experts as a standard to evaluate heuristic optimization methods concerning the 

global optimum, despite the possibility of a high computing effort.

According to Tejani et al. (2018), Truss Topology Design (TTD) is a design prob-

lem posed to find an initial truss layout while, in the later design stages, shape, and 

sizing optimizations are carried out. Thus, the sub-areas of TTD are size optimi-

zation, shape optimization and TO (Tejani et al. 2018). With regard to TTD, vari-

ous optimization types appear to offer value for AM respectively. There have been 

various methods for TTD (Achtziger et al. 1992; Bendsøe et al. 1994; Ben-Tal and 

Nemirovski 1997; Ohsaki and Katoh 2005; Achtziger and Stolpe 2007, 2008, 2009). 

Modeling trusses, in general, leads to non-convex non-linear problems. Mars (2013) 

presents three different ways to deal with non-convex non-linear TTD problems. 

One way is to replace the non-convex constraint by a big-M formulation with binary 

variables so that non-convexity still exists but is changed to binary variables. After a 

transformation of the non-linear parts of the TTD problem into linear constraints we 

get a MILP. Another way is a reformulation as a convex problem, which results in a 

semidefinite problem. The third way considered by Mars (2013) is a reformulation 

of the problem using dual variables and a version of the Farkas-Lemma (Jaganna-

than and Schaible 1983). This yields a quadratic problem.

Nemirovski (2001) formulates a truss as a Quadratic Program (QP) and trans-

forms it into a Second-order Cone Program (SOCP). Stolpe and Svanberg (2003) 

deal with TO of discretized continuum structures. It is shown that a large class of 

non-linear 0–1 TO problems, including stress- and displacement-constrained mini-

mum weight problems, can equivalently be modeled as linear mixed 0–1 problems. 

Furthermore it is shown that non-linear mixed 0–1 TO problems can equivalently be 

cast as either linear or convex quadratic mixed 0–1 problems (Stolpe 2007). Gally 

et al. (2018) provide a Mixed-Integer Semidefinite Program (MISDP) for a optimal 

placement of active beams for buckling control in truss structures under beam fail-

ures. Also a robust TTD with beams via a Mixed-Integer Nonlinear Semidefinite 

Program (MINSDP) is stated (Gally et al. 2015).

Beside the problem of optimum TTD considering an equilibrium of forces and 

stress constraints based on the ground structure method (Achtziger 1996), a MILP, 
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a QP and a Semidefinite Program (SDP) have their advantages (Gally et al. 2015). 

These programs can be partly extended for discrete beam thicknesses, vibrations, 

active elements, multiple load cases, time-invariant systems and an uncertainty set 

implemented by an ellipsoid containing nominal loads (Gally et  al. 2015; Kuttich 

2018). The control of uncertainties in load-bearing lattice structures, with the use of 

mathematical programs and the optimal combination of passive and active structural 

elements within lattice structures, appear to be of particular importance for mechan-

ical engineering (Kuttich 2018).

The basic combinational nature of TO, i.e., finding the optimal set of beams for 

a lattice structure, which remains in structural optimization problems, has been 

proved to be NP-hard (Wang et  al. 2013). Heuristic approaches, such as genetic 

algorithms, have been applied for structural optimization problems with stress and 

buckling constraints (Rajeev and Krishnamoorthy 1997). However, these fairly gen-

eral approaches are restricted to small-scale problems and are not suitable for AM 

(Wang et  al. 2013). Besides, according to Mars (2013), solving large SDPs with 

many binary variables is quite computationally expensive, so it is obvious to try a 

reformulation of the semidefinite TTD for AM problem as a MILP and solve it with 

the help of established standard solvers like CPLEX (CPLEX 2019). Exact and effi-

cient algorithms with problem-specific adaptions can be implemented to determine 

the global optimum. Additional binary variables dependent on the AM process and 

its standards can be used to implement further geometry-based construction and 

design constraints.

We will use the so-called static Timoshenko beam theory for constant cross sec-

tions (Eugster 2015), which allows us to formulate a MILP. The assumptions regard-

ing the Timoshenko beam theory, see Sect.  3.2, make it possible to solve large 

instances and overcome the creative human process of engineering complex light-

weight lattice structures, which leads to practical relevance for AM. Our approach 

provides design and manufacturing experts with a global optimum, time savings and 

a holistically DfAM methodology.

Since the validation and verification method of our desired workflow, as typi-

cally demanded in Technical Operations Research, see Sect. 6, is based on an Finite 

Element Analysis (FEA), we distinguish strictly between rigid-body equilibrium of 

forces calculated via a MILP and a verification of the results via a linear-elastic and 

a non-linear-elastic numerical analysis of our parts. On the one hand, by adopting a 

rigid-body equilibrium instead of the non-linear theory of elasticity, the MILP can 

solve large instances and exploit its advantages. On the other hand, simplification is 

not a disadvantage, since FEA is in any case necessary as part of the failure analysis 

in the product development process and provides a linear-elastic and non-linear-elas-

tic numerical analysis. Synergy effects between both areas are generated.

In this paper, for powder-based AM and extrusion-based AM, two MILPs 

adapted to standards (ISO 2013; VDI 2015; ISO 2017; VDI 2019) are introduced, 

see Sects.  4.5 and 4.6. The two MILPs TTDl;p (linear;powder-based AM) and 

TTDl;s (linear;support needed) are developed in order to define a statically deter-

mined lattice structure, which is minimal in terms of costs, volume and mate-

rial consumption under the influence of external forces, based on a fitted ground 

structure method. The MILP TTDl;p defines a lattice structure for powder-based 
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AM processes regardless of support structures and the MILP TTDl;s defines a 

lattice structure for AM processes depending on support structures. The MILP 

TTDl;s considers geometry-based design rules for inclined and support-free cyl-

inders/beams manufactured with AM processes depending on support structures 

(VDI 2019) and assumptions for location and orientation of parts within a build 

volume (ISO 2013). Furthermore, the stress and buckling constraints are simpli-

fied in both TTD models. The MILP TTDl;s aims at realizing support-free lattice 

structures. Both MILPs use preprocessed beam diameters and materials, so that 

multi-material lattice structures are possible.

In addition, an optimization-oriented design workflow, see Fig. 12, is developed 

in order to exploit the advantages of optimization for AM fully. The optimization-

oriented design workflow addresses four [(1)–(4)] interdisciplinary sub-areas; Oper-

ations Research (1), AM (2) as the manufacturing method and a link between this 

sub-areas in the form of a 3D-CAD (3) tool and a validation via an FEA (4).

In Reintjes et al. (2018), a method to minimize lateral deflection (buckling) for 

TTD for AM is presented. The critical load of a beam in a lattice structure, based 

on Euler’s critical load model (Timoshenko et al. 1962), is implemented by a MILP 

including geometry-based design constraints. It is shown that in addition to the static 

design of lattice structures using a MILP, simultaneous geometry-based optimiza-

tions are possible concerning geometry-based design constraints. Reintjes et  al. 

(2019) present large three-dimensional lattice structures, characterized by an appro-

priate assembly space and level of granularity, whereby non-linear material behavior 

is neglected. The target function is to reduce costs and material. The design is made 

up of cellular structures resulting from a static load case. A control of the density 

of the truss is possible through penalty parameters implemented in the MILP con-

straints. Reintjes and Lorenz (2019) provide a MILP for TTD for AM and a related 

design tool for additively manufactured multi-material lattice structures. An optimi-

zation-oriented construction workflow is presented in order to exploit the advantages 

of TTD for AM fully. A bottom-up construction methodology and a 3D-CAD tool to 

realize a MILP to 3D-CAD workflow is described. A part manufactured with Selec-

tive Laser Sintering (SLS) and a numerical validation are presented. The results pre-

sented in this article are based on our preliminary work mentioned above.

This paper is organized as follows. Section 2 presents our construction charac-

teristics, as a construction methodology for large-scale design optimization of addi-

tively manufactured multi-material lattice structures. Section  3 recasts the basic 

problem statements in TTD for AM and associated kinematic indeterminacy. Fur-

thermore, a design space and a design problem is formulated. Section 4 is divided 

into six subsections. Section 4.1 presents preliminary work for our MILP models. 

Besides Sect.  4.2 illustrates how, due to the implementation of geometry-based 

design rules, the problem naturally becomes a MILP, which is suspected to be NP-

hard. Section 4.3 explains preprocessing. Necessary decision variables, parameters 

and sets are defined in Sect. 4.4. Building on the previous three sections, a MILP 

specifying lattice structures for powder-based AM processes (TTDl;p ) and a MILP 

defining support-free lattice structures for AM processes (TTDl;s ) are presented in 

Sects. 4.5 and 4.6. Following Sect. 5 describes the 3D-CAD tool. Section 6 presents 

our optimization-oriented design workflow to use our MILPs to produce additively 
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manufactured lattice structures. Section 7 presents numerical results and additively 

manufactured lattice structures. We conclude in Sect. 8.

The paper is divided into two parts: Sects. 2 and 3 provide a comprehensive over-

view of TTD, whereas Sects. 4–7 describe our algorithm driven product design pro-

cess. The two parts may be considered separately.

2  Our construction methodology for AM

To systematically explore the area of mathematical optimization (modeling), CAD 

(construction), FEA (validation) and the area of AM processes (realization), we 

adapt the methodology of (Altherr et al. 2016). Figure 1 describes the development 

of an efficient additively manufactured lattice structure. The methodology is divided 

into two phases: the decision phase (1–4) and the action phase (5–7).

In the first step (1), customer and designer have to agree on a technical specifica-

tion, which is a fair balance of loading case, costs and manufacturability, inspired by 

Pelz et al. (2012). The loading case is determined by the practical use of the planned 

part and the associated part strength and thus taken to be immutable. The manufac-

turability depends on the chosen AM process (4) and its standards.

The objective function (2) minimizes the material, volume and costs. An upper 

bound for the costs is determined by the selected Ground Structure (GS) (3), the 

chosen AM process, standards and AM constraints (4). Furthermore, preprocessed 

beam types with different beam cross sections and costs, which are proportional to 

the volume and the material consumed, affect the upper bound. In the next step, a 

Fig. 1  The TOR pyramid—a step by step guide towards an algorithm driven product design process, 

based on Pelz et al. (2012)
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MILP is used as the artificial topology designer tool (5) to determine the optimal 

topology/global optimum. The optimization results are implemented in a 3D-CAD 

tool and afterward numerically analyzed via an FEA (6). The AM process set in step 

(4) is used for realization (7).

The manufacturability and mechanical compliance with standards are ensured 

since in step (4) all manufacturing restrictions are implemented as constraints in the 

MILP. In order to increase the manufacturing accuracy of the chosen AM process, at 

the expanse of costs, standard design rules for part production aiming at a high man-

ufacturing accuracy (VDI 2015) can be included in the artificial topology designer 

tool (5). These standard design rules will limit the solution space and thus counter-

act the “complexity for free” phenomenon of AM, see Conner et al. (2014). In AM, 

complexity is said to be free, as the product is made layer-by-layer so that costs and 

manufacturing time is independent of the part complexity (Atzeni and Salmi 2012). 

To take full advantage of the phenomenon “complexity for free”, standards should 

be used in a targeted manner, as we aim to overcome the creative human process 

of design and construction, with the help of a mathematically and algorithmically 

driven product design process, inspired by Pelz et al. (2012).

3  Main concepts of truss topology design for AM

Section 3 is divided into five subsections. Sect. 3.1 defines the basic problem state-

ments in TTD and associated kinematic indeterminacy. Preparations towards a lat-

tice structure design problem as MILP are introduced in Sect. 3.2. The assumptions 

of our MILPs TTDl;p and TTDl;s regarding the displacements, the equilibrium of 

forces and the moment equilibrium are introduced. A concept of design space con-

straints for an AM system is proposed in Sect. 3.3. Our assumptions regarding the 

assembly space of an AM system and our ground structure method adapted for AM 

are introduced. In Sect.  3.4, our algorithm driven optimization for a support-free 

part is compared with other methods in this field of research. Section 3.5 extends the 

established FEA driven product design process by a preliminary design determined 

by our algorithm driven product design process.

3.1  Basic problem statements in truss topology design for AM and the associated 

kinematic indeterminacy

Since the beginning of the 20th century there have been various studies on TTD. 

Since then, TTD has been a growing field of research, combining different areas 

of engineering with mathematics. In addition to classical applications such as the 

optimality of Michell structures (Michell 1904), which are used in civil engineering 

for the design and volume optimization of space structures, there have recently been 

remarkable efforts to combine TTD and AM. The following is a brief overview of 

the models that support the combination of TTD and AM, considering that we want 

to formulate MILPs.
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3.1.1  Basic problem statements

The following models have been obtained from Bendsøe (2009), whereat mecha-

nisms and rigid body motions are excluded. Let E and V denote the set of edges (pos-

sible beams) and the set of vertices (possible connection nodes) of a truss, respec-

tively. We will denote that a truss T = {b1,… , b
m
} is a set of beams with T ⊆ E , 

i.e., T indicates at which edges in E a beam is placed. Let A
b
, L

b
 denote the cross-

sectional area and length of a beam b, respectively. It is assumed that all beams are 

made of linear elastic materials,1

with Young’s modulus E
b
 (Dym and Shames 1973) defining the relationship 

between stress (force per unit area) and strain (proportional deformation) in a mate-

rial in the linear elasticity regime of a uniaxial deformation. The volume of a truss 

T is

with the beam volumes �
b
= A

b
L

b,b ∈ {b1,… , b
m
} . As usual, the static equilibrium 

is expressed as

where qqq is the member force vector, ppp is the nodal force vector of the free degrees 

of freedom and BBB the compatibility matrix, which relate element displacements to 

system displacements (De Borst et al. 2012).

The basic problem statement in terms of member forces (single load truss prob-

lem) is formulated as a stress based minimum mechanical compliance problem 

(TTD
c
 , see Table  1) using the minimum complementary energy principle (Bend-

søe 2009). Problem TTD
c
 is simultaneous convex in member forces and member 

volumes.

The traditional formulation of TTD in terms of member forces (TTD
p;a

 , see Table 1) 

is valid for single load, plastic design (Rozvany 1984; Topping 1993; Bendsøe and 

Kikuchi 1993). This single load, plastic design problem is typically stated as a mini-

mum weight design problem, for all trusses that satisfy a static equilibrium within 

certain constraints on stresses in the individual beams. With the same stress constraint 

value Qb for both tension and compression, the formulation is in the form of an Linear 

Program (LP). Cheng and Jiang (1992) and Kirsch (1993) outline that the stress con-

straints are written in terms of member forces in order to give a consistent formulation. 

They further state, that for some truss problems, the stress in several members will con-

verge to a finite non-zero level as the member areas converge to zero, but the member 

forces will converge to zero. This fact should be observed for any truss design problem 

involving stress constraints (Cheng and Jiang 1992; Kirsch 1993).

(1)V
T
=

∑

b∈T

�
b
,

(2)BBBqqq = ppp,

1 A linear elastic material is identified by its elastic potential, whereby only the quadratic terms in the 

strain persist. A linear elastic material can be defined in a isotropic, orthotropic or fully anisotropic ver-

sion. Isotropic linear elastic materials are identified by their Poisson’s coefficient and Young’s modulus.
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Just as in Bendsøe (2009), let q+

b
, q−

b
, �b donate the member forces tension, member 

forces compression and stress constraint value �
b
 for both tension and compression, 

respectively, so that designs for which all beams with non-zero beam area have stresses 

at the maximum allowed level Qb (fully stressed designs) occur. Furthermore

applies, so that one can write the problem TTD
p;a

 also as an LP, see problem 

TTDp;b . The equivalence of the problems TTD
p;a

 and TTDp;b is described in Dorn 

(1964), with a discussion on how the force formulations are convenient for studying 

static determinacy of solutions. The objective function of the problem TTDp;b is the 

weight of the truss structure. As reported by Kirsch and Rozvany (1993), a basic 

solution to the problem TTDp;b encompasses the existence of a minimum mass truss 

topology with an amount of beams not exceeding the degrees of freedom. If there 

exists such a basic solution with only non-zero forces (areas), this is a statically 

determined truss; otherwise, the truss will have a unique force field for the given 

load and will be kinematically indeterminate (Bendsøe 2009). Problem TTD
p;a

 can 

be extended to a multiple load LP (TTD
p;c

 , see Table 1) using a set of k = {1,… , s} 

different load cases where the self-weight loads are considered. Thus, the sum

(3)tb =
Lb

Qb

(q+

b
+ q−

b
), with qqq = (q+q+q+ − q−q−q−), q+q+q+,q−q−q−

≥ 0

Table 1  TTD models

Denotation Model

TTD
c

infttt minqqq
1

2

m
∑

b=1

L2

b

Eb

(qb)
2

tb

(5a)

s.t. BBBqqq = ppp (5b)
∑

b∈T

t
b
= V (5c)

t
b
> 0 ∀b ∈ T  (5d)

TTD
p;a minqqq,ttt

m
∑

b=1

tb
(6a)

s.t. BBBqqq = ppp (6b)

−�btb ≤ Lbqb ≤ �btb ∀b ∈ T  (6c)

t
b
≥ 0 ∀b ∈ T  (6d)

TTDp;b minq+q+q+ ,q−q−q−

m
∑

b=1

Lb

�b

(q+
b
+ q−

b
)

(7a)

s.t. BBB(q+q+q+ − q−q−q−) = ppp (7b)

q+
b
≥ 0, q−

b
≥ 0 ∀b ∈ T  (7c)

TTD
p;c minqqqk ,ttt

m
∑

b=1

tb
(8a)

s.t. BBBqkqkqk
= pkpkpk

+

m
∑

b=1

tbgbgbgb

∀k = 1,… , s (8b)

−�btb ≤ Lbqk
b
≤ �btb ∀b ∈ T  (8c)

∀k = 1,… , s

t
b
≥ 0 ∀b ∈ T  (8d)
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with gbgbgb denoting the specific nodal gravitational force vector due to self-weight and 

external loads must be considered, see Eqs. (7b) and (8b).

3.1.2  Kinematic compatibility

The validation and verification method of our artificial topology design process 

is an FEA and therefore we are able to distinguish strictly between rigid-body 

equilibrium of forces calculated via a MILP and a verification of the results via a 

linear-elastic and a non-linear-elastic numerical analysis (FEA) of our parts.

For this reason, in accordance with Bendsøe (2009), it is helpful that the prob-

lems TTD
p;a

 , TTDp;b and TTD
p;c

 are at first problems in plastic design, as the kine-

matic compatibility is ignored and their use in elastic design is justified by the pos-

sibility of finding statically determinate solutions. In addition, the listed problems 

could be solved using sparse, primal-dual interior point LP-methods or the simplex 

algorithm (Bendsøe 2009). We exploit the advantages of both methods. On the one 

hand, we will focus on solving efficiently large-scale TTD problems with practical 

relevance for AM with the help of standard solvers; on the other hand, we will ver-

ify our results via a linear-elastic and non-linear-elastic numerical analysis, which 

is in any case part of an FEA driven product design process (Kurowski 2006).

Kirsch (1989), Kirsch (1993) and Topping (1992) state to be well known, that 

most commonly statically indeterminate solutions result in the case of a multiple 

load plastic design (problem TTD
p;c

 ). If kinematic compatibility is required, a 

further redesign with an FEA becomes necessary in addition to the in any case 

required FEA validation for elastic design. This further redesign to satisfy kin-

ematic compatibility for elastic design leads to high effort/costs, leading to prob-

lem TTD
p;c

 being non-practical.

The problem TTDp;b is adapted since its solution is statically determinate and 

an FEA can be used subsequently for validation only instead of redesigning the 

part. Problem TTDp;b is modified and extended by geometry-based design rules 

for AM, resulting in the MILPs TTDl;p and TTDl;s , see Sects. 4.5 and 4.6.

3.2  Preparations towards a lattice structure design problem as MILP

The MILPs TTDl;p and TTDl;s use the so-called static Timoshenko beam theory 

for constant cross sections, see Fig. 3. We assume a beam to be a structure, which 

has one of its dimensions much larger than the other two dimensions. It follows, 

that the cross sections of a beam do not deform in a significant manner under the 

influence of transverse or axial loads, and therefore the beam is assumed to be 

rigid. Besides, allowing no transverse shearing forces and bending moments, the 

displacement functions depend on the coordinates along the axis of the beam. 

The only allowed loads are external line-, and area-loads modeled as concentrated 

forces acting on nodes. We claim a linear-elastic isotropic material, with the 

given deformation restrictions causing no transverse stresses to occur.

(4)

∑

b∈T

tbgbgbgb,
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3.2.1  Beam

We will consider E
b
 and I

b
 as the Young’s modulus and the area moment of 

inertia of a beam b = {i, j} , respectively. We will denote by �
b
 , L

b
 , A

b
 , G

b
 the 

Timoshenko shear coefficient, the length, the cross section area and the shear 

modulus of a beam b, respectively. The Timoshenko beam theory is equivalent 

to the Euler-Bernoulli beam theory so that the inequality (9) applies. Using the 

Timoshenko beam theory

applies, whereby �
b
 is the beam axis of a beam b = {i, j} . The basis for equation 

(10) is formulated based on Hooke’s law (Rychlewski 1984), which states a linear 

dependency between stress and strain. In reality, the linear part is the elastic part of 

the material property that can be described by the Young’s modulus E
b
 . The shear 

modulus G
b
 (Roylance 2008) is defined as the ratio of shear stress to shear strain. 

The area moment of inertia/second area moment I
b
 (Gibson 2016) is a geometrical 

property of an area which reflects how its points are distributed with regard to an 

arbitrary axis. It is used to determine the deflection and stress caused by a moment 

applied to a beam. Equation (10) forces a homogeneous material and equation 

(11) forces a constant cross section, neglecting manufacturing inaccuracies of AM 

processes.

The Timoshenko shear coefficient �
b
 (Cowper 1966) relates to the Poisson’s ratio 

�
b
 (Lakes 1987), which is the negative of the ratio of signed transverse strain to 

signed axial strain. Concerning these works, we may assume �
b
 to be constant. The 

shear coefficient �
b
 is set to

for a circular cross section A
b
.

The physical assumptions of the Timoshenko beam theory have to be preproc-

essed, see inequality (9) and Eqs. (10) to (12), as they cannot be added explicitly to 

the MILP, which can only contain linear constraints unlike a non-linear program-

ming problem (NLP).2 This is possible since inequality (9) and equations (10) to 

(9)
E

b
I
b

�
b
L

2

b
A

b
G

b

≪ 1,

(10)
�E

b

��
b

=

�G
b

��
b

= 0,

(11)
�A

b

��
b

=

�I
b

��
b

= 0,

(12)�
b
=

6(1 + �
b
)

7 + 6�
b

=
9

10

2 A non-linear programming problem (NLP) exists if the objective function is non-linear or the feasible 

region or both is determined by non-linear constraints.
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(12) only depend on the dimension and material properties of a beam. Therefore, 

dimension and material of a beam are input parameters of our MILPs, see Sects. 4.5 

and 4.6.

3.2.2  Force equilibrium

Let � ∈ ℝ
d and �(�, �) ∈ ℝ

d×d denote the vector of nodal displacements, where d 

is the number of translatoric degrees of freedom of displacements and the stiffness 

matrix, respectively. The vectors of the cross-sectional area A
b
 and area moment of 

inertia I
b
 of a beam b = {i, j} are written as � = (A

b
∣ b ∈ E) and � = (I

b
∣ b ∈ E) . 

The external load is stated as � ∈ ℝ
d . The formulation of the equilibrium equation 

(13), the decomposition into the force-balance equation (14), along with the follow-

ing conclusions refer to Kureta and Kanno (2014). The equilibrium equation

can be decomposed into the force-balance equation written as

and the relations between the generalized stresses and the displacement vector writ-

ten as

here �
b,1, �

b,2, �
b,3 ∈ ℝ (∀b ∈ E) are constant vectors with respect to the local coor-

dinate system of a beam b = {i, j} . Constants k
b,1, k

b,2, k
b,3 ∈ ℝ (∀b ∈ E) are defined 

by

where L0

b
 is the undeformed length of a beam b = {i, j} . Note that the coefficients 

k
b,1, k

b,2, k
b,3 ∈ ℝ are determined by the material selected for a beam, so that we can 

preprocess inequality (9) along with equations (10) to (12) and (16) to (18). In line 

with Kureta and Kanno (2014) it is defined that k
b,2 = 0 if E

b
= G

b
= 0 , see equa-

tion (17).

(13)�(�, �)� = �

(14)
∑

b∈E

3
∑

l=1

s
b,l�b,l = �

(15)s
b,l = k

b,l�
⊤

b,l
�, l = 1, 2, 3; ∀b ∈ E.

(16)k
b,1 =

E
b
A

b

L
0

b

,

(17)k
b,2 =

1

L
b

(

L
2

b

12E
b
I
b

+
1

�
e
G

b
A

b

)−1

,

(18)k
b,3 =

E
b
I
b

L
0

b

,
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By elimination of the displacement vector s
b,i

 , equations (14) and (15) revert to 

equation (13). The decomposition into the force-balance equation (14) is a funda-

mental concept of our MILPs since we want to specify the equilibrium of forces as 

a hard constraint and the cost per beam type as a soft constraint, resulting from the 

preprocessed beam volume and material specification. A hard constraint is selected 

as a constraint for the variables that are required to be satisfied. By implication a 

soft constraint is a constraint that is allowed to be violated. The force-balance equa-

tion (14) can be used in combination with a binary variable xi,j to indicate whether 

a beam is present between nodes i, j ∈ V  , see (24b) to (24d) and (24g). The binary 

variable xi,j is used to implement further geometry-based construction and design 

standards (VDI 2019, 2015; ISO 2013), see Sect. 3.4.

3.2.3  Moment equilibrium

Let m
k
 and m

l
 denote two moments in Newton metre acting centrically at two adja-

cent nodes, where k, l ∈ V  . The lever arms of the moments m
k
 and m

l
 are positioned 

in relation to the global coordinate system FG
WPx,y,z

 of the reference volume �  , as 

described in Sect. 3.3 and shown in Figs. 2 and 3. Let T = {0, 1,… , n} denote a set 

of different beam types t and Fi,j the force vector in Newton between the directly 

adjacent nodes i ∈ V  and j ∈ V .

As stated in inequality (19), we assume a linear elastic strains plastic behavior, 

with the plastic section modulus Z
b
= ∞ of a beam b = {i, j} . The stress ct,i,j of a 

beam b of type t in Pascal is stated as

The upper bound of the stress ct,i,j , affected by the safety factor � ∈]1,+∞[ , is given 

by the equation

(19)|Fi,j|

Ab

+

≈0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

max{|mk|, |ml|}

Zb

≤ ct,i,j .

Fig. 2  Division of the design space
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3.3  Design space

3.3.1  Manufacturing constraints

As can be seen in Fig. 2, a in relation to the front side of the AM system upwardly 

directed construction is postulated. The build origin (0, 0, 0) is placed on the origin 

of the machine coordinate system and thus coincides with the origin of the assembly 

space � . The build direction z coincides with the positive y-direction of each coor-

dinate system. The build surface is located on the x, z-plane and corresponds to the 

spanned plane of the assembly space � on the x, z-plane. It is assumed that the build 

platform of the AM system is sufficiently dimensioned and the feed region and over-

flow region allow the planned reference volume �  . The build platform of the AM 

system is located in the negative y-direction.

The layer thickness is known as constant, fully dense and near net shape, so that 

the accuracy is assumed as sufficient. The preprocessing of the upper bound of stress 

ct,i,j is therefore realistic, see cases (21). According to ISO (2013), the right-hand 

rule for positive rotations, in relation to the origin of the reference volume �  , is 

applied. All dimensions between the three bounding boxes are known. The assembly 

space � , also known as master bounding box, is determined by the used AM system 

and is therefore independent of the part orientation. The initial build orientation is 

assumed to be as shown in Fig.  2. A part reorientation is permissible so that no 

restrictions arise at part nesting (Canellidis et al. 2013). The reference volume �  can 

change as a result of a part reorientation, so we assume the reference volume �  to be 

(20)ct,i,j =

ct,i,j

�
.

Fig. 3  Beam Bt̃,i,j and related local coordinate systems FWPx̌,y̌,ž
 and FWPx̂,ŷ,ẑ
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an arbitrary oriented bounding box. Figure 2 illustrates the difference between the 

reference volume �  and the GS � , although that in some cases � ≡ �  may occur.

3.3.2  Assembly space

Since AM is a layered manufacturing process, the build orientation of a part towards 

the assembly space has a significant impact on the part quality (e.g., accuracy and 

surface finish) and costs. Also, the support structure depending on the support con-

tact area and the build time are affected. In order to be able to define the direction 

of our part towards the assembly space, we need to make some assumptions. The 

terminology is derived from ISO (2017).

Let � be the assembly space of an AM system, represented by a polyhedron as 

an open subset of ℝ3 . Let � ⊂ � be the reference volume to be replaced by a lat-

tice structure. The classification of the assembly space � enables us to distinguish 

between internal and external support structures. Any type of support structure 

within �  is defined as an internal support structure. A support structure outside of 

�  , but forced to be connected to the load-bearing structure, is defined as an external 

support structure. Besides, the classification of the assembly space � is done for 

minimization of �  , in order to save computing effort and to optimize the utilization 

of the assembly space � . The classification is the formal basis for part decomposi-

tion, in detail orientation decisions for single- and multi-parts and packing prob-

lems, see Oh et al. (2018).

3.3.3  Ground structure

Following our aim to develop MILPs, which can be applied to large-scale TTD for 

AM in consideration of geometry-based design rules, we focus on a GS with low 

complexity. Therefore, only directly adjacent nodes as possible beam connections 

Fig. 4  Illustration of the ground structure method
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are considered. The angles ri,j,x, ri,j,y, ri,j,z between two possible beams in the primary 

planes of a local coordinate system FWPx,y,z
 are fixed to 45◦ , see Fig. 3 and Table 2. 

Consequently, the GS in Fig.  4 is not the set of all possible connection nodes. 

According to Bendsøe (2009), this approach may obviously lead to designs that are 

not the best ones for the chosen set of connection nodes, but the approach implicitly 

allows for restrictions on the possible spectrum of beam lengths as well as for the 

study of the optimal subset of beams of a given truss layout. In consideration of our 

assumptions, three beam lengths arise, which is the minimum for a three-dimen-

sional lattice structure with diagonal and bracing beams. Different GSs can be set up 

by adjusting the angles ri,j,x, ri,j,y, ri,j,z . Recesses can be created by setting xi,j = 0 for 

the desired volume.

The GS is rotated around one axis of the global coordinate system FG
WPx,y,z

 , if a 

force component in any direction in space Qi,x, Qi,y, Qi,z ∈ ℝ
+
 , resulting from a 

applied concentrated force Qi at a node i ∈ V  , is introduced. A local coordinate sys-

tem FWPx,y,z
 is introduced centrically on that node and the node is considered as a 

force application point. The local coordinate system FWPx,y,z
 is a parallel shift with 

respect to the axes of the global coordinate system FG
WPx,y,z

 and is used for preprocess-

ing the three force components F�

i,j
= Fi,jri,j,� , � ∈ {x, y, z} , see (24b) to (24d). A 

modeling of the angular relationships between the force components Fx
i,j

, F
y

i,j
, Fz

i,j
 and 

the global coordinate system FG
WPx,y,z

 is avoided. Any force distribution angle can be 

preprocessed.

3.4  Support structure optimization

AM is divided into seven groups: vat photopolymerization, material jetting, binder 

jetting, powder bed fusion, material extrusion, directed energy deposition and sheet 

lamination (ISO 2017). As we focus on the optimization of lattice structures for AM, 

a description of the individual AM processes is not given, see Wong and Hernandez 

(2012) for a brief review of AM.

According to Jiang et  al. (2018), the reason for using support structures is to 

ensure printability in the manufacturing process, since a three-dimensional model 

with overhanging, hole or edge features will need support structures for success-

ful manufacturing as printed materials will not be able to stand in position through 

layer-wise fabrication and the associated stair-stepping effect (Quan et al. 2015).

The main support methods for AM processes are honeycomb support, sparse 

tree support, tree-like support, space-efficient branching support, bridge support 

and grain support (Jiang et al. 2018). In addition to the physical necessity for sup-

port structures, depending on the AM process and the part geometry, the support 

structures increase material consumption, manufacturing costs and post-processing 

effort. Post-processing can have a negative impact on the part quality or even pre-

vent manufacturability and should be minimized or excluded.

Using support structures, a toolless and post-processing free manufacturing is not 

possible. An optimization of the support structures would lead to a reduction in the 

material consumption during the production process and a significant reduction of 
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the time and effort required during post-processing (Lindecke et al. 2018). The inter-

nal and external support structure is defined by the GS � . Therefore, the GS needs to 

be extended by the volume defining the possible external support structure.

Removability has to be considered, especially for an internal support structure. 

If the internal support structure is irremovable because of no direct access to the 

support structure, which likely occur for lattice structures manufactured with AM, 

the support structure has to be considered in the part design and validation as force-

bearing. Also, a self-printability requirement is necessary, as the support structure 

itself should not require a support structure (Jiang et al. 2018). In line with Lange-

laar (2016), existing TO approaches do not consider AM-specific limitations during 

the design process, resulting in designs that are not self-supporting.

The main categories of methods minimizing the need for support structures for 

AM can be divided into two subgroups; either the original part is kept intact or the 

original part is redesigned, see Fig.  5. We extend the main categories of support 

structure methods for AM by a global optimization in terms of a support-free part, 

see Sect. 4.6.

Research in the field of support structures for AM has primarily focused on 

reducing the print time, characterization and optimization of the support materials 

used and post-processing (Jiang et al. 2018).

Vaidya and Anand (2016) presented a new approach for minimizing sup-

port structures in conjunction with Dijkstra’s shortest path algorithm to gener-

ate optimized support structures. They subsequently used a numerical model to 

proof that the optimized support can withstand the planned load case. Vanek 

et al. (2014) proposed a tree-like support structure generation method for Fused 

Deposition Modeling (FDM) which can reduce manufacturing time and costs. 

Fig. 5  Main categories of support structure methods for AM, based on Jiang et al. (2018)
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As in the previous method, a numerical analysis is necessary because the method 

is geometry-based and considers the angle and length of the support structure. 

The geometry-based optimization and the numerical verification of the stability 

are strictly separated.

Our DfAM methodology depends on part design and manufacturability and 

it does not require a numerical model to proof that the optimized support can 

withstand the planned load case. Any feasible solution is manufacturable and 

implies no post-processing effort if support is impermissible. We consider the 

support structure as a subset of the load-bearing lattice structure and optimize 

both structures in a single task.

3.5  Algorithm driven product design process

The established application of using the FEA as a design tool, see Fig. 6, is to 

change the design process from iterative cycles of “design, prototype, test” (tra-

ditional product design process) into a streamlined process (FEA driven prod-

uct design process) where prototypes are used only for final design verification. 

With the use of FEA, design iterations are moved from physical space of proto-

typing and testing into virtual space of computer based simulations (Kurowski 

2006). The goal is to establish a safe and cost-effective product design process.

We extend this FEA driven product design process by a preliminary design 

determined by our mathematically and algorithmically driven artificial topol-

ogy design process, see Fig.  6. Mathematical optimization and FEA (simula-

tion) is used concurrently within the design process, whereby mathematical 

optimization is used first for topology and shape optimization and FEA only for 

validation.

Fig. 6  Traditional, FEA and algorithm driven product design process
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Table 2  Decision variables, parameters and sets

Symbol Definition

Decision variables

Fi,j ∈ ℝ Axial force between nodes i ∈ V  and j ∈ V

Ri,x, Ri,y, Ri,z ∈ ℝ Bearing reaction force component in the x, y or z direction in space 

concerning the local coordinate system FWPx,y,z
 inserted centrically at 

node i ∈ V

xi,j ∈ {0, 1} Binary variable indicating whether a beam is present between nodes 

i ∈ V  and j ∈ V

yi ∈ {0, 1} Binary variable indicating the minimal and maximal amount of beams at 

node i ∈ V  to comply with the design rules for inclined and support-

free cylinders

Bt,i,j ∈ {0, 1} Binary variable indicating whether a beam of type t ∈ T  is present 

between nodes i ∈ V  and j ∈ V

Z
i
∈ {0, 1} Binary variable indicating whether at least one support structure con-

straint is satisfied at node i ∈ V

�
o

i
∈ {0, 1} Binary variable identifying all cases that require an additional beam to 

comply with the design rules for inclined and support-free cylinders at 

node i ∈ V

Parameters

ct,i,j ∈ ℝ
+

Capacity of a possible beam of type t ∈ T  present between nodes i ∈ V  

and j ∈ V

M ∈ ℝ
+

Big M—maximum capacity of the most robust beam type

cost
t
∈ ℝ

+
Cost of beam type t ∈ T

Qi,x, Qi,y, Qi,z ∈ ℝ Force component in the x, y or z direction in space of the external con-

centrated load Qi at node i ∈ V

Li,x, Li,y ∈ ℕ Level number measured from the reference node i = 1 in the direction in 

space x or y

x, y, z ∈ ℕ Length, width and height of the reference volume �  stated as the number 

of connection nodes in each direction in space

ri,j,x, ri,j,y, ri,j,z ∈ {0,
1
√

2
, 1} The angles between two possible beams in the primary planes x, y or z of 

a local coordinate system FWPx,y,z
 , caused by a beam structure between 

adjacent nodes i ∈ V  and j ∈ V

Sets

NB(i) ⊆ V Neighboring nodes of i

NBx(i), NBy(i), NBz(i) ⊆ NB(i) Neighboring nodes of i which have a force component in the x, y or z 

direction in space

NB
�(i) ⊆ NB(i) Neighboring nodes of i which can require an additional beam to comply 

with the design rules for inclined and support-free cylinders

B ⊆ V Nodes acting as bearings

V = {1,… , xyz} Connection nodes of the used GS representing the reference volume �

T = {0, 1,… , n} Different beam types

O = {0, 1,… , m} Different orientations (rigid body in three dimensions)

A2 = {0, 1,… , 8} Possible beams at a node within a two-dimensional reference volume 

� ⊆ ℝ
2

+

A3 = {0, 1,… , 26} Possible beams at a node within a three-dimensional reference volume 

� ⊆ ℝ
3

+
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4  Mixed integer programming for truss topology design

Section 4 is divided into six subsections. Section 4.1 presents preliminary work 

for our MILP models. Besides Sect. 4.2 illustrates how due to the implementation 

of geometry-based design rules the problem naturally becomes a MILP which is 

suspected to be NP-hard. Preprocessing is explained in Sect. 4.3. Necessary deci-

sion variables, parameters and sets are defined in Sect. 4.4. Building on the pre-

vious three sections, a MILP specifying lattice structures for powder-based AM 

processes (TTDl;p ) and a MILP defining support-free lattice structures for AM 

processes (TTDl;s ) are presented in Sects. 4.5 and 4.6.

4.1  Preliminaries

The following assumptions refer to the MILPs TTDl;p and TTDl;s . Characteristics 

of AM are tool-less manufacturing, the elimination of geometric restrictions in 

general and the paradigm shift from production-ready to function-oriented design 

(Hague et al. 2003; Langelaar 2016). The tool-less production is given a priori by 

the AM process, whereby we serve the other two characteristics with our MILPs 

TTDl;p and TTDl;s . On the one hand, the function-oriented design is obtained by 

the objective function of the MILPs; on the other hand, the elimination of geo-

metric restrictions is obtained by variable beam lengths based on the GS, along 

with the possibility of different beam cross sections and diameters, see Sect. 3.2. 

The fundamental phenomena of AM “complexity for free” is to be fully exploited 

by the objective function, to achieve a holistic design approach and overcome 

conventional manufacturing constraints, see Jared et al. (2017).

Using AM for lattice structures, no standardized shaped parts and connections, 

as well as associated costs, are necessary. For this reason, assembly costs are not 

taken into account in the MILPs TTDl;p and TTDl;s , as a connection node only 

consists of an accumulation of cured material. If our MILPs are formulated for 

a classical construction application, the influence of standard fasteners and time 

differences during the assembly can be considered by additional constraints.

A formulation of the equilibrium of forces as a soft constraint and cost per 

beam type as a hard constraint is not practicable for our MILPs. Due to the 

assumptions of Sect.  3.2 the potential energy stored in all beams, given by the 

mechanical compliance, would be a soft constraint. We avoid a formulation of the 

mechanical compliance, since we distinguish strictly between rigid-body equilib-

rium of forces calculated via a MILP and a verification of the results via linear-

elastic and non-linear-elastic numerical analysis of our parts.

We set up the MILPs TTDl;p and TTDl;s in terms of beam forces for single load, 

plastic design. Both MILPs are stated as a minimum weight design problem, for 

all trusses that satisfy static equilibrium within certain constraints on the stresses 

in the individual beams. The same stress constraint value is valid for both, tension 

and compression.



869

1 3

Bridging mixed integer linear programming for truss topology…

4.2  LP versus MILP

Clearly, if all binary variables and the corresponding constraints in TTDl;p or TTDl;s 

are omitted, the result is one of the LPs TTD
c
 , TTD

p;a
 , TTDp;b , TTD

p;c
 , of Table 1, 

see Sects. 4.5 and 4.6. By omitting the binary variable xi,j , it is no longer possible to 

model geometry-based design rules depending on the AM process. Furthermore, it is 

no longer possible to use preprocessed beam diameters and materials, so that multi-

material lattice structures could be realized.

To implement geometry-based design rules the problem naturally becomes a MILP 

and we suspect it to be NP-hard. We see no other opportunity than to introduce the 

binary variable xi,j indicating whether a beam is present between two adjacent nodes 

i ∈ V and j ∈ V and force Fi,j to the target function, see constraints (24a) and (24k).

4.3  Preprocessing

According to equation (20) the safety factor � modifies the upper bound of the capacity 

ct,i,j of a beam {i, j} of type t. The force components in every direction in space 

Qi,x, Qi,y, Qi,z ∈ ℝ
+
 , resulting from a applied concentrated force Qi at a node i ∈ V are 

decomposed, as described in Sect. 3.2.2. The angles between two possible beams in the 

primary planes of the local coordinate system FWPx,y,z
 are fixed to 45◦ , so that 

ri,j,x, ri,j,y, ri,j,z ∈ {0,
1
√

2
, 1} , the GS and the critical upskin and downskin angle 

�
cr
= �

cr
= 45◦ , as described in Sect. 4.6.2, applies. It is ensured that L0

b
= N(t(b)) ⋅ � 

is fulfilled, whereat N(t(b)) is the number of layers needed for a beam b of type t manu-

factured with the layer thickness � . The undeformed length of a beam L0

b
 is a multiple 

of the layer thickness � , which reduces production inaccuracies.

Concerning the preparations towards a lattice structure design problem as MILP, see 

Sect. 3.2, the costs of a beam of type tcost
t
∈ ℝ

+
 are preprocessed and proportional to 

the volume and material consumed. Moreover, the different capacities ct,i,j ∈ ℝ
+
 of a 

beam type t are preprocessed, see cases (21). Let ct,i,j ∈ ℝ
+
 be the preprocessed upper 

bound of the stress of a beam type t between the nodes i ∈ V and j ∈ V with the asso-

ciated material constitution M
t
= (�

t
, L

t
, A

t
, E

t
, G

t
, I

t
) and dimension D

t
= (A

t
, L

t
) . We 

define Ft,i,j ∈ ℝ , to be the preprocessed upper bound of the axial force Ft,i,j between 

the nodes i, j ∈ V depending on the beam b of type t. The set U ⊆ E is defined as the 

set of void beams. The following generic cases - to clarify the preprocessing - are 

differentiated:

Furthermore, constraints (22) and (23) determine the positions Li,x, Li,y of a node 

i ∈ V  . The positions Li,x, Li,y are measured from the global coordinate system FG
WPx,y,z

 

( L1,x = L1,y = 0 ) aligned with the axis x, y, z of the directions in space. We define 

the length width and height of the reference volume �  stated as the number of con-

nection nodes in each direction in space to be x, y, z ∈ ℕ . The positions Li,x, Li,y are 

(21)ct,i,j =

{

Ft,i,j, {i, j} ∈ E ⧵ U

0, {i, j} ∈ U



870 C. Reintjes, U. Lorenz 

1 3

used to determine the lever arms of the global statical area moment, see constraints 

(24e) and (24f).

4.4  Instance parameter

The input parameter of both MILPs are the load case ( Qi, i ∈ V ). The sizing of the 

assembly space � is determined by the parameters x, y, z ∈ ℕ , which are the length, 

width and height of the assembly space � , stated as the number of connection nodes in 

each direction in space. A set of connection nodes V = {1,… , xyz} results. Taking into 

account the undeformed length of a beam L0

b
 and the binary variable Bt,i,j indicating if a 

beam b of type t is present at {i, j} ∈ E , the dimensions of the reference volume � are 

given by Bt,i,j and x, y, z ∈ ℕ.

A set of different beam types T = {0, 1,… , n} and a set of nodes V acting as bear-

ings B ⊆ V is determined. The position of a bearing in the reference volume � corre-

sponds to the indexing of the node i. The maximum permissible load corresponds to 

the maximum permissible load of the bearing for a static load case. Analogous to the 

external forces Qi , see cases (21), the bearing reaction forces R
i
 are decomposed into 

the force components Ri,x, Ri,y, Ri,z with respect to the local coordinate system FWPx,y,z
 

and inserted centrically at a node.

4.5  Our mixed integer program for powder‑based AM

(22)Li,x = (i mod (xz − 1)) mod x ∀i ∈ V

(23)Li,y =

⌊

i − 1

xz

⌋

∀i ∈ V

(24a)
(TTDl;p) ∶ min

∑

i∈V

∑

j∈V

∑

t∈T

Bt,i,jcostt

(24b)
s.t.

∑

j ∈ NBx(i)

Fx
i,j
+ Qi,x + Ri,x = 0 ∀i ∈ V

(24c)

∑

j ∈ NBy(i)

F
y

i,j
+ Qi,y + Ri,y = 0 ∀i ∈ V

(24d)

∑

j ∈ NBz(i)

Fz

i,j
+ Qi,z + Ri,z = 0 ∀i ∈ V
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The objective function of the MILP TTDl;p (24a) is to create a statically deter-

mined lattice structure, which is minimal in terms of costs under the influence 

of external forces. The minimization of costs in the target function represents a 

minimization of the required construction volume and material, since these sizes 

are decisive for the costs.

Constraints (24b) to (24d) determine a force equilibrium at every node i ∈ V  

between the decomposed external forces Qi,x, Qi,y, Qi,z and the active forces Fi,j of 

the beams mounted at a node i, following the decomposed force-balance equation 

(14). Each node i ∈ V  is possible to be connected to a set of adjacent nodes 

NBx(i), NBy(i), NBz(i) ⊆ NB(i) which have a force component in the x, y or z direc-

tion in space. The decomposition of the forces Fi,j in the directions in space x, y 

and z is obtained by applying the appropriate trigonometric values ( ri,j,x, ri,j,y, ri,j,z ) 

in relation to the local coordinate system FWPx,y,z
 of the node i.

(24e)

∑

i ∈ V

Qi,z ≠ 0

Qi,z(Li,y − Lj,y)

+
∑

k∈B

Rk,z(Lk,y − Lj,y) = 0 ∀j ∈ B

(24f)

∑

i ∈ V

Qi,z ≠ 0

Qi,z(Li,x − Lj,x)

+
∑

k∈B

Rk,z(Lk,x − Lj,x) = 0 ∀j ∈ B

(24g)Fi,j ≤ Mxi,j ∀i, j ∈ V

(24h)Fi,j = −Fj,i ∀i, j ∈ V

(24i)Fi,j ≤

∑

t∈T

ct,i,jBt,i,j ∀i, j ∈ V

(24j)Bt,i,j = Bt,j,i ∀i, j ∈ V , t ∈ T

(24k)

∑

t∈T

Bt,i,j = xi,j ∀i, j ∈ V

(24l)Ri,z = 0 ∀i ∈ V ⧵ B

(24m)xi,j, Bt,i,j ∈ {0, 1} ∀i, j ∈ V , t ∈ T
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Constraints (24e) and (24f) define a global statical area moment which results 

from the decomposed external forces Qi,x, Qi,y, Qi,z and the decomposed bear-

ing reaction forces Ri,x, Ri,y, Ri,z , following the assumptions of equation (19) that 

we assume a linear elastic strains plastic behavior, with the plastic section modu-

lus Z
b
= ∞ of a beam b = {i, j} . Only vertical forces are exerted. Thus, only two 

moment equilibrium constraints are needed and Ri,x = Ri,y = 0 ∀i ∈ V  applies. 

Along with constraints (24e) and (24f) the external and internal statical determinacy 

is ensured.

Constraint (24g) ensures that only applied beams ( Bt,i,j = xi,j = 1 ) can experi-

ence active forces. Constraint (24h) represents the force equilibrium of the adjacent 

nodes i ∈ V  and j ∈ V  connected with one beam indicated by Bt,i,j = 1 . Constraint 

(24i) limits the active force Fi,j in the beam Bt,i,j concerning the capacity ct,i,j ∈ ℝ
+
 , 

whereas constraint (24k) guarantees that a specific beam b of type t is selected if a 

beam Bt,i,j is used. Combining constraints (24j) and (24k) we get xi,j = xj,i ∀i, j ∈ V  

which demand a used beam to withstand tension and compression, which in combi-

nation with (24h) corresponds to Newton’s third law of motion. Finally constraint 

(24l) sets the bearing reaction forces of non-bearing nodes to zero. Any node can be 

defined as a bearing.

4.6  Our mixed integer program for support‑free lattice structures

Design options to ensure manufacturability for self-supporting cylindrical parts, 

with different geometric characteristics, are presented. Numerical key figures are 

defined and can be used to engineer support-free parts and ensure manufacturability. 

The geometric characteristics are taken from the standard VDI (2019) and the termi-

nology is derived from ISO (2017).

4.6.1  Preparations in order to get optimization‑friendly design constraints 

for support‑free lattice structures

Sectional shape  A varying sectional shape of a cylindrical part is unbounded, as 

the quality of a metallurgically-bonded connection is independent of the sectional 

shape. The transition angle � is also unbounded. Due to different mass accumula-

tions, a varying sectional shape can influence the dimensional accuracy.

Minimal horizontal manufactured self-supporting cylinder  In the case of a minimal 

horizontal manufactured self-supporting cylinder, dimensional deviations due to the 

stair-step effect have to be taken into account. For this reason, the layer thickness � is 

decisive for designing a horizontal self-supporting cylinder.

Minimal vertical manufactured self-supporting cylinder  In the case of a minimal 

vertical manufactured self-supporting cylinder the contour path including filling has 

to be ensured so that the track width is decisive. Let D, D
h
 , D

v
 be the outer diam-

eter of a self-supporting cylinder independent of the part orientation and dependent 
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of the horizontal/vertical orientation, respectively. For a minimum horizontal man-

ufactured self-supporting cylinder, the outer diameter D
h
 is set to the value range 

D
h
≫ 2� and D

h
≥ 4.0 mm . For a minimum vertical manufactured self-supporting 

cylinder D
v
≥ 4.0 mm is defined.

Overhang  b
o
 A self-supporting overhang b

o
 specifies the overhang of a part to the 

build platform. A maximum self-supporting overhang b
o
 must not be exceeded, other 

than that a support structure is necessary. The maximum width of the self-support-

ing overhang b
o
 indicates the extent to which no support structure is needed without 

manufacturing faults occurring. The value for a maximum self-supporting overhang 

is b
o
≤ 1.6 mm . In the case of unknown boundaries for the maximum width of the 

self-supporting overhang b
o
 , it is recommended to comply with b

o
≤ 2.5 mm.

Minimum gap size  The minimum gap size describes the required gap width bg for 

immovable parts as a function of the surrounding cured material. It is imperative to 

exclude merging of the adjacent layers. The minimum vertical gap is set to 

b
g,v

≥ 0.2 mm and the minimum horizontal gap to b
g,h

≥ 0.3 mm . It is recommended 

to arrange a gap as vertically as possible in order to avoid support structures since 

the stair-step effect is insignificant for vertical part orientation.

Upskin and downskin area  � and  � A upskin area � is a (sub-)area whose normal 

vector in relation to the build direction z is positive, see Fig. 7. Similarly, a down-

skin area � is a (sub-)area whose normal vector in relation to the build direction z is 

negative. The length of a cylindrical beam is defined as l.

Upskin and downskin angle  � and  � A upskin angle � is an angle between the build 

platform plane and a upskin area � whose value lies between 0◦ and 90
◦ . A down-

skin angle � is an angle between the build platform plane and a downskin area � 

whose value lies between 0◦ (parallel to the build platform) and 90
◦ (perpendicular 

to the build platform), see Fig. 7. If a perpendicular normal vector exists in relation 

to the build direction Z ( � = � = 90
◦ ), the upskin area � and downskin area � are 

identical. Both areas coincide with the positive construction direction Z and no sup-

port structure is needed.

Fig. 7  Downskin- and upskin angle � and � according to standard VDI (2019)
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Minimum angle of inclined self-supporting cylinders  The minimum angle of 

inclined self-supporting cylinders is limited by the downskin angle � , not by the 

upskin angle � (VDI 2015). Inclined cylinders can be manufactured without a sup-

port structure as long as the critical downskin angle �
cr
= 45◦ is not undershot. 

Depending on the downskin angle � , the manufactured self-supporting cylinder can 

deform during manufacturing from a certain ratio of overhang/beam length l = L
0

b
 of 

a cylinder to the outer diameter D if no support structure is provided. Manufacturing 

faults may occur. The permissible L0

b
∕D ratio depends on �.

4.6.2  Implementation of design constraints for support‑free lattice structures

Figure  8 shows a definition by cases for supporting a cylinder depending on the 

length l = L
0

b
 , diameter D, downskin angle � and the use of support structures. The 

case distinction is implemented in the MILPs TTDl;p and TTDl;s by equation (25) 

and (26). Due to the fitted GS, �
cr
= �

cr
= 45◦ applies implicitly. It is not neces-

sary to differentiate between the critical downskin angle �
cr

 and the critical upskin 

angle �
cr

 of a support-free cylinder. A part not taking the in Sect. 4.6.1 mentioned 

design constraints for support-free cylinders into account is classified as not ready 

for manufacturing.

We assume a part to be connected directly to the build platform without an exter-

nal support structure. We define a maximum length l = L
0

b
 of a cylindrical beam 

depending on the AM process so that the curl effect (VDI 2015) is excluded. A mod-

ification of internal holes to avoid support structures (Thomas 2009) is unnecessary, 

since the predefined GS applies and thus all internal holes/free spaces are known. 

Even though a varying sectional shape of a cylindrical part is unbounded, we assume 

D
h
= D

v
≥ 4.0 mm to minimize dimensional accuracy and fulfill the design options 

for a minimum horizontal and vertical manufactured self-supporting cylinder. A 

change in the cross-sectional area is fixed to a transition angle of � = 90
◦ , so that 

only vertical transitions between cylindrical parts are possible, independent of the 

part orientation. The value for a maximum self-supporting overhang is set to 

b
o
= 1.6 mm . We fix the minimum horizontal and vertical gap size to 

b
g,h

, b
g,v

≥ 0.3 mm.

Fig. 8  a Cylinder with any downskin angle � and adverse L0

b
∕D ratio. Suitable by the support structure, 

but not optimal in terms of material consumption and post-processing. b Cylinder suitable for material 

extrusion AM with minimal manufacturable downskin angle � = �
cr
= 45◦ and admissible L0

b
∕D ratio. c 

Cylinder not suitable for material extrusion AM with � ≥ �
cr

 and too big L0

b
∕D ratio. According to stand-

ard VDI (2015)
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The build direction z is assumed to be positive with increasing node indexing, so 

that a distinction between upskin and downskin areas � resp. � , upskin and down-

skin angles � resp. � , is possible. By fixing the critical upskin and downskin angle 

to �
cr
= �

cr
= 45◦ via the GS and introducing a permissible length l to diameter D 

ratio of a cylinder, the following two cases as implementation of the standards VDI 

(2019) and VDI (2015)

follow. A set of cylinders with identical beam axes is considered a single cylinder. 

Constraint (25) identifies a cylinder manufactured angled at 45◦ in relation to the 

local coordinate system FWPx,y,z
 of a node. Analogous to that, constraint (26) identi-

fies a cylinder manufactured angled at 90
◦ in relation to the local coordinate system 

FWPx,y,z
 of a node. Constraints (25) and (26) restrict any combination of single or 

multiple cylinders with identical beam axes set in the GS. We can now state the 

model TTDl;s for k = {2, 3} : 

The objective function of the MILP TTDl;s (27a) is to create a statically deter-

mined, load-bearing and support-free lattice structure, which is minimal in terms 

of costs. The minimization of costs in the target function represents a minimiza-

tion of the required construction volume and material following the MILP TTDl;p . 

(25)�
cr
= �

cr
= 45

◦ ∶ L
0

b
∕D ≤ 5

(26)� = � = 90
◦ ∶ L

0

b
∕D ≤ 10

(27a)
(TTDl;s) ∶ min

∑

i∈V

∑

j∈V

∑

t∈T

Bt,i,jcostt

(27b)

s.t. {(24b) − (24k)}

2�
o
i
≤

∑

j∈NB�(i)

xi,j ≤ �
o
i
+ 1 ∀i, j ∈ V , o ∈ O

(27c)

∑

j∈NB(i)

xi,j ≥ 3Zi ∀i ∈ V

(27d)
min(Ak)yi ≤

∑

j∈NB(i)

xi,j ≤ max(Ak)yi ∀i, j ∈ V

(27e)

∑

o∈O

�
o

i
≤

1

2
max(A

k
)Z

i
∀i ∈ V

(27f)Ri,z = 0 ∀i ∈ V ⧵ B

(27g)xi,j, yi,�
o
i
, Zi, Bt,i,j ∈ {0, 1} ∀i, j ∈ V , t ∈ T , o ∈ O
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For this reason, the constraints (27b) to (27e) present a geometry-based modeling, 

affecting the force equilibrium constraints (24b) to (24d) and the moment equilib-

rium constraints (24e) and (24f). The force and moment equilibrium constraints 

are bounded by (24g) to (24i).

Constraints (25) and (26) apply due to the implementation of constraints (27b) 

to (27g). Let O denote the set of beam combinations between two adjacent nodes 

that are excluded in the MILP TTDl;s in opposition to TTDl;p to realize a support-

free lattice structure.

Constraints (27b) and (27e) identify the combination possibilities of beams 

between adjacent nodes NB
�(i) that would not comply with the design rules of VDI 

(2019) and VDI (2015). Constraint (27b) checks all adjacent nodes NB
�(i) , which 

can require an additional beam to comply with the design rules for support-free lat-

tice structures. All cases that require an additional beam to comply with the design 

rules are identified by the binary variable �o

i
 in constraint (27b). Associated in con-

straint (27e), the binary variable Z
i
 indicates whether at least one additional beam is 

needed.

Constraint (27c) forces the model to add at least one beam between two adja-

cent nodes identified as critical in constraint (27b) and (27e). Constraint (27d) forces 

the model to set the binary variables xi,j and yi , which corresponds to the construc-

tion of an additional beam to comply with the design rules for support-free lattice 

structures.

5  CAD tool

Current design methods and CAD tools are not tailored for the shape of additive 

manufactured lightweight lattice structures and are not yet optimized to achieve the 

great potential offered by AM (Rosen 2013). The innovation in the AM technology 

is not yet followed by an adaption in design and CAD software and tools (Azman 

et al. 2014).

Furthermore, the complexity of lattice structures causes the design process in 

CAD to be computationally inefficient (Rosen 2007). Most commercially available 

CAD software uses a Boundary Representation (BREP) system and is adjusted for 

conventional instead of additive manufacturing processes (Azman et al. 2014). The 

use of exact BREP geometries enables the repair and preparation of 3D geometries 

including all manufacturing data, but is computationally expensive. An early trian-

gulation, i.e., converting the three-dimensional geometry into a Standard Triangle 

Language (STL) file, would reduce the need for computing capacity but a manipu-

lation of the geometry is no longer possible without affecting the final part. There-

fore, an early triangulation to save computing effort is impractical for our algorithm 

driven product design process. The CAD model should remain based on the original 

geometry description, e.g., a neutral data exchange format like STEP (ISO 10303), 

until Computer Aided Manufacturing (CAM).

For all these reasons, the generation of any kind of complex structures for AM 

is limited. It is necessary to develop tools (Add-Ins) for standard CAD software 
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tailored for complex additive manufactured parts, in our application for additive 

manufactured lattice structures.

We developed a 3D-CAD tool, which is part of our DfAM methodology to real-

ize an algorithm driven product design process. The 3D-CAD tool is implemented 

in the CAD software Autodesk Inventor Professional 2020 (Autodesk 2019). It is a 

bi-directional data integration between the state-of-the-art mathematical solvers and 

a CAD software and is used for the generation of lattice structures. The 3D-CAD 

tool described links the solution file of CPLEX to Autodesk Inventor Professional 

2020. CAD-based design encodings of the instance data and the lattice structure are 

again directed to CPLEX. With our 3D-CAD tool, we provide the performance of 

state-of-the-art mathematical solvers to design and manufacturing experts which 

focus on lattice structures.

Our tool takes full advantage of the geometrical freedom of additive manufac-

turing by constructing each element of a lattice structure individually. It is possi-

ble to construct any type of lattice structure. The 3D-CAD tool can be used as a 

stand-alone software, independent of the algorithm driven product design process. A 

Finite Element Method (FEM) software directly adopts the CAD data and computes 

(on request) a linear-elastic and non-linear-elastic numerical FEA. The derivation of 

the high compressed 3D geometries (e.g., STL, AMF) and CAM data (e.g., machine 

setting, toolpath generation) is done based on the generated CAD design data.

5.1  Construction methodology

We concentrate on a construction methodology to model any lattice structure. The 

established approach to model an elementary structure that is multiplied in the spa-

tial directions in space is insufficient for this purpose. On the one hand, the approach 

is not able to model any lattice structure (e.g., unstructured lattice structures); on 

the other hand, the approach depends strongly on the complexity of the elementary 

structure (Azman et al. 2014).

Our approach is to decompose the elementary structure into its individual parts 

and model each part from scratch. Figure 9 shows the modeling of one part. A plane 

is defined on a connection node and a profile is created. Furthermore, the profile is 

extruded to form a beam with a circular and constant cross-section.

Fig. 9  Construction of a beam with a circular and constant cross-section
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Any lattice structure can be modeled with our construction methodology and 

the performance is dependent on the amount of parts but independent of the 

(geometric) complexity of the elementary structure, due to the individual con-

struction of each part. In our application the individual parts are solid round 

beams with a constant cross-section. The decomposition of the elementary struc-

ture into its individual parts is indispensable for us since we cannot make any 

statement about the type of lattice structure before the TTD optimization, except 

to analyze the GS. In order to construct any optimization result, we assume that 

the lattice structures calculated by our MILPs are unstructured.

Concerning a straightforward implementation of new types of parts (e.g., hol-

low beams), the computation of the reference volume �  (Function  1) and the 

modeling of a part (Function 2) are separated. If a new type of beam is required, 

the input parameter At,i,j as the area/profile A of beam type t between the adja-

cent nodes i and j (see function 2) can be changed. Function 2 extrudes the new 

profile At,i,j and creates a new kind of part.

5.2  Data processing of our MILPs

The reference volume �  , see Fig.  2, is the initial volume considered by our 

3D-CAD tool. The finally constructed lattice structure is a subset of the GS � 

representing the reference volume �  . To implement the results of our MILPs in 

the 3D-CAD tool, a distinction between a lattice frame and a lattice structure 

is made. A lattice frame is defined by connection nodes and line segments and 

serves as a basis for the lattice structure. A lattice structure is created by adding 

topological relations to the lattice frame.

The lattice frame is implemented generating the reference volume �  , see 

Function 1, using the parameters x, y, z ∈ ℕ of our MILPs. In addition, the binary 

variable xi,j specifies whether a line segment is present between nodes i ∈ V  

and j ∈ V  . The connection nodes of the lattice frame are read from the MILP 

instance file, the line segments from the MILP solution file.

The lattice structure is implemented by adding topological relations to the lat-

tice frame. For this we use the binary variable Bt,i,j ∈ {0, 1} of our MILPs, which 

specifies whether a beam of type t ∈ T  is present between two nodes i and j. The 

binary variable Bt,i,j is read from the MILP solution file.

The variable Fi,j provides the generalized active force of a beam, which allows 

a comparison between the static structural dimensioning of the MILPs and a 

linear-elastic and non-linear-elastic numerical FEA. The utilization of an indi-

vidual beam is defined by the comparison of the capacity ct,i,j (critical load) of 

beam type t and the force Fi,j.

Since we enable a numerical analysis, the preprocessing from Sect. 4.3, which 

enables a linear definition of the material constitution M
t
 and the dimension D

t
 

of a beam type t, is resolved. The material constitution M
t
(�

t
, L

t
, A

t
, E

t
, G

t
, I

t
) and 

the dimension D
t
(A

t
, L

t
) of a beam type t is a function of several variables and 

parameters. The undeformed length L0

b
 and the Timoshenko shear coefficient �

t
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of a beam type t apply to the instance parameter of the MILP. The cross section 

area A
t
 , shear modulus G

t
 , Young’s modulus E

t
 , variable length L

t
 and the area 

moment of inertia I
t
 apply to the material assigned in the CAD model. The mate-

rial is identical to the preprocessed material of the MILP. Non-linear analysis 

with plastic material behavior can thus be carried out within a FEA.

5.2.1  Modeling the reference volume

The function ReferenceVolume, see Function 1, iterates over the set of connection 

nodes V = {1,… , xyz} representing the reference volume �  . Besides, all beams are 

modeled using the function ModelBeam, see Function 2. The connection nodes V 

are implemented as work points WPx,y,z having the same indexing as the connection 

nodes V. Each work point WPx,y,z is defined as a grounded work point in a part file 

and has three spatial coordinates x, y, z in relation to the origin of the reference vol-

ume �  ( x = y = z = 0 ). All degrees of freedom of the work points are removed, so 

that they are fixed in space. We allow only operations needed for Function 2; defin-

ing a coordinate system, plane and a three-dimensional path in relation to a work 

point WPx,y,z . The three-dimensional path is the basis for the line segment of the 

lattice frame.

The input to Function  1 is the MILP instance file including the preprocessed 

beam types and materials and the MILP solution file. The MILP instance file speci-

fies the positions of the work points WPx,y,z in the reference volume �  and implicit 

all possible beam lengths. The MILP solution file specifies which work points 

WPx,y,z are to be connected with a beam Bt,i,j . To realize a bottom-up construction 

methodology, the function outputs any lattice structure as an assembly (.iam) with 

beams as parts (.ipt).

In the first step of Function 1, the reference volume �  is generated by iterating 

over the length x, width y and height z of the reference volume �  . The dimensions 

are indicated by the set of connection nodes V in each direction in space. The dis-

tance between two work points WPx,y,z arranged on a single plane are read from the 

instance data file of the MILP. All other distances are determined depending on the 

work points WPx,y,z in the 3D-CAD tool.

To solve the problem that the MILP does not specify the geometric relations 

between work points WPx,y,z , all work points WPx,y,z are created first using Func-

tion 1. In a second step, see Function 2, the beams are modeled in relation to the 

spatial coordinates x, y, z of the work points WPx,y,z in relation to the origin of the 

reference volume �  . Therefore, beams can be modeled directly by indexing the work 

points WPx,y,z , without any angular relationships.



880 C. Reintjes, U. Lorenz 

1 3

5.2.2  Modeling a beam

The ModelBeam function models a beam using two neighboring work points 

WPx̌,y̌,ž , WPx̂,ŷ,ẑ , a beam profile At,i,j , the binary variable Bt,i,j , the material constitu-

tion of a beam M
t
 and the variable S

i,k,d
 for post-processing.

The function outputs a beam as a part (.ipt) positioned between two neighbor-

ing work points WPx̌,y̌,ž , WPx̂,ŷ,ẑ of a reference volume �  . The material constitution 

M
t
(�

t
, L

t
, A

t
, E

t
, G

t
, I

t
) is assigned to each beam. The use of a global or local coor-

dinate system depends on the implementation capabilities of the Autodesk Inven-

tor Professional 2020 API.

In the first step two local coordinate systems FWPx̌,y̌,ž
 , FWPx̂,ŷ,ẑ

 are created cen-

tered on two neighboring work points WPx̌,y̌,ž , WPx̂,ŷ,ẑ . Both local coordinate sys-

tems FWPx̌,y̌,ž
 , FWPx̂,ŷ,ẑ

 have a relative and absolute relation to the global coordinate 

system FG
WPx,y,z

 , see Fig.  3. Subsequent, a line segment LWPx,y,z
 depending on the 

position in space of two neighboring work points WPx̌,y̌,ž , WPx̂,ŷ,ẑ is created. The 

line segment LWPx,y,z
 is defined as the central axis of a beam. Following, a plane 

PWPx,y,z
 is created as a function of the line segment LWPx,y,z

 and a work point WPx̂,ŷ,ẑ . 

The plane PWPx,y,z
 is arranged orthogonally to the line segment LWPx,y,z

 . The plane 

PWPx,y,z
 as a function of the line segment LWPx,y,z

 and the work points WPx̌,y̌,ž, WPx̂,ŷ,ẑ 

is used to implement a construction methodology based only on the MILP data: 

The line segment LWPx,y,z
 is dependent on the indexing from the MILP and the 

plane PWPx,y,z
 is dependent on the line segment LWPx,y,z

 , except for an angular 

parameter which describes, that the plane is orthogonal to the line. A round cross-

sectional area CWPx,y,z
 as profile centered on one of the two neighboring work 
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points WPx̌,y̌,ž , WPx̂,ŷ,ẑ is created. The profile is extruded along the line segment to 

create a solid beam BWPx,y,z
.

5.3  Post‑processing

As can be seen in Fig. 10 left, interferences (red) and unwanted free spaces (green) 

inevitable occur due to the connection of beams with variable diameters at intersec-

tion points. In accordance with Nguyen and Vignat (2016), in the case of solid round 

beams with a constant cross-section, it is necessary to correct the intersection points 

between the beams, see Fig. 10 right for a detail view.

To post-process the intersection, a solid sphere needs to be added at the intersec-

tion points to fill the missing space. The radius of the added sphere surface should be 

at least equal to the radius of the beam with the largest cross-section. We create the 

Fig. 10  a Post-processing of interferences (red) and free spaces (green). b Detail view of a post-pro-

cessed intersection. Fig. 10 right shows the post-processing of the smallest radius (green beam and red 

sphere) for a better illustration.



882 C. Reintjes, U. Lorenz 

1 3

sphere surface S
i,k,d

 as a function of the work point i ∈ V  , the maximum beam diam-

eter d
i,max

 at work point i ∈ V  and a scaling factor k, so that S
i,k,d

= k ⋅ d
i,max

∀i ∈ V  

applies.

To post-process the overlapping objects, the objects are segregated through split-

ting at their overlap limits. Only one of the previously overlapping objects is retained 

so that the topology including material distribution is merged. The post-processing 

excludes rough contour transitions. Furthermore, the self-weight of the part, which 

was falsified by the material overlaps, is corrected.

This post-processing makes the part ready for AM. A correct FEA including 

external and self-weight loads becomes possible. Stress concentrations and singular-

ities are expected for the FEA for two reasons; the transitions of the sphere surfaces 

to the beams and the transitions of multiple beams with identical beam axes. By 

fixing the transition angle at � = 90
◦ , see Sect. 3.4, sharp re-entrant corners result, 

which can be triggers for stress concentrations and singularities. The post-process-

ing of the intersection points is segregated considered in our 3D-CAD tool.

5.4  Case study

The data processing of Autodesk Inventor 2020 is based on the same BREP models 

to define the topology and geometry of parts as other CAD standard software. There-

fore, our results are representative of other CAD standard software such as Dassault 

Systems CATIA V5 (Catia 2019) and PTC Creo Elements (Creo 2019). The perfor-

mance of the 3D-CAD tool to design a cubic lattice structure was observed.

Different lattice structure sizes, see Fig.  11, are used to study the performance 

impact of increasing lattice structure sizes. Time and memory requirements for all 

necessary intermediate formats used of our algorithm driven product design process 

are analyzed, see Table 3. In order to achieve an accurate evaluation, three different 

STL and G-code (standard RS-274) file quality levels are defined.

Please note that any lattice structure can be modeled with this construction meth-

odology, due to the individual construction of each part. The cubic elementary struc-

ture serves only for illustration purposes and can be replaced by any structure, e.g., a 

Fig. 11  Lattice structure sizes to evaluate time and memory requirements
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octet-truss elementary structure. The 3D-CAD tool is tested up to a number of 6084 

beams, which takes 20 hours, 46 minutes and 30 seconds, see Table 3 and Fig. 11.

A quadratic growth of the running time, depending on the number of parts to be 

designed, is observed. The RAM used and the STEP3 (ISO 10303, AP 242) file size 

is linear dependent on the number of parts. The intermediate format STL is used in 

ASCII as well as binary format. Both intermediate formats and the G-code required 

for CAM are linear dependent on to the number of parts.

Our developed 3D-CAD tool, as part of our algorithm driven product design pro-

cess, can contribute to solve the problem that current design methods and CAD tools 

are not tailored for the shape of additive manufactured lattice structures and are not 

yet optimized to achieve the enormous potential offered by the technology AM. It 

provides ready for manufacturing lattice structures.

6  Work�ow: from an idea to a part

The design and manufacturing experts using our algorithm driven product design 

process, see Sect.  3.5, decide which circumstances are implemented by the TTD 

models, are preprocessed in our 3D-CAD tool, or are omitted and validated with 

an FEA. A data interface between the CAD software and a Computer-aided 

Table 3  Time and memory requirements for all necessary intermediate formats used of our algorithm 

driven product design process

aSurface deviation 0.004%, normal deviation 30.00%, maximum edge length 100.00%, aspect ratio 

21.50%

bsurface deviation 0.016%, normal deviation 15.00%, maximum edge length 100.00%, aspect ratio 

21.50%

Surface deviation 0.005%, normal deviation 10.00%
cMaximum edge length 100.00%, aspect ratio 21.50%

�  ( mm
3) 10 × 10 × 10 30 × 30 × 30 50 × 50 × 50 60 × 60 × 60

CAD
∑

xi,j (beams) 54 882 3630 6084

Time (s) 24 1755 24980 74790

RAM (MB) 587 1850 5641 9150

STEP (see footnote 3) 

(MB)

0.24 3.99 17.02 63.61

CAE STL (MB) (ASCII/

binary)
Quality 1 a 3/0.7 62/11 256/48 429/81

Quality 2 b 7/1 123/23 508/96 849/161

Quality 3 c 24/4 398/75 1637/311 2738/521

CAM G-Code (MB) Quality 1 0.30 4.65 19.17 31.92

Quality 2 0.32 5.01 20.82 34.17

Quality 3 0.34 5.04 22.31 31.19

3 Standard ISO 10303, AP242, spline fit accuracy 0.0001 mm, including sketches
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Engineering (CAE) software enables a data conversion from a geometrical repre-

sentation of a part (CAD file) into a triangulated surface of a part (STL file). Once 

the STL file has been generated, the file is imported into a slicer software. This so-

called slicer converts the STL file into a G-code file used for CAM.

The 3D-CAD tool serves as an interface between the TTD models, the FEA, 

CAE and finally AM. Partial problems that cannot be modeled in the TTD models, 

depending on their natural constraints, have to be post-processed in the 3D-CAD 

tool. Considering the MILPs TTDl;p and TTDl;s , the post-processing of intersections 

and interferences for an FEA, see Sect.  5, are implemented by the 3D-CAD tool. 

Furthermore, the CAD model is prepared for an FEA in the 3D-CAD tool. Finally, 

a verification of the part via a linear-elastic and non-linear-elastic numerical FEA 

is possible. All necessary design data is available to slice and subsequently man-

ufacture the part using any desired AM process. As the 3D-CAD tool completely 

processes the data and is integrated into the CAD software Autodesk Inventor Pro-

fessional 2020 (Autodesk 2019), the design and manufacturing experts have access 

to the full range of standard CAD software via a neutral data exchange format like 

STEP (ISO 10303).

As shown in Fig. 12, the process is iterative. The AM process and related stand-

ards (see lower left) influence the constraints of the selected TTD models and vice 

versa. The design and manufacturing experts are able to control the results of the 

optimization (SOL file) through the assembly (STEP file) automatically generated 

by the 3D-CAD tool. Subsequently, an FEA (validation) can be performed. Either 

the design results are not sufficient, so that the constraints of the TTD have to be 

adapted, or the assembly can be manufactured straightforward with AM. The pro-

cessing step TTD encompasses all optimization methods available or planned to our 

algorithm driven product design process.

Using the TTD models TTDl;p and TTDl;s , instance variables such as the load 

case, material specifications and the reference volume are specified. The aim of the 

algorithm driven product design process is to use our optimization at the first chron-

ological level of the design process and FEA only for validation.

Fig. 12  Schematic of our algorithm driven product design process
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7  Computational study

7.1  Use case structural optimization: MILP TTDl;p

For the optimization CPLEX 12.6.1 is used. The construction is done with our 

3D-CAD tool. The data preparation for the selective laser sintering of the lattice 

structure (Fig 13) with the AM system EOS INT P760 is done with the rapid pro-

totyping software Maigcs RP (Materialise 2019). The BuildProcessor available 

for Magics RP is used to generate the G-code file from the STL file. There is no 

post-processing of the STL data; the STL data obtained from our 3D-CAD tool is 

sufficiently high-resolution and the transitions are post-processed appropriate, see 

Sect.  5.3. The numerical analysis is performed with ANSYS AIM 19.2 (ANSYS 

2019).

The resulting lattice structure of the use case for the MILP TTDl;p (Fig. 13) is 

manufactured with SLS. The assembly space � of the used AM system EOS INT 

P 760 is represented as a polyhedron consisting of V = {1,… , 19285} connection 

nodes, resulting from the dimensions of the assembly space � of the AM system 

EOS INT P 760 ( 700 × 380 × 580 mm) and a beam length of 20 mm for a beam 

arranged on a single plane. The reference volume �  was set to the dimensions 

120 × 120 × 120 mm. Hence, there are 216 connection nodes in � .

The four corner points of the first plane in the positive z-direction are defined as 

bearings, see Fig. 14. It is predetermined that the top level in the z-direction is fully 

developed with beams with a diameter of 6 mm. The necessary entries of the binary 

variable xi,j are set to 1, so that the predefined beams can become load-bearing by 

optimization. The beam diameters {2, 4, 6, 8}mm together with the associated 

Fig. 13  Additive manufactured lattice structure including bearings as single parts (SLS)
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ct,i,j ∈ ℝ
+
 and cost

t
∈ ℝ

+
 are specified as parameters. A static area load (Fig. 14) at 

the last plane in the positive z-direction is specified. The applied static area load is 

simplified by a purely vertical centric force application at each node.

The computation time4 using CPLEX (manually interrupted) was 10 h 51 min. 12 

permissible solutions were determined, whereby the duality gap was 55.73%. The 

number of beams could be reduced from 3336 (entire reference volume �  ) to 665, 

which is a reduction of 80.07%.

To validate the results of the MILP, we perform a static structural-mechanical 

analysis. The analysis determines the deformation, stresses and strains in our lattice 

structure as a function of a static load case specified by the MILP. Inertia loads and 

dead weight are analyzed, as they are simplified in our MILP. Dynamic or damping 

effects are optional and not considered in this validation. The boundary conditions 

(Fig. 14) for the FEA are determined by the load case and the bearings of the MILP. 

The FEA mesh of our lattice structure is a structured mesh without mesh refine-

ments at transitions of parts, and tetrahedral elements are used. The element size is 

defined as 2.0 mm and the trial function is program-controlled. The total deforma-

tion (Fig. 15) is provided as a fringe plot to visualize the results of the static struc-

tural-mechanical validation of our lattice structure.

Fig. 14  Boundary conditions of the FEA

4 The calculations were executed on a workstation with an Intel Xeon E5-2637 v3 (3.5 GHz) and 128 

GB RAM using CPLEX Version 12.6.1. The CAD import and editing and the FEA analysis were per-

formed on a workstation with an Intel Xeon E5-2637 v4 (3,5 GHz), 64 GB RAM and an NVIDIA 

GeForce RTX 2080 (8 GB RAM).
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The lattice structure is support-free, because the used AM system EOS INT P 

760, as a plastic laser-sintering system for direct manufacturing, can create parts 

without the need for support structures. No additional (physical) post-processing is 

necessary for the lattice structure due to the design rules implemented in the MILPs 

and the post-processing in the 3D-CAD-tool. The material used for manufacturing is 

fine polyamide PA 2200 with a modified layer thickness of 0.12 mm.

7.2  Use case optimization of support‑free lattice structures: MILP TTDl;s

The following use case considers a positioning of a static area load and is a proof of 

concept for the MILP TTDl;s.

The reference volume �  is set to the dimensions 120 × 120 × 120 mm. The length 

of a beam arranged on a single plane is set to 20 mm. Hence, there are 216 con-

nection nodes in �  . The four corner points of the first plane in the z-direction are 

defined as bearings. It is predetermined that the top level in the z-direction is fully 

developed with beams. The beam diameters {1, 2, 4, 6, 8}  mm and the associated 

ct,i,j ∈ ℝ
+
 and cost

t
∈ ℝ

+
 are passed as parameters.

We assume that the bar diameter of 1 mm is the minimal manufacturable beam 

diameter for the used AM system. The assumption is based on the fact that the 

MILP TTDl;s should have the freedom to use this minimal beam diameter, to comply 

with the implemented design rules for support-free lattice structures, while having 

the minimum of material consumption. The use case for the model MILP TTDl;s 

Fig. 15  Fringe plot of the total deformation (FEA)
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is therefore identical to the use case for the MILP TTDl;s , except for the additional 

minimum beam diameter of 1 mm.

Since our geometry-based modeling in the MILP TTDl;s , see Sect.  4.6, is cou-

pled to the force equilibrium constraints and the moment equilibrium constraints 

via the binary variable xi,j , there is no possibility to evaluate the resulting lattice 

structure whether one or more beams are used to avoid a combination of beams at 

a node that would require a support structure. We consider the support structure in 

the part design, and therefore, as entire force-bearing. Nevertheless, the use case for 

the model TTDl;s can be statistically evaluated and compared to the use case for the 

model TTDl;p.

The computation time for the use case TTDl;s (manually interrupted) was 49 h 

and 27  min for the instance TTDl;s . A number of 103 permissible solutions were 

determined, whereby the duality gap was 64.46%.

In order to allow comparability, we make the following assumptions: As AM 

material extrusion process, FDM is performed on the AM system Ultimaker 2 

Extended+. The support structure is designed with the supplied Slicer Cura 3.6.9 

(Cura 2019). The support structure has been designed with a support overhang angle 

� = 45◦ , brim type build plate adhesion, a grid pattern, 30% density and free place-

ment of support structures. The material is Acrylonitrile Butadiene Styrene (ABS) 

with a density of 1.1 g/cm3 . The layer thickness was set to 0.1 mm; the beams were 

printed as solid material.

Table 4 shows that the model TTDl;s requires 5.43 ⋅ 104 mm3 less actual volume 

of the lattice structure � than the solution of Cura 3.6.9. This results in a 3.14% 

better ratio and a weight saving of 103.12 g, which corresponds to a cost-saving in 

material of 46.10%. The use of our MILP TTDl;s ensures that no support structure 

and post-processing is necessary, unlike the solution of Cura 3.6.9.

8  Conclusion and outlook

This paper has investigated how to systematically combine mathematical optimiza-

tion, CAD, FEA and AM into an algorithm driven product design process. Math-

ematical optimization and FEA simulation were used within the product design pro-

cess, whereby mathematical optimization was initially used for topology and shape 

Table 4  Statistics for the solutions of the use cases of the MILPs TTDl;p and TTDl;s and a solution calcu-

lated by Cura 3.6.9.

The second column shows the amount of beams, independent of the beam type. The third and fourth 

column denotes the reference Volume �  and the actual volume of the lattice structure � . As lightweight 

design criteria we specify the ratio of �  to �

Model
∑

xi,j (After opt.) �  ( 10
4

mm
3) � ( 10

4
mm

3) Ratio ( %) Weight (g) Duality gap (%)

TTDl;p 528 172.80 5.42 3.14 103.40 55.73

TTDl;s 875 172.80 6.36 3.68 121.00 64.46

Cura 3.6.9 528 172.80 11.79 6.82 224.12 –
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optimization and the resulting part was validated by a linear-elastic and non-linear-

elastic numerical analysis. The results showed that our product design process can 

be used to design additive manufactured lattice structures. Our vision is to develop 

tools for engineers. For this, we combined engineering and mathematical optimiza-

tion through a 3D-CAD tool to profit from both areas. In addition, we were able 

to support design and manufacturing experts with the opportunity to find a global 

optimum, which is equivalent to using the complete manufacturing freedom of AM. 

With the 3D-CAD tool, we provided the performance of state-of-the-art mathemati-

cal solvers to design and manufacturing experts focusing on lattice structures. For 

the implementation of the complete algorithm driven product design process, vari-

ous topics had to be covered. In the following, we conclude our contributions and 

identify future research directions.

8.1  Optimization for powder‑based AM

For our MILP TTDl;p concerning powder-based AM, we presented a preprocessing 

that makes it possible to define the maximum normal stress of a beam, depending on 

the material constitution and dimension. This allowed a multi-material mixed inte-

ger program. The preprocessing was used for the MILPs TTDl;p and TTDl;s , whereby 

later in the algorithm driven product design process the preprocessing was adjusted 

to enable a FEA. Our MILP TTDl;p generated a lattice structure for powder-based 

AM processes regardless of support structures, as they are not necessary for this AM 

process. An optimized lattice structure regarding a static area load, with a practice-

oriented number of connection nodes and beams, was manufactured using the pow-

der-based AM system EOS INT P760. As for future research for the MILP TTDl;p 

we plan to include external heuristics, especially starting solutions in the solution 

strategy and to develop lower and upper bounds. Typical process-specific geomet-

rical limitations of AM technologies like delamination of layers, curling or stair-

step effects should be minimized by formulating boundary constraints, regarding to 

maximize the part quality. If a support structure is necessary, it should also be pos-

sible to minimize the material of the support structure by minimizing the sum of the 

angles between the build orientation of a beam and the build direction.

8.2  Optimization of support‑free lattice structures

The MILP TTDl;s generated a support-free lattice structure for AM processes usu-

ally depending on support structures, by considering geometry-based design rules 

for inclined and support-free cylinders (VDI 2019) and assumptions for location and 

orientation of parts within a build volume (ISO 2013). The problem to strengthen 

a lattice structure by local thickening or beam addition or both, with the objective 

function to minimize costs and material, was modeled. In doing so, post-process-

ing was excluded. Compared to a support structure generation via the AM slicing 

application Cura 3.6.9, our method was able to obtain a cost-saving in material of 

46.10% for our optimized lattice structure. In the future, we want to add an assisting 

structural analysis, as the most important limitation of the proposed method is that 
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we work geometry-based via VDI (2019), under the assumption that the topology 

withstands the shear forces during the manufacturing process. Since the variable xi,j 

is used to define the presence of a beam, we will develop suitable heuristics to gen-

erate valid solutions in order to enable us to fix the variable xi,j and solve the remain-

ing LP instead of the original MILP.

8.3  3D‑CAD tool and additive manufacturing

A 3D-CAD tool implemented in the CAD software Autodesk Inventor Professional 

2020, as part of our algorithm driven product design process, was presented. We 

focused on a construction methodology that models each part from scratch, so that 

any lattice structure can be modeled. The 3D-CAD tool was tested up to a number 

of 6084 beams, which took 20 h and 24 min. Time and memory requirements for all 

intermediate formats used of our algorithm driven product design process were ana-

lyzed. The results of the mathematical optimization were corrected in the 3D-CAD 

tool by an overlay check of the solid and surface objects. Sphere surfaces were added 

and overlapping material was dispensed at the intersection points. We work towards 

a parallel processing of assemblies for the 3D-CAD tool to increase the perfor-

mance, as a quadratic growth of the running time, depending on the number of parts 

to be designed, was observed. Furthermore, it should be possible to directly gener-

ate STL files out of the MILP solution to bypass the CAD performance issues and 

produce ready-to-manufacture lattice structures. We manufactured a lattice structure 

with SLS, but in the future an industrial application with a complex loading case 

including main loads, additional loads and individual loads shall be optimized and 

manufactured with direct metal laser sintering. A use case including tree-like sup-

port structures is of particular interest.
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