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Abstract 

X-ray Computed Tomography (X-ray CT) is a well-known non-destructive imaging technique 

where contrast originates from the materials’ absorption coefficients. Novel battery 

characterization studies on increasingly challenging samples have been enabled by the rapid 

development of both synchrotron and laboratory-scale imaging systems as well as innovative 

analysis techniques. Furthermore, the recent development of laboratory nano-scale CT (NanoCT) 

systems has pushed the limits of battery material imaging towards voxel sizes previously 

achievable only using synchrotron facilities. Such systems are now able to reach spatial resolutions 

down to 50 nm. Given the non-destructive nature of CT, in-situ and operando studies have 

emerged as powerful methods to quantify morphological parameters, such as tortuosity factor, 

porosity, surface area, and volume expansion during battery operation or cycling. Combined with 

powerful Artificial Intelligence (AI)/Machine Learning (ML) analysis techniques, extracted 3D 

tomograms and battery-specific morphological parameters enable the development of predictive 

physics-based models that can provide valuable insights for battery engineering. These models can 

predict the impact of the electrode microstructure on cell performances or analyze the influence of 

material heterogeneities on electrochemical responses. In this work, we review the increasing role 

of X-ray CT experimentation in the battery field, discuss the incorporation of AI/ML in analysis, 

and provide a perspective on how the combination of multi-scale CT imaging techniques can 

expand the development of predictive multiscale battery behavioral models. 
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1. A Brief History of X-ray Computed Tomography 

1.1 Introduction 

X-ray Computed Tomography (X-ray CT) is well known in the medical and scientific research 

communities as a non-destructive imaging technique where contrast originates from the materials’ 

absorption coefficients1. The attenuated X-ray beam due to the sample interaction is collected, 

converted, and reconstructed with sophisticated algorithms to produce cross-sectional and 3-

dimensional images2–6. The resultant data provides valuable non-invasive information about a 

sample’s morphology and internal structure. In the medical field, CT has led to countless 

discoveries and treatments that have greatly impacted the health of populations7. In the past two 

decades, the impact of CT has expanded outside the medical field to general metrology8,9, and has 

considerably impacted the development of battery systems and other electrochemical devices2,10.  

With CT technology rapidly improving, commercial lab-based systems are now able to achieve 

similar resolutions to high brilliance synchrotron beamlines. However, with the increasing 

resolutions and applications of CT in electrochemical fields, more complex datasets are being 

explored, motivating the need for advanced analysis techniques to fully harness detailed insights 

about samples. This has led to the recent leveraging of Artificial Intelligence (AI) and Machine 

Learning (ML) to assist in the segmentation and analysis of complex datasets, or to act as a bridge 

between experimental data and multi-physics/multi-scale modeling11–13. As such, AI and ML have 

proved to be valuable tools to significantly reduce the time necessary to process large CT datasets 

while precisely labelling features of interest.  

In this review, we explore the larger outlook of X-ray CT in the battery field and discuss how AI 

and ML can impact data analysis and computational modeling. In the first section, we discuss the 

key technological advancements that have made X-ray CT an advanced tool suitable for battery 

characterization. In the second section, we outline the virtues and limitations of CT for a variety 

of battery chemistries as well as the key morphological parameters that can be extracted from the 

experiments. The third section covers the methods of proper data analysis and filtering to extract 

these parameters and discusses the emerging uses of AI and ML in battery modelling. Finally, in 

the last section, we explore the perspective of the future of X-ray CT, in which AI and ML can be 

used in combination with other techniques to fully characterize battery systems and develop multi-

physics and multi-scale predictive models.  

1.2 Development of X-ray Computed Tomography 

X-ray CT was first used in 1971, when Sir Godfrey Hounsfield performed the first patient brain 

CT scan14–16. Since then, CT has evolved from a technique primarily used in the medical 

community to a tool widely used across multiple disciplines in the scientific and engineering 

world2,17. To track the development of CT, Figure 1 showcases the year of publication vs. the 

reported voxel size for works in the medical and electrochemical storage fields18–20. Here, a voxel 

is a 3D representation of a 2D pixel and corresponds to the smallest cube of information obtained 

from a scan. The spatial resolution is often thought of as at least two to three times the voxel size 

but can be larger due to blurring and imaging artifacts that impede the distinction of fine features. 
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Figure 1 | History and trends of computed tomography. Notable advancements in X-ray CT showing the trend of 

decreasing tomogram voxel size with time. Colors represent the various fields works are related to: Medical (blue), 

Fuel Cell (Green), Battery (Pink), and Battery Simulation (Purple). Marker shapes indicate historical advancements 

(♦) and works pertaining to MicroCT (■), synchrotron (●), and NanoCT (▲) systems. Markers below the dotted line 

are notable CT-related events or works where voxel sizes are not reported. 

In the early 1980s, CT started to gain traction outside the medical field in the broader scientific 

and industry community, and in 1982, the first micro-tomogram was taken of a freshwater snail 

with a 12 µm voxel size21,22. In 1983, Ford reported the first industry application of an in-house 

built microscale CT (MicroCT) system where they distinguished features with a spatial resolution 

of 25 µm17,23. In the same year Grodzins et al.24–26 proposed the theoretical principles of utilizing 

synchrotron-sourced radiation to provide enhanced contrast and resolution for CT, and in 1984, 

Thomson et al. reported the first synchrotron radiation X-ray tomographic microscopy (SRXTM) 

measurement27. Meanwhile through the late 1980s to 1990s, developments in the biomedical 

community progressed laboratory-scale CT from a slow step-and-shoot approach7 to that of 

continuous gantry rotation7,28–31 with multidetector rows32,33 that drastically decreased the 

acquisition speed for larger areas. 

1.3 CT Deployment in Electrochemical Device Characterization 

CT systems used in metrology benefited greatly from the improvements in speed and detection 

developed by medical CT. However, it wasn’t until 2005 that the first CT machine dedicated to 

metrology and industrial applications was introduced,8,34; the first micro-tomograms of a battery2,35 

and fuel cell10,36 were reported in 2001 and 2006 respectively. As shown in Figure 1, numerous 

CT works in the electrochemical field began to emerge shortly after the commercialization of this 

tool. In the early 2010s, the first tomograms of a Li-ion battery positive and negative electrode 

were reported, illustrating the capability of distinguishing the active material (LiCoO2) from an 

inactive phase37,38. The first 3D discharge simulation based on tomography images quickly 

followed in 201239.  
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Further development allowed for novel and more creative studies to be performed: in 2013, Ebner 

et al. performed the first operando battery CT experiment to visualize and quantify the 

electrochemical and mechanical evolution of SnO particles in a Li-ion battery electrode2,40. In 

2018, Loveridge et al. used X-ray CT to identify the failure mechanism in the Galaxy Note 7 which 

were recalled due to battery explosions41. The reconstructed tomograms in this work revealed 

defects in the positive tab welding area that resulted in electrical shorts, leading to a thermal 

runaway. This example illustrates the usefulness of CT and the incentive of the recent efforts 

toward multi-scale imaging by the electrochemical community42. Finally, an increasing number of 

works are now leveraging AI and ML, for instance for imitating in silico electrode tomograms 

similar to experimental CT11. 

1.4     Present Day Capabilities: Lab-based and Synchrotron Sources 

For research in material science, both lab-based and synchrotron facilities have made great 

advancements over the past decade. In 2014, Maire and Withers wrote a review43 on quantitative 

X-ray tomography where they outlined how X-ray CT data was no longer only used for qualitative 

insights but increasingly for quantitative analysis of material properties. This transition from 

qualitative to quantitative only accelerated since 2014, as imaging capabilities facilitate greater 

spatial and temporal resolutions. Lab-based X-ray CT systems now routinely achieve 1 µm or less 

resolutions, with specialized systems able to achieve resolutions as low as 10’s of nm44. This multi-

length scale capability for lab-based systems allows for ex-situ imaging of structural properties 

from 10’s of nm to mm44,45. 

Recently, laboratory CT systems have enabled dual or tri-energy imaging via multiple quasi-

monochromatic beam energies46. Software packages have been developed to extract the best detail 

from images taken at the different energies. For example, images taken with lower energies may 

have enhanced resolution and sharpness for materials consisting of low atomic mass elements. 

This software framework, combining images taken at multiple energies, can also be utilized for 

correlative workflows between different microscopy methods. The strengths of individual 

techniques are leveraged in combined datasets that provide heighted resolution or larger sample 

sizes. The temporal resolution of laboratory sources has also shown tremendous progress over the 

past decade but remains insufficient for many operando and in-situ analyses of structural dynamics 

in the range of minutes to hours. Synchrotron sources are also rapidly evolving, with major 

synchrotrons, such as the National Synchrotron Light Source (NSLS) II, Advanced Photon Source 

(APS), and the European Synchrotron Radiation Facility (ESRF) having completed or planned 

upgrades for increased photon flux density and coherence for faster imaging and greater 

sensitivity47,48. For example, the ESRF’s Extremely Brilliant Source (EBS) is expected to present 

100 times its previous brilliance and coherence, facilitating new opportunities for high energy and 

high spatial- and temporal resolution imaging49. Synchrotron sources are now achieving 

tomograms with voxel sizes of 20 to 50 nm in under 1 hour50,51. This evolution of both laboratory- 

and synchrotron-based capabilities has continued to present new opportunities for understanding 

the highly dynamic behavior of electrochemical energy devices. For consistency, in the following 

we refer to 3D tomographic data collected at synchrotron facilities by scanning transmission X-
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ray microscopy (STXM) or transmission X-ray tomography (TXM) as synchrotron radiation X-

ray tomographic microscopy (SRXTM)50,51. 
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2. X-ray CT in the Battery Field 

While several tools are already routinely used to characterize the morphology of electrochemical 

devices or materials, X-ray CT presents significant advantages that the other techniques do not 

possess. For instance, Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM), 

Transmission Electron Microscopy (TEM), and Secondary Ion Mass Spectrometry (SIMS) all 

require a vacuum, making in-situ and operando studies difficult if not impossible for most battery 

systems. Moreover, these 3D reconstruction techniques are destructive and require invasive sample 

preparation methods. In comparison, X-ray CT is non-destructive and does not require a vacuum 

for high resolution imaging, making it ideal for evaluating 3D morphological changes in-situ or 

operando in practical battery systems. CT can also be used to distinguish and segment species 

based on the varying X-ray absorption, thus allowing for select materials to be studied 

dynamically. A comparison of the X-ray CT with common battery characterization techniques can 

be seen in Table 1.  

Table 1 | Common tomography techniques in material science.  

While X-ray CT has many benefits over other tomography techniques, the relatively limited 

resolution and lack of chemical information for most lab-scale CT systems make it challenging to 

study electrode interfaces, a crucial aspect of battery systems. Nevertheless, CT is still a relatively 

new tool for the electrochemical field, and as high resolution NanoCT systems are developed and 

used more, it will become a common battery characterization tool as high-resolution 3D imaging 

with precise species segmentation is now possible. 

2.1 Materials CT Parameters  

To understand the usefulness of CT in battery research, it is important to know the information 

and morphological parameters that it can provide. Reconstructed volumes can showcase large-

scale device architecture, such as by Yin and Scharf et al., who demonstrated uniform electrode 

Technique Resolution 
Field of 

View 

Destructive or 

Non-destructive 

Vacuum 

Level 

Information 

Extracted 

X-ray Computed 

Tomography52–57 
~10 nm ~100 µm Non-destructive 

Not 

Required 

Porosity, Surface Area, 

Tortuosity 

Cryogenic Electron 

Tomography58 
~1 nm ~100 nm Destructive ~10-8 kPa 3D Nanostructures 

Focused Ion Beam59 ~10 nm ~10 µm Destructive ~10-6 kPa Porosity, Surface Area 

Atom Probe 

Tomography60 
~1 Å ~100 nm Destructive ~10-11 kPa Atomic Arrangements  

Nuclear Magnetic  

Resonance Imaging61 
~1 mm ~10 cm Non-destructive 

Not 

Required 
3D Tomography 

Time of Flight Secondary 

Ion Mass Spectrometry62 
~10 nm ~10 µm Destructive ~10-8 kPa Chemical Composition 
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contact when flexing a printed Zn-AgO battery52. However, apart from large-scale architecture, 

many morphological parameters can also be extracted, providing powerful insights into electrode 

structure and performance. These morphological parameters can come in a variety of types: surface 

area, volume, particle size distribution, or porosity and pore networks. 

Surface area and volume information are commonly used in battery research to analyze electrodes 

and are the most intuitive to observe and quantify from reconstructed volumes. Surface area 

measurements can evaluate electrode wettability, while volumetric analysis can determine the 

thickness variation and volume expansion during battery operation. In the first operando battery 

CT study, Ebner et al. evaluated the volume expansion of a SnO electrode as it was lithiated40. 

During reduction, the repeated measurements using SRXTM revealed a 250% volume expansion 

due to lithiation that was only partially recovered during oxidation. The thickness and the spatial 

distribution of the solid-electrolyte interface was also quantified, showing its increase with 

lithiation. CT volume extraction has also proven particularly useful for silicon anode batteries63–65 

in the evaluation of volume expansion during lithiation (up to 280% for Li15Si4)
66, which is one of 

the main limitations hindering cycle lifetimes. In a 2019 study, in-situ SRXTM was used to track 

the expansion and contraction dynamics of Si electrodes during electrochemical cycling66. The 

thickness variation and changes in the delaminated area were studied, and the micro-sized crack 

volume fraction was quantified to reveal the failure mechanism in non-maturated electrodes.  

Particle analysis can also be performed using CT: through segmentation (See Box 2), particles can 

be separated, and their individual volumes can be analyzed to provide valuable information about 

their size and distribution. This type of analysis can be especially useful for in-situ or operando 

studies, where the morphological evolution of active material particles can be tracked and analyzed 

dynamically. For instance, Gent et al. studied the heterogeneity of lithiation in secondary particles 

in causing accelerated capacity fade67. Additionally, Zernlike phase contrast (ZPC)68 is a technique 

often used in NanoCT which uses phase differences in the transmitted X-ray signal to differentiate 

materials, and thus has been employed to segment out the three phases (e.g. active material, binder, 

and pore) typically observed in LIB electrodes69,70. With a high spatial resolution of 50 nm, Babu 

et al. characterized the particle contact area variation with additives to illustrate their influence on 

the electrode contact resistance. This can be particularly valuable in quality assurance to study the 

influence of manufacturing and synthesis conditions on particle morphology. For instance, Heenan 

et al. showed how 5-min long scans with a NanoCT system was sufficient to fully resolve cathode 

particles and directly quantify the variation in the particle’s asymmetry, sphericity, and local 

surface roughness71. This study also quantified the internal voids within individual particles which 

should be minimized to maximize volumetric energy density.  

Similarly, pores and void spaces in battery electrodes can be visualized and quantified with CT. 

For instance, Frisco et al. quantitatively extracted the pore distributions in commercial Li-Ion cells, 

revealing a collapse of the anode pore structure during cycling in the first investigation of SEI 

build up using NanoCT72. They showed a decrease of more than half the pore volume with cycling, 

and qualitatively demonstrated, using 3D tomograms, the SEI build up resulting in increased cell 

impedance72. Similarly, Su et al. used operando SRXTM to perform the first characterization of 

Li-O2 battery cathodes with 3D tomography and extracted the pore distribution using an 
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interconnected pore model for the scanned Li2O2 electrode73. By using ZPC, they were able to 

image and distinguish the void spaces from the lighter species like carbon and Li2O2 discharge 

products, successfully extracting nano-sized pores on the order of 100 nm. 

Once segmented, an interconnected pore network model (PNM) can be extracted and utilized to 

the study the mesostructure evolution during fabrication processes such as calendering74. For 

instance, Torayev et al. introduced a 3D-resolved PNM extracted from a CT image of a Li-O2 

battery carbon electrode75. The extracted pore network consists of a family of spheres with 

different sizes connected by cylindrical throats and describes species transport through the 

electrode. Thanks to models such as this, researchers have shown that electrode samples that have 

the same average porosity and tortuosity factor but different pore interconnections, can result in 

differing discharge performances.76,77. 

Finally, CT can also allow to measure the tortuosity or tortuosity factor (square of tortuosity), 

which can quantify how tortuous an electrode is by analyzing the connection of pores within a 

structure. The tortuosity factor was first introduced by Epstein in 1989,78 and can be defined for 

electrochemical systems by the porosity multiplied by the ratio of ionic bulk diffusion to the 

effective diffusion due to the tortuous path, as shown in equation 1: 

           (1) 

where is the tortuosity factor,  is the tortuosity,  is the porosity,  is the effective diffusion 

coefficient, and  a bulk diffusion coefficient78,79. Tortuosity in CT has gained considerable 

attention in the last decade11,80,81 and is especially impactful for understanding the transport of 

electrolyte ions through battery electrodes. For instance, Ebner et al. used SRXTM to study the 

tortuosity anisotropy of three common Li-Ion electrodes with varying porosities to represent 

various particles shapes, (spherical, triaxial ellipsoidal, and platelet-shaped). They showed that an 

increased geometric tortuosity factor in the plane perpendicular to the current collection can impact 

the achievable LIB power density and cycling performance and predicted a factor of 4 

improvement in the battery discharge rate with platelet-shaped particles in graphite electrodes82.  

2.2 Experimental Trends in Battery X-ray CT 

Since the first battery micro-tomogram in 20012,35, CT has developed into a versatile technique 

with various CT system types offering different benefits. Laboratory-scale MicroCT is the most 

common CT system used in metrology and battery research, due to its large FOV (~130 cm2 in the 

XZ direction for large scans), ease of access and use, and relatively high spatial resolution of up 

to ~500 nm3,53,54. However, even with submicron resolution, MicroCT systems fall short in 

studying nano-scale phenomena. For this reason, battery researchers turn to SRXTM, with spatial 

resolutions reported in battery studies reaching as low as 50 nm55,56. The main compromises are 

the beamline time cost, increased sample preparation complexity, and limited FOV. To circumvent 

this, laboratory-scale NanoCT offers spatial resolutions of up to 50 nm83, rivaling SRXTM without 



9 

 

the necessity of high brilliance synchrotron radiation. However, there are still tradeoffs for each 

instrument, which should be selected carefully with the experimental goals in mind. 

Figure 2a shows the trend in FOV, voxel size and scan duration for CT experiments in battery 

literature84–97. As many CT studies do not report the spatial resolution, the FOV was plotted versus 

the voxel size, since the voxel size scales with and is typically slightly less than half the spatial 

resolution. As shown, regardless of the battery chemistry, there is a general trend where the FOV 

decreases with smaller voxel sizes and is dependent on the CT system used. Indeed, in the nano-

regime, synchrotron and NanoCT dominates use, while in the micro-regime, MicroCT systems are 

implemented more often. Additionally, in the nano-regime, NanoCT experiments are ex-situ due 

to the long scan time, and only synchrotron experiments are in-situ or operando, which illustrates 

the difficulty in performing dynamic experiments at a limited FOV and long scan times (Figure 

2b).  

 

Figure 2 | Experimental trends of computed tomography in the battery field.  Trend of a) Field of View (FOV) 

and b) scan time with voxel size for various battery chemistries (colors), CT systems (shape), and experimental 

conditions (open/filled). In a), the marker size reflects the CT scan time indicated in b).  
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In the micro-regime, lab-scale MicroCT dominates, and in-situ or operando experiments are quite 

common since such experiments tend to elucidate degradation mechanisms and key phenomena in 

batteries97–101. For many experiments, micro-sized voxels are small enough to perform novel 

studies for a variety of battery systems. For instance, shown in the orange in-set of Figure 2a, 

micro-sized Li-metal dendrites can be resolved in all-solid-state batteries (ASSB)99. Micro-sized 

particles on the scale of 10-100 µm can be easily resolved with MicroCT, such as the case for the 

Li-ion cathode and Zinc anode in the green and red insets, respectively. Particle-scale analysis can 

be performed for both chemistries (Figure 3), and in-situ studies are even possible as is the case 

for the Zinc anode102. Modeling can also be performed using the reconstructed scans as input. For 

instance, the blue inset of Figure 2a shows a reconstructed porous Cu current collector scanned 

by MicroCT and a model of the lithiation in the structure, where the porosity and tortuosity can be 

optimized to maximize cycle life103. 

The battery chemistry of interest also strongly influences the type of instrument used. For instance, 

since Li is a very light element that weakly interacts with X-rays, it is difficult to image and resolve 

using traditional MicroCT, which use higher X-ray energies of around 30-160 kV3,53. For this 

reason, Li-Ion battery studies shown with the green markers in Figure 2 in the micro-regime are 

mainly focused on studying device structures or composite electrodes rather than investigating 

lithium growth. For instance, Carter et al. (103 in Figure 2) investigated the delamination in a 

lithium iron phosphate battery and investigated the porosity and the diffusion-based tortuosity 

factor of the graphite anode structure104. They were able to distinguish between graphite, void, and 

copper, but did not specifically look at Li species. Many studies looking to investigate Li with CT 

use ZPC with NanoCT or SRXTM systems which can use lower X-ray energies of around 5-8 

keV. However, there are still constraints on the FOV and sample preparation and size for these 

instruments, which is why Li-ion CT studies, like Frisco et al. (72 in Figure 2)72 and Kashkooli et 

al. (56 in Figure 2)56, tend to be ex situ. However, custom in-situ/operando cells can be developed 

to help study dynamic phenomena, as shown by Vanpeene et al. (66 in Figure 2) who used X-ray 

CT compatible custom Swagelok cells to study volume expansion in-situ using SRXTM with a 

200 nm voxel size66. 

 

 



11 

 

 

Figure 3 | CT Segmentation and Analysis of Battery Systems.  a) Volume rendering and grey value histograms of 

Zn and ZnO references, and of the Zn region of the CT cell. b) Zn-AgO volume rendering with colorized 3D volume 

rendering of segmented Zn anode at different SOC: “Init” is initial uncycled, “D1” and “C1” is after first discharge 

and charge, and “D5” is after 5th cycle discharge. c) Cropped LiNi0.5Mn1.5O4 cathode dataset and XY slices before and 

after Non-Local Means (NLM) and Unsharp Mask filtering (UM). d) Grey value histogram of raw data and after 

applying NLM and UM filters. “X” markers represent threshold regions indicated in watershed-based segmentation. 

e) Segmented and colorized filtered tomogram with volume fraction percentage of the 3 phases. 
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2.3 Progress and Challenges in In-Situ and Operando X-ray CT  

From the onset of X-ray microtomography, it was recognized that sample preparation and design 

of in-situ environments would be an important challenge for decades to come105. Researchers 

frequently aim to achieve maximum resolution and contrast for samples that are as large as possible 

to achieve good statistics and obtain representative volume measurements. However, maximizing 

the contrast and signal-to-noise ratio for a given X-ray energy and specific composition requires 

limiting the sample to a specific width106. This is due to the attenuation of X-rays through the 

sample thickness, and how there is an optimal extent to which the sample of interest interacts with 

the incoming beam. There are many different materials used within current and next generation 

Li-ion batteries, but for simplicity the example of the electrode material LiNi0.8Co0.1Mn0.1O2
 

(NMC811) will be discussed, while attenuation coefficients for other materials can be determined 

from open-source databases107. For an X-ray energy within the range of 3 to 8 keV (typical range 

of lab-based NanoCT systems), the optimal thickness of a NMC811 sample is between 10 and 100 

µm106. Synchrotron sources can tune the X-ray energies to be monochromatic within a wide range 

from single digit keV to energies approaching 100 keV, thus researchers can weigh the suitability 

of synchrotrons and beamlines for their specific application. Since most monochromatic or quasi-

monochromatic sources operate in the range of 5-30 keV, the optimal width of an NMC811 

electrode is between 10 µm and 1000 µm, raising the challenge of designing a small enough Li-

ion cell that can achieve relevant in-situ or operando conditions. For many quantitative 

measurements of electrode microstructural properties, achieving a representative volume element 

is critical108. Thereafter, building an environment that facilitates operando or in-situ imaging is 

needed. Of most interest is electrochemical operation, but some work has focused on mechanical 

experiments such as in-situ compression of electrodes to replicate calendering109. Ideally, all 

environments would be cylindrical, achieving symmetry around the axis of rotation during 

imaging, which would involve circular discs of electrodes with diameters between 10-1000 µm. 

Specialized laser-milling has recently been shown to achieve diameters down to 80 µm with little 

effect on the electrode microstructure109. With these conditions in mind, operando cell 

environments have evolved over the past decade110 but still suffer from design challenges that can 

jeopardize their performance, reliability, and operational relevance. Common issues include: 

damaging beam exposure111, poor control of pressure applied on the cell, stagnant gas that causes 

poor ionic or electronic contact, and exposure of cell materials to contaminants including air112. 

The high impedance that is often associated with bespoke operando cell designs can limit their 

ability to achieve high-rate conditions necessitating modifications of well-proven cell designs like 

coin cells113. Current state-of-the-art operando cell designs for high-resolution imaging are based 

on plastic union-fittings with steel rod current collectors that seat electrodes around 1 mm in 

diameter64,114,115, but much opportunity remains to improve reliability, rate performance, and ease 

of assembly. When a functional operational design that is suitable for the X-ray imaging conditions 

is achieved, further challenges await for minimizing artifacts in reconstructions, systematic errors, 

and data processing for quantitative analyses, such as those outlined in Boxes 1 and 2. 
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3. CT Analysis, Simulation, and Modelling 

Box 1 Artifacts and Filtering in CT 

X-ray CT data analysis aims at obtaining the truest depiction of the sample or structure analyzed. 

However, experimental artifacts can distort the X-ray projections, eventually leading to data 

misinterpretation. As such, data containing artifacts can make segmentation challenging, thus 

disallowing in-depth analysis of complex structures like electrodes. Image noise is one of the 

most common artifacts116, as well as cupping and streaks or dark bands from beam hardening117–

119. As polychromatic X-rays are used in MicroCT, low energy photons are disproportionately 

absorbed, and the average energy of the beam increases or hardens. This results in cupping, 

where the beam is hardened more through the middle of an object than at the outer edges, and a 

uniformly dense material will appear non-uniform117,119. Streak artifacts or dark bands occur 

due to differences in material absorption (i.e. heavy elements next to light elements), where the 

beam in one area of the scan is hardened more than in another area119. This is especially 

problematic for LIBs, where light elements such as Li may be near heavier elements like Cu. 

Beam-hardening effects can be partly mitigated experimentally using physical filters that pre-

harden the X-ray spectrum to remove low energy photons117.  

Other artifacts can originate from instrument issues or improper scan parameters. For instance, 

undersampling of the projections needed to reconstruct a sample can cause artifacts known as 

view and ray aliasing119, where fine stripes appear radiating from the edges of or close to 

structures. View aliasing originates from a too large interval between projections and ray 

aliasing originates from undersampling within a given projection.  

Most artifact reduction occurs during post-processing, where filtration algorithms can lessen or 

remove experimental artifacts and smart segmentation methods can be applied to separate out 

species for further analysis. Beam hardening can be treated numerically with a low-pass 

smoothing filter, whereby the smoothed image is used to detect large-scale intensity variations 

caused by beam hardening, or by a less error-prone iterative approach, which uses sequential 

histogram-based segmentation with grey value classification to lessen the effects of beam 

hardening118,120,121.  

Image noise is commonly addressed with a multitude of filtering algorithms121. Neighborhood 

statistical filters consider neighboring voxels grey values and apply a kernel operation, where 

voxels values are multiplied by a set of weights and then averaged over the sum of the weights 

to smooth or correct for noisy data121. Such filters are differentiated by the type of kernels used, 

namely mean, median, mode, minimum, maximum and gaussian filters. While filters such as 

these tend to blur the original data, several strategies have been developed to retain particles and 

pore edges, such as the Non-Local Means (NLM) and Anisotropic Diffusion (AD) 

filters118,121,122, and the Unsharp Mask (UM) filter used to improve image contrast121,123,124.  

 



14 

 

Box 2 CT Species Segmentation and Workflow 

In battery electrodes, the three main phases typically observed in an X-ray CT scan are the active 

material, binder, and pores. A proper segmentation of these is mandatory to ensure the quality 

of the extracted battery-specific parameters (such as particle size, porosity, and tortuosity). As 

contrast in X-ray CT is dictated by the material’s X-ray absorption coefficient, the simplest 

segmentation method is thresholding, differentiating materials based on the numeric grey value 

distribution118,125. With Global Thresholding (GT), the segmentation is performed on the grey-

value histogram of an entire 3D dataset. As can be seen in Figure 3c-e, filtering is a critical step, 

as it can reveal 3 distinct grey value regions in a Li-ion cathode (corresponding to binder, 

porosity, and active material), while these were undistinguishable before filtering. 

Manual segmentation and GT are nevertheless subject to human error and bias, and therefore a 

variety of automatic segmentation methods have been developed118,125. In contrast to GT, 

adaptive local segmentation methods account for neighborhood statistics to separate phases in 

an image. Among the multiple local segmentation methods, Bayesian Markov Random Field, 

Watershed, and Converging Active Contours have been shown to be the most efficient for 

multiclass segmentation, with tradeoffs specific to each method and sample118. 

Above all, the limiting factor in segmentation is data quality, and it is crucial to have a workflow 

in which the dataset is optimally acquired and properly filtered to adequately define phases. The 

workflow can be separated into 3 stages: (1) Preprocessing (artifact removal, filtering, 

sharpening), (2) Segmentation (global and local thresholding), and (3) Postprocessing 

(denoising). Denoising algorithms are often used to prepare the dataset for structural analysis. 

As each stage is interconnected, filters should be chosen with the segmentation method in mind. 

Moreover, care must be taken as over-filtering can be an issue as well: the mean filter can 

introduce “unrealistic” values, and filters such as erosion, dilation, and delineation can skew 

multiclass data118,126. Therefore, knowledge of the various filters and segmentation methods is 

needed to ensure proper extraction of crucial morphological parameters. 

3.1. Leveraging CT for Computational Modeling     

The knowledge and large quantity of information gained from X-ray CT data leads to promising 

outcomes in the computational modeling of batteries. The Newman’s model, a first-generation 

mathematical model of a lithium-ion battery, was developed in 1993127,128. It describes ionic 

transport in the concentrated electrolyte, lithium transport in the active material, and intercalation 

electrochemistry at the interface between active material and electrolyte. This model is supported 

on a 2D cartesian representation of the cell, with an extra polar coordinate dimension for the active 

material particles (as seen in Figure 4 - Generation I Model) and is therefore also referred to as 

pseudo-2D (p2D). Since this is a 2D approach, several input parameters are necessary to consider 

the geometrical features of the electrodes and the cell, such as the separator thicknesses, active 

material particle size, the active surface area (surface area of contact between active material and 

electrolyte), the porosity, and tortuosity factor of both electrodes. While some of these 

morphological parameters (e.g. tortuosity factor and active surface area) are challenging to 
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evaluate using experimental techniques129, the stochastic generation of 3D electrode 

mesostructures based on the experimental parameters has been shown to be a valuable method.  

To stochastically generate an electrode mesostructure, several parameters are needed: electrode 

composition (active material/carbon/binder volume ratio), particle radius distribution, and porosity 

and thickness of the electrode. In essence, the active material (typically as spheres) is generated 

randomly in the simulation box until the desired values are reached. Several observables, such as 

the amount of overlap between the spheres or the surface area, can be tuned to achieve the desired 

configuration. Then, the inactive phase can be added by controlling its morphology, i.e. as a film 

around the active phase or as clusters130,131. This approach allows access to larger electrode 

volumes than those experimentally achievable with NanoCT. Some commercial and academic 

algorithms have been reported for electrode generation132 and for porous media analysis to extract 

tortuosity factors133,134. An alternative to the extraction of the morphological parameters is the 

direct use of the generated 3D electrode mesostructures in electrochemical performance models. 

For that purpose, the inactive phase (carbon/binder) can either be merged with the active material 

as the solid phase (Figure 4 - Generation II models)135–139 or be explicitly considered in the 3D 

model (Figure 4 - Generation III models)80,130,140,141. 

 
Figure 4 | Relation between experimental tomography data, cell model, and computation of electrochemical 

data in battery systems. To enable 3D models of the battery, tomography data at the micro- and nanoscale can be 

used either directly (purple arrows) or after stochastic inactive phase generation (green arrows). This allows to 

compute of the electrochemical performance of the electrode to study the effect of its morphology. 

However, even full stochastic electrode mesostructure generation may not be sufficient to replace 

real battery electrode texture. In that sense, tomography images have been used in the recent years 
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to increase the reliability of 3D battery cell computational models. Electrode mesostructures, 

reconstructed from MicroCT images, have been used for this purpose by adding the inactive phase 

stochastically141,142. Extracting the carbon and binder additives domains from MicroCT data is 

indeed challenging due to a too coarse spatial resolution of over ~500 nm. The dataset therefore 

needs further work to add the binder and carbon to the active material region. The use of MicroCT 

images allows the models to account for realistic active material shapes and their impact on 

electrochemical performance39,143. For instance, MicroCT has been used in redox-flow battery 

modeling to capture a representative volume, which is usually much larger than for lithium-ion 

batteries144–146. In this context, it has been used to predict the electrolyte impregnation and the 

electrochemical response of a redox flow battery using three different electrode mesostructures 

originating from MicroCT data147. However, this technique still has limitations, namely its 

inability to resolve the spatial location of the inactive phase in the case of lithium-ion batteries. 

This ability is required to investigate the impact of the arrangement of the active and inactive 

phases on the electrochemical, transport, and thermomechanical processes within the electrodes. 

For instance, the ionic transport through the electrolyte is especially impacted by the 

interconnectivity of pores, which requires the segmentation of the active and inactive phases to 

extract75. 

In NanoCT, the inactive phase can be distinguished from the active material and the porosity. The 

extracted structure can be directly used in the Generation III models, without any additional steps. 

However, the high resolution comes at the cost of a narrower FOV, resulting in a small volume of 

an imaged electrode. As a result, issues related to the representativeness of the volume have arisen 

and been addressed in the literature148,149. Additionally, such a multi-phase structure can be 

challenging to import in a finite element/volume method model, especially for numerous interfaces 

between a large number of phases. 

Several tools in recent years have been reported to overcome this challenge132,150,151. In 2019, the 

first Generation III battery cell electrochemical model, with a positive electrode extracted from 

NanoCT data, was reported with an effective porosity and tortuosity for the inactive phase152. 

Furthermore, in state-of-the-art modeling, efforts have been made to limit as much as possible the 

use of average geometrical parameters. In 2020, several Generation III model studies have been 

reported, with resolved structures of the inactive phase and the ability to have no geometrical 

parameter as a model input80,153. This explicit representation of the structure is the key element to 

capture heterogeneities in the cell. For instance, for the 3D modeling of all solid-state batteries, 

locating the actual positions of voids in the electrode will be of the utmost importance to 

understand the device limitations.  

Lastly, a new strategy is to achieve representative Generation III models without the need of 

tomography data: the simulation of the electrode manufacturing process74,138,154. By this method, 

the structure, from the slurry to the final calendered electrode, can be predicted with the inactive 

phase considered explicitly throughout the process. With the help of experimental inputs (slurry 

viscosity, porosity of the calendered electrode, etc...) these models are validated at each step. 

Despite using some geometrical approximations such as spherical particles, this approach yields 

satisfactory results and links experimental data with modeling, thus paving the way toward 
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predictive digital twins of an entire manufacturing processes and showcasing its impact on battery 

performance predictions. 

 

4. Future of Battery X-ray CT 

4.1 Correlative Workflow Characterization 

While X-ray CT is a powerful non-destructive imaging tool, it still suffers from several limitations 

such as the inability to distinguish chemical species with similar X-ray absorption, or to provide 

nano-scale information about the sample’s morphology. As such, one of the main strategies to 

overcome these shortcomings is to combine X-ray CT with other complementary tools, i.e., 

correlative tomography. Several studies have already shown that both low and high-resolution X-

ray CT scans can be used to determine a region of interest which is then milled using FIB/SEM. 

Then, volume reconstruction can be performed, and the data can be aligned with the high-

resolution CT scan. Moreover, FIB/SEM benefits from the multiple detectors, such as Energy-

dispersive X-ray spectroscopy (EDS), Electron Backscatter Diffraction (EBSD), Wavelength 

Dispersive X-ray Analysis (WDS), Raman spectroscopy, and Time-of-flight SIMS (ToF-SIMS), 

providing valuable insights by correlating chemical and morphological information. As already 

shown in the literature, a lamella of the region of interest can then be used for STEM analysis, 

providing nano-scale resolution imaging, combined with crystallographic and spectroscopic 

information thanks to Electron Energy Loss Spectroscopy (EELS) and electron diffraction. This 

method was successfully applied in 2014 by Burnett et al. to study the corrosion of stainless steel, 

as EBSD and EDX combined allows to determine both element segregation and grain 

orientation155. Similarly, Slater et al. were able to combine MicroCT with NanoCT and 

STEM/EDS by using Plasma FIB milling, gaining insights on the influence of grain boundaries 

orientation in cavity formation in Type 316 stainless steel156. 

More recently, Zubiri et al. demonstrated that coupling lab-scale Nano CT with electron 

tomography was an efficient way to combine the higher resolution of electron tomography (ET) 

with the wider FOV of NanoCT157. As such, the ML-assisted segmentation of the pores in zeolite 

particles from the CT data was improved significantly by using the segmentation of the higher 

resolution ET data as a training dataset. 

In the battery field, a few studies were successful at applying correlated tomography to electrode 

composites or separators11,51,158,159. The combination of high contrast absorption X-ray 

tomography with ptychographic X-ray CT was shown to be able to provide detailed microstructure 

of Si composite anodes, distinguishing the Si particles from graphite and the carbon-binder 

domain, and was even able to resolve the SEI layer51. The obtained dataset was then used to model 

the state of charge distribution of individual Si particles. On the cathode side, FIB cross-sections 

were used to help segment the NanoCT data of a LiNi0.33Mn0.33Co0.33O2 electrode, allowing the 

porosity network and carbon-binder domain to be resolved158. This information was then 

successfully combined with a lower resolution MicroCT scan to evaluate the tortuosity factor of 
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the electrode. SEM cross-section views were also combined with X-ray CT data of Li-ion battery 

separators to stochastically generate fibrils in the porous network. These fibrils, too small to be 

directly observed by MicroCT, were shown to have a significant influence on the prediction of the 

effective diffusion coefficient159.  

Correlative tomography, by employing a low-to-high resolution approach, is a flourishing 

technique that can provide the multi-scale information needed for the future of battery materials 

research. Combined with tools such as stochastic generation and electrochemical modeling, deep 

insights onto the underlying limitations of different battery systems can be gained. Nevertheless, 

some technical considerations still need to be addressed before this method can be widely applied 

to all types of systems. Principally, when working with sensitive materials, all steps of the analysis 

must be carried out under a protective atmosphere, necessitating careful design of the samples and 

transfer devices. Moreover, while the possibility to investigate a region of interest with nm-scale 

resolution makes this a method powerful, reducing the size of the sample sufficiently for high 

resolution tools (i.e., NanoCT or even TEM) can still be challenging, and tools with higher milling 

throughput than FIB, such as Plasma FIB (PFIB), laser PFIB, or broad ion beam milling, are often 

required. 

4.2 Perspective of CT Data Analysis with AI/ML 

It is evident that the future of CT data analysis is strongly correlated with the transformative tools 

of the emerging Digital Era, including AI/ML and multiscale modeling. ML techniques (within 

the wider field of AI) present a plethora of opportunities to elucidate structure-function 

relationships for porous electrodes images produced by CT and/or multi-physics/multi-scale 

modeling. In short, ML techniques give to a computer the power to learn and self-correct from 

data, building “models” (also called ML models) in an automatic way. These models can then be 

used to predict qualitative or quantitative outcomes, allowing for instance to unravel complex 

parameters interdependencies in multi-dimensional datasets and to automatize processes that 

would be too time-consuming to perform manually. Regarding the latter, segmenting and distinctly 

labelling complex features in CT-images such as cracks12 or regions of delamination13 can be 

conducted more quickly and accurately with ML techniques. The same can be said for the 

segmentation of composites containing multiple types of materials, such as lithium-ion battery 

electrodes which encompass metal oxides, carbon particles, and polymers. Such impressive 

segmentation capabilities allow electrochemically active, inactive materials, and pores to be 

distinguished faster than ever before, triggering the emergence of powerful digital twins of real 

electrode electrochemical operation. Still the challenge remains for CT to distinguish polymeric 

binders from carbon additives, both materials affecting differently the overall electrode 

performance. ML is also expected to help accelerate diagnostics of microstructural phenomena, as 

well as identification of favorable particle and electrode architectures for long life and specific 

operating conditions.  

Applying ML Generative Adversarial Networks (GANs) to artificially create representative 

electrode microstructures11 holds promise for generating 3D-resolved images with greater detail 

than any single imaging mode could achieve. GANs, trained with CT volumes or even slices160, 

can also be used to generate in silico extended volumes. This would be particularly suitable for 

developing representative electrochemistry simulations from pre-existing tomography data of 
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composite or electrode structures. The combination of physical-based manufacturing models and 

GANs can also allow the quick generation of composite structures for compositions not yet 

characterized, opening tremendous opportunities to accelerate the prediction and optimization of 

the impact of manufacturing conditions on the structures131,161.  

Critical to the acceleration of the adoption of ML techniques for these purposes is to make robust 

multiscale data open source, which would not only alleviate the limitation of accessing specialized 

imaging facilities, but also provide a wealth of microstructural information available for ML and 

multi-physics/multi-scale models. Such repositories should contain not only the actual data but 

also the metadata allowing to precisely track the conditions on which the characterization was 

performed, and some initiatives have already emerged162.  

We also expect the emergence of AI/ML-orchestrated workflows integrating CT characterization, 

data analysis, and physical model generation at multiple scales (multiscale modeling) (Figure 5). 

By coupling existing middleware technologies (e.g. UNICORE163) to AI/ML scripts, such 

workflows may not be difficult to develop. Thus, ML can be used to sequentially or iteratively 

couple different length scale models automatically with varying degrees of fidelity. Moreover, ML 

can also assist in comparing the modeling outcomes with experimental data. The outputs can then 

later be used to train AI/ML models to predict synthesis and manufacturing conditions in order to 

achieve optimal material properties164. Such an automated high-fidelity approach may 

revolutionize the conception of new composites materials by linking experimental data (CT) with 

computational simulations.  
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 Figure 5 | Correlative workflow analysis and modeling: combining CT and advanced characterization 

techniques in the development of comprehensive predicative models. Illustrates the connection of experimental 

characterization data with modeling using AI/ML and the cyclical workflow to improve the synthesis, fabrication, and 

battery performances using predictive models. 

 

5. Conclusion 

Since its conception in the 1970s, CT has profoundly impacted the scientific community. In the 

last two decades, it has extended to greatly influence battery research and development. As a non-

destructive tool, CT can perform powerful in-situ and operando studies in a multitude of battery 

chemistries. The reconstructed volume and extracted morphological parameters (e.g. particle 

distribution, porosity, and tortuosity) can be incorporated in predictive models to simulate battery 

performances. The CT images can also be used to generate large representative volumes using 

AI/ML techniques, such as GANs, which can generate realistic multiphase porous electrode 

microstructures11. The advent of such techniques can drastically reduce the number of required CT 
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characterizations for 3D-resolved electrochemical models, while ensuring representative volumes 

for simulations. 

Lastly, the combination of multiscale 3D morphological characterization techniques (e.g. FIB-

SEM, TEM, MicroCT, and NanoCT) may pave the way for performance predictive models that 

can incorporate phenomena at multiple length scales. Characterization data and models can then 

be consolidated in open-source datasets and repositories, and even incorporated in Virtual Reality 

(VR) environments and tools to educate a new generation of researchers on electrode structures 

and associated geometric features165.  With the tremendous progresses achieved in these last 20 

years in CT experimentation, analysis, computational modeling, and AI/ML, there is promise of 

remarkable achievements and discoveries in the years to come. 
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