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ABSTRACT

We propose the Gaussian Error Linear Unit (GELU), a high-performing neural
network activation function. The GELU nonlinearity is the expected transforma-
tion of a stochastic regularizer which randomly applies the identity or zero map to
a neuron’s input. This stochastic regularizer is comparable to nonlinearities aided
by dropout, but it removes the need for a traditional nonlinearity. The connec-
tion between the GELU and the stochastic regularizer suggests a new probabilis-
tic understanding of nonlinearities. We perform an empirical evaluation of the
GELU nonlinearity against the ReLU and ELU activations and find performance
improvements across all tasks.

1 INTRODUCTION

Early artificial neurons utilized binary threshold units (Hopfield, 1982; McCulloch & Pitts, 1943).
These hard binary decisions are smoothed with sigmoid activations, enabling a neuron to have a “fir-
ing rate” interpretation and to train with backpropagation. But as networks became deeper, training
with sigmoid activations proved less effective than the non-smooth, less-probabilistic ReLU (Nair &
Hinton, 2010) which makes hard gating decisions based upon an input’s sign. Despite having less of
a statistical motivation, the ReLU remains a competitive engineering solution which often enables
faster and better convergence than sigmoids. Building on the successes of ReLUs, a recent modifi-
cation called ELUs (Clevert et al., 2016) allows a ReLU-like nonlinearity to output negative values
which sometimes increases training speed. In all, the activation choice has remained a necessary
architecture decision for neural networks lest the network be a deep linear classifier.

Deep nonlinear classifiers can fit their data so well that network designers are often faced with the
choice of including stochastic regularizer like adding noise to hidden layers or applying dropout (Sri-
vastava et al., 2014), and this choice remains separate from the activation function. Some stochastic
regularizers can make the network behave like an ensemble of networks, a pseudoensemble (Bach-
man et al., 2014), and can lead to marked accuracy increases. For example, the stochastic regular-
izer dropout creates a pseudoensemble by randomly altering some activation decisions through zero
multiplication. Nonlinearities and dropout thus determine a neuron’s output together, yet the two
innovations have remained distinct. More, neither subsumed the other because popular stochastic
regularizers act irrespectively of the input and nonlinearities are aided by such regularizers.

In this work, we bridge the gap between stochastic regularizers and nonlinearities. To do this, we
consider an adaptive stochastic regularizer that allows for a more probabilistic view of a neuron’s
output. With this stochastic regularizer we can train networks without any nonlinearity while match-
ing the performance of activations combined with dropout. This is unlike other stochastic regular-
izers without any nonlinearity as they merely yield a regularized linear classifier. We also take the
expected transformation of this stochastic regularizer to obtain a novel nonlinearity which matches
or exceeds models with ReLUs or ELUs across tasks from computer vision, natural language pro-
cessing, and automatic speech recognition.

∗Work done while the author was at TTIC. Code available at github.com/hendrycks/GELUs

1

https://github.com/hendrycks/GELUs


Under review as a conference paper at ICLR 2017

2 GELUS AND THE STOCHASTIC 0-I MAP

We create our stochastic regularizer and nonlinearity by combining intuitions from dropout, zo-
neout, and ReLUs. First note that a ReLU and dropout both yield a neuron’s output with the
ReLU deterministically multiplying the input by zero or one and dropout stochastically multi-
plying by zero. Also, a new RNN regularizer called zoneout stochastically multiplies inputs
by one (Krueger et al., 2016). We merge this functionality by multiplying the input by zero
or one, but the values of this zero-one mask are stochastically determined while also dependent
upon the input. Specifically, we multiply the neuron input x by m ∼ Bernoulli(Φ(x)), where
Φ(x) = P (X ≤ x), X ∼ N (0, 1) is the cumulative distribution function of the standard nor-
mal distribution. The distribution Bernoulli(Φ(x)) appears in Gaussian Processes for classification
(Houlsby et al., 2011) and the neuron’s output is xm giving x or 0. Thus inputs have a higher
probability of being “dropped” as x decreases, so the transformation applied to x is stochastic yet
depends upon the input. Masking inputs in this fashion retains nondeterminism but maintains depen-
dency upon the input value. A stochastically chosen mask amounts to a stochastic zero or identity
transformation of the input, leading us to call the regularizer the SOI map. The SOI Map is much
like Adaptive Dropout (Ba & Frey, 2013), but we refer to the regularizer as the SOI Map because
adaptive dropout is used in tandem with nonlinearities. In section 4, we show that simply mask-
ing linear transformations with the SOI map exceeds the power of linear classifiers and competes
with nonlinearities aided by dropout, showing that nonlinearities can be replaced with stochastic
regularizers.
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Figure 1: The GELU (µ = 0, σ = 1), ReLU, and ELU
(α = 1).

The SOI map can be made determinis-
tic should we desire a deterministic de-
cision from a neural network, and this
gives rise to our new nonlinearity. The
nonlinearity is the expected transforma-
tion of the SOI map on an input x,
which is Φ(x)×Ix+(1−Φ(x))×0x =
xΦ(x). Loosely, this expression states
that we scale x by how much greater it
is than other inputs. We now make an
obvious extension. Since the cumula-
tive distribution function of a Gaussian
is computed with the error function, we
define the Gaussian Error Linear Unit
(GELU) as

GELU(x) = xP (X ≤ x),

where X ∼ N (µ, σ2). Both µ and σ are possibly parameters to optimize, but throughout this work
we simply let µ = 0 and σ = 1. Consequently, we do not introduce any new hyperparameters in
the following experiments. In the next section, we show that the GELU exceeds the performance of
ReLUs and ELUs across numerous tasks.

3 GELU EXPERIMENTS

We evaluate the GELU, ELU, and ReLU on MNIST classification (grayscale images with 10 classes,
60k training examples and 10k test examples), MNIST autoencoding, Tweet part-of-speech tagging
(1000 training, 327 validation, and 500 testing tweets), TIMIT frame recognition (3696 training,
1152 validation, and 192 test audio sentences), and CIFAR-10/100 classification (color images with
10/100 classes, 50k training and 10k test examples). We do not evaluate nonlinearities like the
LReLU because of its similarity to ReLUs (see Maas et al. (2013) for a description of LReLUs).

3.1 MNIST CLASSIFICATION

Let us verify that this nonlinearity competes with previous activation functions by replicating an
experiment from Clevert et al. (2016). To this end, we train a fully connected neural network with
GELUs (µ = 0, σ = 1), ReLUs, and ELUs (α = 1). Each 8-layer, 128 neuron wide neural
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Figure 2: MNIST Classification Results. Left are the loss curves without dropout, and right are
curves with a dropout rate of 0.5. Each curve is the the median of five runs. Training set log losses
are the darker, lower curves, and the fainter, upper curves are the validation set log loss curves.
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Figure 3: MNIST Robustness Results. Using different nonlinearities, we record the test set accuracy
decline and log loss increase as inputs are noised. The MNIST classifier trained without dropout
received inputs with uniform noise Unif[−a, a] added to each example at different levels a, where
a = 3 is the greatest noise strength. Here GELUs display robustness matching or exceeding ELUs
and ReLUs.

network is trained for 50 epochs with a batch size of 128. This experiment differs from those of
Clevert et al. in that we use the Adam optimizer (Kingma & Ba, 2015) rather than stochastic gra-
dient descent without momentum, and we also show how well nonlinearities cope with dropout.
Weights are initialized with unit norm rows, as this has positive impact on each nonlinearity’s per-
formance (Hendrycks & Gimpel, 2016; Mishkin & Matas, 2016; Saxe et al., 2014). Note that we
tune over the learning rates {10−3, 10−4, 10−5} with 5k validation examples from the training set
and take the median results for five runs. Using these classifiers, we demonstrate in Figure 3 that
classifiers using a GELU can be more robust to noised inputs. Figure 2 shows that the GELU tends
to have the lowest median training log loss with and without dropout. Consequently, although the
GELU is inspired by a different stochastic process, it comports well with dropout.

3.2 MNIST AUTOENCODER

We now consider a self-supervised setting and train a deep autoencoder on MNIST (Desjardins et al.,
2015). To accomplish this, we use a network with layers of width 1000, 500, 250, 30, 250, 500, 1000,
in that order. We again use the Adam optimizer and a batch size of 64. Our loss is the mean squared
loss. We vary the learning rate from 10−3 to 10−5. We also tried a learning rate of 0.01 but ELUs
diverged, and GELUs and RELUs converged poorly. The results in Figure 4 indicate the GELU
accommodates different learning rates and that the GELU either ties or significantly outperforms
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Figure 4: MNIST Autoencoding Results. Each curve is the median of three runs. Left are loss
curves for a learning rate of 10−3, and the right figure is for a 10−4 learning rate. Light, thin curves
correspond to test set log losses.
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Figure 5: TIMIT Frame Classification. Learning curves show training set convergence, and the
lighter curves show the validation set convergence.

the other nonlinearities. To save space, we show the learning curve for the 10−5 learning rate in
appendix A.

3.3 TWITTER POS TAGGING

Many datasets in natural language processing are relatively small, so it is important that an activation
generalize well from few examples. To meet this challenge we compare the nonlinearities on POS-
annotated tweets (Gimpel et al., 2011; Owoputi et al., 2013) which contain 25 tags. The tweet
tagger is simply a two-layer network with pretrained word vectors trained on a corpus of 56 million
tweets (Owoputi et al., 2013). The input is the concatenation of the vector of the word to be tagged
and those of its left and right neighboring words. Each layer has 256 neurons, a dropout keep
probability of 0.8, and the network is optimized with Adam while tuning over the learning rates
{10−3, 10−4, 10−5}. We train each network five times per learning rate, and the median test set
error is 12.57% for the GELU, 12.67% for the ReLU, and 12.91% for the ELU.
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Figure 6: CIFAR-10 Results. Each curve is the median of three runs. Learning curves show training
set error rates, and the lighter curves show the test set error rates.

3.4 TIMIT FRAME CLASSIFICATION

Our next challenge is phone recognition with the TIMIT dataset which has recordings of 680
speakers in a noiseless environment. The system is a five-layer, 2048-neuron wide classifier as
in (Mohamed et al., 2012) with 39 output phone labels and a dropout rate of 0.5 as in (Srivas-
tava, 2013). This network takes as input 11 frames and must predict the phone of the center
frame using 26 MFCC, energy, and derivative features per frame. We tune over the learning rates
{10−3, 10−4, 10−5} and optimize with Adam. After five runs per setting, we obtain the median
curves in Figure 5, and median test error chosen at the lowest validation error is 29.3% for the
GELU, 29.5% for the ReLU, and 29.6% for the ELU.

3.5 CIFAR-10/100 CLASSIFICATION

Next, we demonstrate that for more intricate architectures the GELU nonlinearity again outperforms
other nonlinearities. We evaluate this activation function using CIFAR-10 and CIFAR-100 datasets
(Krizhevsky, 2009) on shallow and deep convolutional neural networks, respectively.

Our shallower convolutional neural network is a 9-layer network with the architecture and training
procedure from Salimans & Kingma (2016) while using batch normalization to speed up training.
The architecture is described in appendix B and recently obtained state of the art on CIFAR-10
without data augmentation. No data augmentation was used to train this network. We tune over
the learning initial rates {10−3, 10−4, 10−5} with 5k validation examples then train on the whole
training set again based upon the learning rate from cross validation. The network is optimized with
Adam for 200 epochs, and at the 100th epoch the learning rate linearly decays to zero. Results are
shown in Figure 6, and each curve is a median of three runs. Ultimately, the GELU obtains a median
error rate of 7.89%, the ReLU obtains 8.16%, and the ELU obtains 8.41%.

Next we consider a wide residual network on CIFAR-100 with 40 layers and a widening factor of 4
(Zagoruyko & Komodakis, 2016). We train for 50 epochs with the learning rate schedule described
in (Loshchilov & Hutter, 2016) (T0 = 50, η = 0.1) with Nesterov momentum, and with a dropout
keep probability of 0.7. Some have noted that ELUs have an exploding gradient with residual
networks (Shah et al., 2016), and this is alleviated with batch normalization at the end of a residual
block. Consequently, we use a Conv-Activation-Conv-Activation-BatchNorm block architecture
to be charitable to ELUs. Over three runs we obtain the median convergence curves in Figure 7.
Meanwhile, the GELU achieves a median error of 20.74%, the ReLU obtains 21.77% (without our
changes described above, the original 40-4 WideResNet with a ReLU obtains 22.89% (Zagoruyko
& Komodakis, 2016)), and the ELU obtains 22.98%.
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Figure 7: CIFAR-100 Wide Residual Network Results. Learning curves show training set conver-
gence with dropout on, and the lighter curves show the test set convergence with dropout off.

4 SOI MAP EXPERIMENTS

Now let us consider how well the SOI Map performs rather than the GELU, its expectation. We
consider evaluating the SOI Map, or an Adaptive Dropout variant without any nonlinearity, to show
that neural networks do not require traditional nonlinearities. We can expect the SOI map to perform
differently from a nonlinearity plus dropout. For one, stochastic regularizers applied to composed
linear maps without a deterministic nonlinearity tend to yield a regularized deep linear transforma-
tion. In the case of a single linear transformation dropout and the SOI map behave differently. To
see this, recall that Wang & Manning (2013) showed that for least squares regression, if a prediction

is Ŷ =
∑

i
wiximi, where x is an zero-centered input, w is a zero-centered learned weight, and m

is a dropout mask of zeros and ones, we have that Var(Ŷ ) =
∑

i
w2

i
x2

i
p(1− p) when using dropout.

Meanwhile, the SOI map has the prediction variance
∑

i
w2

i
x2

i
Φ(x)(1−Φ(x)). Thus as xi increases,

the variance of the prediction increases for dropout, but for the SOI map xi’s increase is dampened
by the Φ(x)(1−Φ(x)) term. Then as the inputs and score gets larger, a prediction with the SOI map
can have less volatility rather than more. In the experiments that follow, we confirm that the SOI
map and dropout differ because the SOI map yields accuracies comparable to nonlinearities plus
dropout, despite the absence of any traditional nonlinearity.

We begin our experimentation by reconsidering the 8-layer MNIST classifier. We have the same
training procedure except that we tune the dropout keep probability over {1, 0.75, 0.5} when using
a nonlinearity. There is no dropout while using the SOI map. Meanwhile, for the SOI map we tune
no additional hyperparameter. When the SOI map trains we simply mask the neurons, but during
testing we use the expected transformation of the SOI map (the GELU) to make the prediction
deterministic, mirroring how dropout is turned off during testing. A ReLU with dropout obtains
2.10% error, and a SOI map achieves 2.00% error.

Next, we reconsider the Twitter POS tagger. We again perform the same experimentation but also
tune over the dropout keep probabilities {1, 0.75, 0.5} when using a nonlinearity. In this experiment,
the ReLU with dropout obtains 11.9% error, and the SOI map obtains 12.5% error. It is worth
mentioning that the best dropout setting for the ReLU was when the dropout keep probability was
1, i.e., when dropout was off, so the regularization provided by the SOI map was superfluous.

Finally, we turn to an earlier TIMIT experiment. Like the previous two experiments, we also tune
over the dropout keep probabilities {1, 0.75, 0.5} when using a nonlinearity. Under this setup, the
ReLU ties with the SOI map as both obtain 29.46% error, though the SOI map obtained its best
validation loss in the 7th epoch while the ReLU with dropout did in the 27th epoch.

6



Under review as a conference paper at ICLR 2017

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 Gaussian CDF
Logistic Sigmoid

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GELU
SiLU
ReLU

Figure 8: Although a logistic sigmoid function approximates a Gaussian CDF, the difference is still
conspicuous and is not a suitable approximation.

In summary, the SOI map can be comparable to a nonlinearity with dropout and does not simply
yield a regularized linear transformation. This is surprising because the SOI map is not like a
traditional nonlinearity while it has a nonlinearity’s power. The upshot may be that traditional,
deterministic, differentiable functions applied to a neuron’s input are less essential to the success of
neural networks, since a stochastic regularizer can achieve comparable performance.

5 DISCUSSION

Across several experiments, the GELU outperformed previous nonlinearities, but it bears semblance
to the ReLU and ELU in other respects. For example, as σ → 0 and if µ = 0, the GELU becomes
a ReLU. More, the ReLU and GELU are equal asymptotically. In fact, the GELU can be viewed
as a natural way to smooth a ReLU. To see this, recall that ReLU = max(x, 0) = x1(x > 0)
(where 1 is the indicator function), while the GELU is xΦ(x) if µ = 0, σ = 1. Then the CDF is a
smooth approximation to the binary function the ReLU uses, like how the sigmoid smoothed binary
threshold activations. Unlike the ReLU, the GELU and ELU can be both negative and positive. In
fact, if we used the cumulative distribution function of the standard Cauchy distribution, then the
ELU (when α = 1/π) is asymptotically equal to xP (C ≤ x), C ∼ Cauchy(0, 1) for negative
values and for positive values is xP (C ≤ x) if we shift the line down by 1/π. These are some
fundamental relations to previous nonlinearities.

However, the GELU has several notable differences. This non-convex, non-monotonic function is
not linear in the positive domain and exhibits curvature at all points. Meanwhile ReLUs and ELUs,
which are convex and monotonic activations, are linear in the positive domain and thereby can lack
curvature. As such, increased curvature and non-monotonicity may allow GELUs to more easily
approximate complicated functions than can ReLUs or ELUs. Also, since ReLU(x) = x1(x > 0)
and GELU(x) = xΦ(x) if µ = 0, σ = 1, we can see that the ReLU gates the input depending upon
its sign, while the GELU weights its input depending upon how much greater it is than other inputs.
In addition and significantly, the GELU has a probabilistic interpretation given that it is the expected
SOI map, which combines ideas from dropout and zoneout.

The SOI Map also relates to a previous stochastic regularizer called Adaptive Dropout (Ba & Frey,
2013). The crucial difference between typical adaptive dropout and the SOI map is that adaptive
dropout multiplies the nonlinearity’s output by a mask, but the SOI map multiplies the neuron input
by a mask. Consequently, the SOI map trains without any nonlinearity, while adaptive dropout
modifies the output of a nonlinearity. In this way, standard implementations of adaptive dropout do
not call into question the necessity of traditional nonlinearities since it augments a nonlinearity’s
decision rather than eschews the nonlinearity entirely.

We also have two practical tips for using the GELU. First we advise using an optimizer with mo-
mentum when training with a GELU, as is standard for deep neural networks. Second, using a close
approximation to the cumulative distribution function of a Gaussian distribution is important. For
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example, using a sigmoid function σ(x) = 1/(1 + e−x) is an approximation of a cumulative dis-
tribution function of a normal distribution, but it is not a close enough approximation (Ba & Frey,
2013). Indeed, we found that a Sigmoid Linear Unit (SiLU) xσ(x) performs worse than GELUs but
usually better than ReLUs and ELUs. The maximum difference between σ(x) and Φ(x) is approx-
imately 0.1, but the difference between the two is visible in Figure 8. Instead of using a xσ(x) to

approximate Φ(x), we used 0.5x(1+tanh[
√

2/π(x+0.044715x3)]) (Choudhury, 2014).1 This is a
sufficiently fast, easy-to-implement approximation which we used in every experiment in this paper.

6 CONCLUSION

We observed that the GELU outperforms previous nonlinearities across tasks from computer vi-
sion, natural language processing, and automatic speech recognition. Moreover, we showed that a
stochastic regularizer can compete with a nonlinearity aided by dropout, indicating that traditional
nonlinearities may not be crucial to neural network architectures. This stochastic regularizer makes
probabilistic decisions and the GELU is the expectation of the decision. We therefore probabilisti-
cally related the GELU to the SOI map, thereby bridging a nonlinearity to a stochastic regularizer.
Now having seen that a stochastic regularizer can replace a traditional nonlinearity, we hope that
future work explores the design space of other stochastic regularizers as powerful as a traditional ac-
tivation aided by dropout. Furthermore, there may be fruitful modifications to the GELU in different
contexts. For example, for sparser inputs, a nonlinearity of the form xP (L ≤ x), L ∼ Laplace(0, 1)
may be a more effective activation. For the numerous datasets evaluated in this paper, the GELU
exceeded the accuracy of the ELU and ReLU consistently, making it a viable alternative to previous
nonlinearities.
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A ADDITIONAL MNIST AUTOENCODER LEARNING CURVE
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Figure 9: MNIST Autoencoding Results for a learning rate of 10−5. Each curve is a median of three
runs. Light, thin curves correspond to test set log losses. Note that reconstruction errors are higher
than models trained with 10−3 or 10−4 learning rates.

B NEURAL NETWORK ARCHITECTURE FOR CIFAR-10 EXPERIMENTS

Table 1: Neural network architecture for CIFAR-10.

Layer Type # channels x, y dimension

raw RGB input 3 32
ZCA whitening 3 32
Gaussian noise σ = 0.15 3 32
3× 3 conv with activation 96 32
3× 3 conv with activation 96 32
3× 3 conv with activation 96 32
2× 2 max pool, stride 2 96 16
dropout with p = 0.5 96 16
3× 3 conv with activation 192 16
3× 3 conv with activation 192 16
3× 3 conv with activation 192 16
2× 2 max pool, stride 2 192 8
dropout with p = 0.5 192 8
3× 3 conv with activation 192 6
1× 1 conv with activation 192 6
1× 1 conv with activation 192 6
global average pool 192 1
softmax output 10 1
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