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Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for 
engineering of the optical response and generation of strong localized near-fields. Classical 
electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum 
effects become important owing to non-local screening and the spill-out of electrons. However, 
full quantum simulations are not presently feasible for realistically sized systems. Here we 
present a novel approach, the quantum-corrected model (QCm), that incorporates quantum-
mechanical effects within a classical electrodynamic framework. The QCm approach models 
the junction between adjacent nanoparticles by means of a local dielectric response that 
includes electron tunnelling and tunnelling resistivity at the gap and can be integrated within 
a classical electrodynamical description of large and complex structures. The QCm predicts 
optical properties in excellent agreement with fully quantum mechanical calculations for small 
interacting systems, opening a new venue for addressing quantum effects in realistic plasmonic 
systems. 
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The capability of plasmonic systems to control, localize and 
enhance optical signals at the sub-wavelength scale has 
paved the way for many novel concepts and applications in 

nanophotonics1–10. The tremendous progress in experimental tech-
niques and fabrication of nano-plasmonic devices has stimulated 
theoretical development for addressing complex physical phenom-
ena occurring at sub-nanometric scale. Presently, most theoretical 
descriptions of the optical response of plasmonic systems rely on 
classical electromagnetic models (CEM) describing the response of 
the structures by a frequency-dependent local linear dielectric func-
tion ε(ω) that characterizes each individual part of the nanostruc-
ture. In this classical approach, the interface between the different 
materials is assumed abrupt, and quantum-mechanical effects due 
to the electron density spill-out from the nanoparticles and inter-
particle electron tunnelling are not considered.

While the classical approach has been successfully used to  
calculate the optical properties of many different plasmonic  
systems, special care must be taken when the separation distances 
involved are at the nanometre or sub-nanometre scale11,12. In  
this situation, solving Maxwell equations using non-local bulk  
dielectric functions ε(k,ω) (refs 13–16) may extend the validity of the  
classical treatment. However, this approach cannot describe  
properly the electron tunnelling for small separations when  
the electronic densities of the individual nanostructures overlap. 
In such a case, a quantum-mechanical approach that fully accounts 
for non-local effects is necessary17. One example of such a quan-
tum model (QM) is the time-dependent density functional theory 
(TDDFT)18,19 that offers a possibility to address the optical response 
of plasmonic systems at the fully quantum ab initio level. Recent 
studies have demonstrated that the tunnelling current between 
nanoparticles shortcircuits the junction, reduces the Coulomb  
coupling between charges of opposite sign in the two nanoparticles 
and strongly affects the optical response of the system20–22. In gen-
eral, quantum effects can completely change the spectral distribution 
and the field enhancements of the resonant modes supported by a 
given plasmonic structure, thus limiting the validity of a classical 
description. Consideration of such quantum effects is therefore of 
paramount importance in systems with sub-nanometer wide gaps, 
which nowadays gain a lot of interest owing to their importance as 
substrates in plasmon-enhanced spectroscopies such as surface-
enhanced Raman scattering12,23 or in the optoelectronic response 
of hybrid systems9. The signal intensity of such spectroscopies  
depends on the local electromagnetic field enhancement24–26  
and can be strongly reduced when electron transfer sets in across  
the junction.

A quantum treatment of the optical properties of large plas-
monic systems is very demanding, owing to the high number of  
electrons involved in the optical response. Thus, previous studies 
of nanoparticle dimers using fully quantum-mechanical models  
were limited to small spheres20,21 with a few thousand conduction 
electrons. In contrast, typical plasmonic systems used in experi-
ments contain many millions or even billions of electrons and  
cannot be currently addressed with first-principle methods. In 
this article, we introduce a method to study the optical response of  
large coupled plasmonic systems that includes quantum effects. 
In this approach, which we denote the quantum-corrected model 
(QCM), the junction between two adjacent nanoparticles is  
represented with a fictitious conductive material that mimics the 
electron tunnelling. With the inclusion of this medium, the opti-
cal properties can be calculated within a classical electrodynamic 
framework27 and yield excellent agreement with fully quantum-
mechanical calculations for small spheres. By applying the QCM 
introduced here, we observe quantum-induced effects in sub-
nanometer gaps of large metallic dimers and bowtie antennas, such 
as spectral redistribution of electromagnetic modes and collapse of 
the field enhancement.

Results
Quantum-corrected model. Figure 1 illustrates the idea underlying 
the QCM for the case of two metallic spheres of radius R surrounded 
by vacuum with permitivity ε0 and separated by a distance D. 
Within the classical description, the interface between the different 
materials is assumed abrupt, as sketched in Fig. 1a. In the simplest 
approach, a Drude model characterized by a bulk plasma frequency 
ωp and damping parameter γp can describe the dielectric response 
of a metal as

e e w w w gm p pi= − +∞
2 /( ( )).

The parameter ε describes the dielectric screening introduced 
by the bound valence electrons of the positive ion cores and the  
second term is the contribution from the conduction electrons. In 
what follows we will for simplicity assume ε = 1. The schematic in 
Fig. 1a represents the dielectric permitivity ε in the different parts 
of the metallic dimer together with the corresponding local conduc-
tivity σ =  − iω(ε − 1)/(4π), which is given by the electronic density 
distribution and is zero in vacuum. In this classical formalism, zero 
conductivity in the junction implies that the probability of electron 
tunnelling T between the nanoparticles is zero. In a QM, however, 
there is no abrupt change of the electron density at the interfaces of 
the nanoparticles, as represented in Fig. 1b. The density of electrons 
|Ψ|2 varies continuously between the metal surfaces in this case, and 
can be significant in the centre of the junction for narrow gaps. This 
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Figure 1 | Description of the material properties of a metallic dimer 
within the classical and quantum treatments. schematics of a metallic 
dimer composed of two spherical particles separated by a distance D  
with use of a (a) CEm, (b) Qm and (c) QCm. The schematics show the 
variation of the dielectric properties of the materials at the boundaries of 
the dimers. The joint sketches show the corresponding absolute value of 
the conductivity σ (a,c) and electron density distribution |Ψ|2 (b). Within a 
classical framework (a), the conductivity is different from zero only inside 
the spheres and no electron transfer can occur between the particles 
(electron tunnelling probability T = 0). In a fully quantum-mechanical 
treatment (b), the density of electrons in the gap is non-zero for small D 
and tunnelling is possible (T>0). In the QCm (c), the electron tunnelling 
is accounted for by describing the material in the junction with a fictitious 
dielectric medium (illustrated by a shaded red colour) characterized by  
a local dielectric permitivity ε(l(x, y), ω) that depends only on the  
local width l(x, y) of the junction and the nanoparticle material at both 
sides.
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overlap of the evanescent electron densities for small separation dis-
tances (subnanometric) sets in the possibility of electron tunnelling 
between the two spheres. The smaller the interparticle separation is, 
the larger the electron tunnelling probability.

Figure 1c introduces the QCM schematically. Outside the gap 
region, the particle and the surrounding vacuum are described 
by the conventional dielectric permittivities with abrupt inter-
faces. We use the same Drude metal model as in equation (1), with 
fixed plasma frequency ωp and damping parameter γp to describe 
the material of both particles. The red-shaded region at the gap in  
Fig. 1c represents the fictitious material that will account for elec-
tron tunnelling. It is possible to build the local permittivity ε(l, ω) 
corresponding to this fictitious material as a function that depends 
on the separation distance between interfaces l, for each lateral posi-
tion in the gap l = l(x, y). This permittivity ε(l, ω) can be obtained 
from a quantum-mechanical calculation of the electron transmis-
sion probability T(l) through the potential barrier separating the 
two metals, as will be described below.

In order to obtain ε(l, ω), we consider now the relationship 
between the conductivity σ(l, ω) and the dielectric function (in 
atomic units)

s w w
p

e w( , ) ( ( , ) ),l i l= − −
4
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and assume a Drude model to characterize the local permittivity of 
the fictitious medium at the gap,
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where the plasmon frequency of the fictitious material ωg and the 
screening contribution ε are assumed to be equal to that of the 
surrounding material (ωg = ωp, ε = 1), and the tunnelling damping 
γg(l) is a function of the separation distance l(x, y) at the particular 
lateral position of the gap (x, y). The separation-dependent tunnel-
ling damping γg(l) is thus the key parameter describing the quantum 
tunnelling resistance introduced by the presence of the gap. We can 
obtain γg(l) from the static conductivity σ0(l) = σ(l, ω  →0), yielding:
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This procedure can be generalized to situations with ε≠1, that 
is, where screening due to bound electrons would be present. In our 
model, we assume a value of ωg = ωp and consider γg as the varying 
parameter because, as will be discussed below, this choice is consist-
ent with the resistive nature of the gaps found in the full-quantum- 
mechanical calculations with TDDFT. Indeed, as γgω over a 
broad range of interparticle separations, the frequency dispersion 
of the conductivity is negligible and thus σ(l, ω) can be determined 
by the dc value σ0. This large tunnelling resistance makes the results 
of the plasmonic response unsensitive to the specific parameteriza-
tion of the permittivity of the fictitious medium as long as it prop-
erly accounts for the resistive character of the gap. The robustness 
of the model to different choices of parametrization of ωg and γg  
is explicitly illustrated in the Supplementary Fig. S1 and in the  
Supplementary Discussion.

Tunnelling probability and conductivity in the SSTM approach. 
To obtain the conductivity as a function of separation distance l, 
we need to relate the current J and the field E in the junction. To do 
so, we note that the electric field E in the junction is predominantly  
oriented along the interparticle axis, and it is nearly independ-
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ent of the z coordinate. Moreover, the transmission of electrons at  
the Fermi energy, ΩF (which are the electrons that will dominate 
the tunnelling current) through the potential barrier separating the 
nanoparticles occurs at a time scale much smaller than the optical 
cycle for sufficiently large separation distances l. Thus, the tunnelling 
current adiabatically follows the field in the junction. Under these 
assumptions, a dc or static scanning tunnelling microscopy (SSTM) 
approach can be used. For the typical sizes of plasmonic nanoparti-
cles, the radii of curvature of the surfaces are much larger than both 
the Fermi electron wavelength and the typical separation distances 
at which quantum effects become important. The tunnelling current 
density in a given portion of the gap (x, y) with separation l(x, y) can 
thus be approximated by the current density obtained in a simpler 
system, as that of the two flat metal surfaces represented in Fig. 2a, 
separated by the same distance l.

Within the SSTM approach, the distance-dependent dc conduc-
tivity σ0(l) at the junction under bias U = lE can be connected with 
the current density J following28

s
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where T(Ω, l) is the energy Ω-dependent electron tunnelling prob-
ability at each lateral position within the gap with separation l. This 
transmission probability can be obtained within a fully quantum-
mechanical treatment as the number of electrons to treat in such a 
system (simple flat gap) is relatively small. The quantum calculation of 
T(Ω, l) can be tackled either from full ab initio approaches, account-
ing for atomistic structure or from a model potential approach. We 
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Figure 2 | Geometries and parameters involved in the QCM. (a) simpler 
plasmonic system composed of two semi-infinite planar interfaces 
separated by a distance l and characterized by tunnelling transmission 
T(l). The tunnelling-induced conductivity between the surfaces defines 
the separation-dependent dielectric material ε(l, ω) used in the QCm. 
(b) schematics indicating the inhomogeneous distribution of the local 
dielectric constant used in the QCm in the case of the metallic dimer. εm is 
the dielectric constant of the metal, ε0 the vacuum permittivity and εi the 
separation-dependent dielectric constant of the shells of fictitious material 
that accounts for the quantum tunnelling (i = 1,…,n). In the figure, three  
of these representative concentric shells are shown within the gap.  
(c) normalized electron tunnelling transmission T(l)/T(0) and (d) 
tunnelling damping γg as a function of separation distance l. The open 
points in (d) correspond to values obtained from the ssTm approach.  
The full lines in (d) correspond to the values used in the model exponential 
approach adopted in the QCm. In both (c) and (d), red corresponds to the 
na jellium material and blue to the Au jellium.
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use the second strategy for simplicity and assume tunnelling between  
jellium-like surfaces. More general and precise quantum-mechanical  
treatments based on atomistic models and Green’s function tech-
niques29 can also be implemented to obtain the dc conductivity 
σ0(l). The QCM approach thus amounts to replacing the dielectric 
function at each lateral position (x, y) of the junction between the 
two nanoparticles (Figs 1c and 2b) by that obtained from a simpler 
situation (Fig. 2a) following equations (3–5).

In Fig. 2c,d we represent the normalized values of the tunnel-
ling transmission T l T l dF( ) ( , )= ∫0

Ω
Ω Ω  corresponding to the simplified 

system in Fig. 2a and its corresponding tunnelling damping γg(l) 
as obtained from equations (4) and (5) for two metallic materi-
als: Na and Au. The results of γg(l) within the SSTM approach are 
shown only for intermediate and large separations in Fig. 2d, as 
the SSTM approach to the tunnelling current calculation is only 
valid in the regime where the transmission T is small. Noting that 
the calculated values of γg(l) follow quite closely an exponential 
dependence with separation distance l (a well-established law for 
tunnelling processes), we assume for simplicity that this functional 
form is valid over the whole range of separations. The exponential 

 expression describing γg(l) is determined from the value at contact 
(l→0) together with the SSTM results at large l. First, we impose 
that the tunnelling damping for zero gap distance γg(0) is given by 
the value of the intrinsic damping of the metals at both sides of the 
cavity γp, that is, γg(0) = γg(l→0) = γp, so that a continuous metal is 
formed. Furthermore, we choose that our exponential expression 
reproduces the SSTM results for a separation distance l′ that gives 
a transmission coefficient T(l′) = 0.01. The corresponding value of 
γg(l) is shown as solid lines in Fig. 2d for Na and Au, demonstrat-
ing that the exponential approximation reproduces well the SSTM 
results for l3 Å. We show in Supplementary Fig. S1 and in the  
Supplementary Discussion that the QCM is very robust with  
respect to the choice of particular distance l′ and thus of T(l′).

The calculation of γg(l) from σ0(l), according to equation (4), 
allows to obtain ε(l, ω) by applying equation (3). However, the per-
mittivity ε(l,ω) in a gap between nanoparticles is in general inho-
mogeneous. This inhomogeneity is accounted for within our QCM 
implementation by describing the gap region by a finite number n 
of regions with homogeneous permittivity εi = εi(li, ω), as sketched 
in Fig. 2b in the case of a dimer. Details of the implementation of 
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Figure 3 | Optical response of a small metallic dimer within quantum and classical models. Comparison of the optical properties of a metallic dimer obtained 
with (a–c) the full-Qm, (d–f) with the QCm and (g–i) with a clasical electromagnetic model (CEm).The dimer consists of two na spheres of radius R~2.17 nm 
(40.96 a.u.) in vacuum, separated by a distance D. The incoming field is a plane wave with electric field E0 polarized along the dimer axis z. The centre of the 
particles are at z =  ± (R + D/2), and D is negative for overlapping spheres. D =  − 2R would correspond to the limit of a single sphere. (a,d,g) show colour plots of 
the extinction spectra σext of the dimers (far-field) as a function of separation distance D. D is expressed in Ångströms, and the extinction cross-section in nm2. 
Zero-separation distance is marked as a vertical dashed line separating the classical non-touching regime and the overlapping regime. Each of these regimes is 
schematically represented by separated and overlapping yellow dots, respectively. The most relevant modes are identified within the three treatments followed: 
bonding dimer plasmon (BDP), bonding quadrupolar plasmon (BQP),  charge transfer plasmon (CTP) and higher-order charge transfer plasmon (CTP′).  
(b,e,h) Far-field spectra from selected distances in (a), (d) and (g), respectively. For clarity, a vertical shift proportional to the separation distance is used. Traces 
in red correspond to separation distances of D =  − 5.29,  − 2.65, 0, 2.65 and 5.29 Å, as indicated on each graph. (c,f,i) Colour plots of the local field enhancement 
|E/E0| (near-field) at the centre of the junction for separations D>0.5 Å. The yellow dots schematically represent the particles in the non-touching regime.
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the QCM within a classical electrodynamical calculations are given 
in the Methods.

QCM versus QM in a small plasmonic dimer. To examine the 
validity of our method, we compare in Fig. 3 the optical extinction 
and local field enhancement spectra obtained from a fully QM and 
from the QCM for a nanoparticle dimer consisting of two small 
metallic spheres of radius R with the incident electric field E0 polar-
ized along the dimer axis z. The QM calculations are performed 
using the TDDFT approach30 with the nanospheres described 
within a spherical jellium model (JM). The simplicity introduced 
by the JM allows a sufficiently large number of valence electrons to 
be included within each nanosphere (Ne = 1,074) so that the plas-
monic modes are well developed31. Within the JM, the ionic cores of 
the atoms are represented with a uniform background charge den-
sity confined within the sphere of radius R. In the JM, the surface  
(jellium edge) is located at half a lattice spacing (0.2–0.3 nm) out-
side the physical surface. We consider Na spheres that are sepa-
rated by a distance D (shortest separation within the junction, 
which in the QM refers to distances between the jellium edges of 
each surface). We also treat slightly overlapping situations (D < 0). 
The properties of a material in the JM are characterized by the 
Wigner–Seitz radius rs. The Na metal is taken here as a prototype 
system for the jellium description with rs = 4 a.u. (1 a.u. = 1 atomic 
unit ~0.529 Å) in the quantum calculations. In the Drude descrip-
tion of the QCM, we use ε = 1, ωp = 5.16 eV and γp = 0.218 eV. This 
choice ensures a proper correspondence between material proper-
ties in both models.

We first describe the results obtained within the full-QM in  
Fig. 3a–c. Analysing the extinction cross-section (σext, far field) 
and local field enhancement (|E/E0|, near-field) in the centre of 
the junction, it is possible to distinguish three regimes showing 
different behaviour as a function of junction width D, which we 
denote as non-contact, tunnelling and contact regimes. In the non- 
contact regime, for distances D5 Å, no significant electron trans-
fer can occur between the nanoparticles and thus this situation can 
be correctly described within the classical electrodynamical treat-
ment2,32,33, as shown in Fig. 3g–i. The dominant, lowest-energy 
bonding dipolar plasmon and the bonding quadrupolar plasmon at 
larger energy redshift as the separation distance becomes smaller. In 
this regime, the value at resonance of the local field enhancement 
increases monotonically as the spheres approach each other. In  
Fig. 3 and in the following figures, we report field enhancements 
in the centre of the junction. The actual location of the largest  
local field enhancement depends slightly on dimer separation 
but the quenching found relative to larger separation distances is  
independent of the evaluation point at the gap.

In the contact regime characterized by a separation of D1 Å, 
the conductance of the junction is large and the dimer behaves as a 
single non-spherical metallic structure. As the overlap increases, the 
modes blueshift towards the values of a single sphere. These modes 
are charge transfer plasmons (CTPs) characterized by an oscilla-
tory current established between the two spheres3,34. The lowest-
energy CTP resonance is at ≈1.5 eV, considerably lower energy than 
the modes in the non-contact regime. The excitation of CTP modes 
that blueshift for increasing overlap is also found within a classical 
treatment3,35,36 (Fig. 3g), but quantum effects considerably modify 
both the width and spectral position of the modes.

The tunnelling regime that lies in-between the contact and 
non-contact situations (1 Å D5 Å) is of special interest in field-
enhanced applications as the field enhancements in narrow plas-
monic gaps are commonly expected to be large. This regime, which 
cannot be correctly modelled using a classical approach, is charac-
terized by intermediate values of the tunnelling current through the 
junction. The electron transfer neutralizes the high charge densi-
ties on the opposite sides of the junction. As a result, the local field 

enhancement obtained within the QM for D4 Å (Fig. 3c) shows 
a considerable decrease in magnitude14,16,20 when compared with 
that obtained from CEM (Fig. 3i). Furthermore, the extinction 
cross-section in the QM shows a continuous and progressive tran-
sition between the modes of the contact and non-contact regimes 
(Fig. 3a), a feature totally missing in the CEM (Fig. 3g).

The results from the QCM (Fig. 3d–f) successfully reproduce the 
optical spectra and near-field obtained using the QM in all three 
separation distance regimes. Notably, the QCM accurately describes 
the mode transition between the contact and non-contact regimes 
and the sharp decrease of local field enhancement for D~4 Å.  
To facilitate the comparison and make it more quantitative, in  
Fig. 3b,e,h we show particular extracts of the extinction spectra at 
different separation distances as calculated with the QM, QCM and 
CEM. Apart from subtle differences, the overall quantitative agree-
ment between the results obtained with QCM and those from full 
TDDFT calculations is excellent.

Quantum plasmonics in large metallic systems. Metallic parti-
cles in plasmonic applications are typically much larger than those  
considered in Fig. 3. The QCM introduced here offers the possi-
bility to include quantum effects in the optical response of large-
sized nanostructures. As an illustration of the power of the method, 
we now consider a dimer formed by two Au spheres of radius 
R = 25 nm. To characterize the material response of Au, a value of 
ε = 1, ωp = 7.9 eV and γp = 0.09 eV are used in equation (1). This 
description does not account for the interband transitions that 
becomes important above 2.0 eV, but provides a good description of 
Au for large wavelengths.
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Figure 4 | Optical response of a large metallic dimer in a classical and 
quantum-corrected treatments. Comparison of the optical properties of 
a large plasmonic dimer treated (a,b) classically (CEm) and (c,d) within 
the QCm for different separation distances D. The metallic spheres, with 
radius R = 25 nm, are described using Drude model parameters appropriate 
for jellium Au at large wavelengths ε = 1, ωp = 7.9 eV and γp = 0.09 eV. 
The incoming field is a plane wave with electric field E0 polarized along 
the dimer axis. The extinction cross-section σext (far-field) is represented 
in (a,c) and the local field enhancement at the central point between the 
spheres (near-field) is represented in (b,d) for separation D>0.5 Å. All 
distances are given in Ångströms, and the cross-section is expressed in 
nm2. Zero-separation distance is marked with a vertical dashed line in both 
(a) and (c). The non-touching regime is depicted schematically by two 
separated yellow dots, whereas the touching regime (negative separation 
distance) is depicted by two overlapping dots.
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Before discussing the QCM results, and to better examine the 
shortcomings of the classical description, we first discuss the results 
obtained from the CEM. The extinction cross-section (far field) 
and the local field enhancement at the centre of the gap (near field) 
shown in Fig. 4a,b follow the trends obtained in Fig. 3g–i, as well as in 
similar systems treated classically2,3,35. As the two particle surfaces 
approach each other and charge concentrates at the metal interfaces 
in the gap region, the Coulomb interaction between the charge den-
sities causes a significant redshift of the different modes. The local 
field enhancement associated with these resonances increases with 
decreasing distance37 and can reach extremely high values. There 
is a sharp transition between the non-contact D>0 and the contact 
D < 0 situations. Upon conductive contact, the modes acquire a CTP 
nature and blueshift as the overlap of the spheres increases. The large 
density of modes after contact is due to the presence of very sharp 
edges in the junction area resulting from the abrupt termination of 
the nanoparticle surfaces38–40.

The QCM results for these large particles are shown in Fig. 4c,d 
for the extinction cross-section and field enhancement. As for the 
small dimer in Fig. 3, it is possible to distinguish the contact, tun-
nelling and non-contact regimes. The non-contact regime extends 
down to somewhat smaller distances (D4 Å.) than for the smaller 
Na spheres. This is due to the higher work function of gold com-
pared with that of Na, and therefore smaller electron tunnelling 
probability (see Fig. 2c). Only in this non-contact regime, where 
tunnelling is negligible, do the QCM results resemble the classical 
results from the CEM.

For separation distances below D~4 Å the differences between 
CEM and QCM are striking. In the QCM contact regime D1 Å, 
there are fewer modes, smaller blueshifts and often significantly 
enhanced broadening. The modes are excited already for small posi-
tive separation distances owing to the possibility of electron tun-
nelling. The transition from non-contact to contact regime is not 
sharp as in CEM, but progressive. While the CEM calculation shows 
a large number of modes, the QCM calculation only shows three 
distinct modes: a narrow CTP mode at low energy and two broader 
CTP modes at larger energies. Only the lowest-energy CTP mode 

has a direct correspondence with the CEM result and, as in Fig. 3, it 
appears at energies considerably lower than the modes in the non-
contact QCM regime. For the higher-order modes, the smoother 
edges of the junction area effectively spread out the induced charge 
density distribution and thus reduce the number of modes. We 
attribute the broadening of the CTP modes to dissipation associated 
with the electron current across the high resistance regions at the 
exterior of the junction.

Another striking difference between the results obtained with 
the CEM and the QCM involves the collapse of the local field 
enhancement at resonance in the QCM with respect to the CEM. 
This collapse occurs at distances smaller than ~3.0 Å, that is, in the 
tunnelling regime. The fields are strongly suppressed near contact 
(Fig. 4d). In contrast, the CEM result in Fig. 4b shows a divergence 
of the enhancement up to contact. Similar results are obtained when 
the enhancement is evaluated at other optimal points of the cen-
tral plane between the particles. The QCM thus opens a venue to 
estimate the suppression of the field enhancements in narrow junc-
tions of large metallic structures, which is an important effect that 
needs to be considered when designing dimer junctions for field-
enhanced applications.

To further emphasize the importance of quantum effects in real-
istic nanostructures, we consider a gold bowtie antenna7,41–43 as an 
example of a relevant plasmonic antenna4,44 currently used in many 
plasmonic applications6. We model the bowtie antenna as two Au 
conical structures, 100 nm long and terminated near the gap with 
a spherical tips of 25 nm radius. Figure 5a,b shows the local field 
enhancement at the centre of the gap. The classical electrodynamic 
calculation (Fig. 5a) predicts very large (~38,000) and unphysical  
field enhancements for sub-nanometric separation D = 0.5 Å.  
However, the QCM model predicts a much weaker enhance-
ment (Fig. 5b), with a maximum of 3,000 at the optimal D~3 Å  
separation.

The spatial maps of the near-field distribution at the gap region 
in Fig. 5c illustrate this substantial difference. The insets show the 
fields in the gap area for resonant excitation for separation D = 1 Å 
for classical electrodynamic calculations, and D = 3 Å for QCM 
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Figure 5 | Local electric field enhancement in a bowtie antenna using CEM and QCM. The nanoantenna is composed of two 100-nm-long cones in vacuum 
with a 25 nm radius spherical termination near the gap. The termination at the far-side from the gap is flat, with radius of curvature of 10 nm at the edges. The 
metal is described by a Drude dielectric function appropriate for jellium Au at large wavelengths, with ε = 1, ωp = 7.9 eV and γp = 0.09 eV, and the structure is 
rotationally symmetric. The incident light is a plane wave polarized along the bowtie axis. (a) CEm and (b) QCm calculations of the local field enhancement 
as a function of separation distance D at the central point in the gap. (c) Local field enhancement from QCm, with the insets showing a close up in a 4×2 nm2 
area including the gap for CEm, wavelength λ = 950 nm and separation D = 1 Å, and QCm, λ = 835 nm and separation D = 3 Å. The corresponding positions are 
marked by green dots in panels (a,b). notice that a logarithmic colour scale is used for the full structure, and a linear contour scale is used in the insets.
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 calculations. The wavelength and distance for the QCM inset cor-
respond approximately to the optimum field enhancement, but the 
fields are still considerably weaker than those values obtained for 
the CEM. Quantum effects thus have a crucial role in reducing the 
plasmon-induced field enhancements and needs to be included 
when designing the structural parameters of the antenna. This find-
ing stresses the importance of including quantum effects in any situ-
ation with closely spaced nanoparticles in plasmonic applications.

Discussion
In summary, we have proposed a straightforward method to incor-
porate quantum-mechanical effects within classical electromagnetic 
simulations of the optical properties of metallic nanostructures. 
With this general method, we have identified and quantified quan-
tum effects determining the optical response of large metallic 
nanostructures with narrow gap junctions and slight overlap. The 
novel QCM approach can be applied generally to metallic nano-
structures of arbitrary shape and size. The validity of the method has 
been corroborated for small systems by comparing their calculated 
optical properties with fully quantum-mechanical results. Different 
experimental techniques such as electromigration in gaps23, nano-
scale positioning in scanning near-field optical microscopy5 and 
light emission in scanning tunnelling microscopy45 allow for exqui-
site control of sub-nanometer distances. These techniques show 
the potential to perform simultaneous optical characterization and 
transport measurements between metallic objects, opening the pos-
sibility to access the quantum effects discussed in this communica-
tion. The QCM approach thus provides the possibility to account for 
quantum effects in a variety of situations of relevance in nanophot-
onic applications, establishing a novel framework to address trans-
port and optical properties in tunnelling configurations, as well as 
to tackle quantum effects in biochemical sensing and in molecular 
spectroscopy involving sub-nanometer scale photonics.

Methods
Quantum-mechanical calculations within TDDFT. To perform the fully  
quantum-mechanical calculations of the linear response of the plasmonic dimer 
and the time evolution of the electron densities and currents induced by the 
external laser pulse incident at the system, we use the Kohn–Sham (KS) scheme 
within TDDFT. The TDDFT is a state-of-the-art ab initio approach for the treat-
ment of both the linear and nonlinear response to optical excitations in molecules 
and clusters18,19. The nanospheres are treated within the spherical JM allowing for 
modelling of a large number of conduction electrons so that the plasmonic modes 
are well developed. The ionic cores of the nanosphere atoms are represented by 
uniform background charge density n rs+

−
= 





4
3

 3
1p  (we use atomic units a0 unless 

otherwise stated). The Wigner–Seitz radius rs is set equal to 4 a0 corresponding to 
the Na metal, which is a prototype system for the jellium description. Each nano-
particle has a closed shell structure and consists of Ne = 1,074 electrons. The cluster 
radius is R Ncl e= 1 3/  rs = 40.96 a0 (2.17 nm), and the Fermi energy of the system is 
at 2.9 eV below the vacuum level.

The time-dependent electron density is given by n(r, t) = Σj∈occ|ψj(r, t)|2 with 
the summation running over all occupied (occ) KS orbitals ψj(r, t). The time evolu-
tion of KS orbitals is given by the time-dependent Scrödinger equation where the 
external laser radiation is treated in the velocity gauge:
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 is the kinetic energy operator, with 

A t( ) being the vector 

potential of the laser field. We assume that the external radiation is polarized 
along the z-direction, that is, along the symmetry axis of the dimer. We use the 
non-retarded approximation, which is fully justified because of the small size of the 
system. The effective KS potential Veff(r,t) is then obtained as:
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where the first term is the Hartree potential VH and the second term is the 
exchange correlation potential. The switching function of the positive background 

(6)(6)

(7)(7)

density F (Rcl − r) varies smoothly from 0 to a constant value 1 at the cluster 
boundary over a short length scale of δ = 0.2 a0. It is normalized in such a way 
so that the charge neutrality of the system is preserved. The smooth termination 
profile and, most importantly, the spill-out of the electron density outside the clus-
ter46,47 result in a dipolar plasmon appearing at ωpl = 2.98 eV, which is somewhat 
lower than the classical value wpl

class
s eV= 1/ = 3.43r , consistent with the results from 

the literature.
The linear properties of the system are obtained from the response to a weak 

impulsive potential in the absence of the external laser field (

A t( ) = 0). To this 

end, the Veff has been set as: Veff = VH + Vxc + ξδ(t), where ξ is a small constant 
(ξ = 0.003 eV). The Fourier time-to-frequency transform of the near-fields and 
the induced dipole moment allows the calculation of the frequency-resolved field 
enhancement as well as the optical absorption cross-section given by σabs =  
(4πω/c)Im{α(ω)} with α(ω) being the dipolar polarizability of the system. We have 
also calculated the induced fields and currents through the junction by applying an 
external 20-fs laser pulse with gaussian spectral profile centered at the frequency  
of interest. Both (impulsive potential and external laser pulse) methods yield 
consistent results. For the small dimer in Fig. 3, the absorption and extinction 
cross-section can be considered to be equal.

The numerical procedure to solve equation (6) is similar to the one used in the 
one-electron wave packet propagation, and it is detailed elsewhere48–51. The initial 
conditions ψj(r, t = 0) correspond to non-perturbed K–S orbitals of the ground-
state system. To avoid complications linked with the change of the number of 
electrons in the computation box, we have not introduced the complex absorbing 
potentials52 at the boundaries of the mesh. Indeed, for the linear response calcula-
tions and at low laser intensities no noticeable ionization occurs.

Tunnelling probability. In the case of two small spheres forming a dimer, the sur-
face curvature may have a role. However, to keep the consistency of the approach 
and to test the applicability in this (extreme) situation, we have described the con-
ductivity of the junction within the planar surface approximation in equation (5). 
The transmission probability T(Ω, l) was calculated using the effective one-electron 
potentials extracted from the density functional studies of the nanosphere dimer 
with separation distance D = l, that is, l corresponds to the separation between 
the closest points of the spheres measured from the jellium edges. This choice 
guarantees that along the interparticle axis z, where the tunnelling current is the 
strongest, the QCM calculations rely on the same tunnelling probability as the one 
implicitly present in the TDDFT calculation, thus allowing for a direct and exact 
comparison of both methods (QCM and QM within TDDFT). In the case of large 
gold particles, we use the jellium description of gold based on the model potentials 
developed earlier53 in the simpler flat-plane junction, and account for the long-
range image-potential interactions in the gold–gold junction28.

Parametrization in the QCM. The validity of the parameterization used to  
describe the tunnelling damping γg(l) can be tested from a microscopic analysis 
of the amplitude and phase of the tunnelling current in the quantum-mechanical 
TDDFT calculations where an external laser pulse illuminates a small metallic 
dimer. In this approach, which, in contrast to the SSTM case, can be applied to 
arbitrarily small separations, the current is calculated directly from the wavefunc-
tions of the electrons. A very good agreement between the full TDDFT calculations 
and our exponential parametrization used in the QCM is obtained both for the 
phase and amplitude of the resistive conductivity (explicit comparison shown in 
Supplementary Fig. S2).

Integration of the QCM in classical calculations. To calculate the optical 
response of a system within the QCM, we need to describe the plasmonic cavity 
by means of a local dielectric function ε(ω) that incorporates the elements of the 
quantum-mechanical electron tunnelling between the nanoparticles. The depend-
ence of the local dielectric function ε(l,ω) on the separation distance l for each 
point in the transverse plane of the gap (x, y) results in an inhomogeneous junction 
where the local dielectric permittivity depends on its distance from the symme-
try axis (ε(l(x,y),ω)). The QCM thus requires to solve Maxwell’s equations in an 
inhomogeneous system.

We use the standard boundary element method27 as the classical solver, but 
the QCM can be equally well integrated in any other numerical solver of Maxwell’s 
equations. A sufficiently fine grid was used that all the results are fully converged. 
Following an approach analogous to the Derjaguin approximation54,55, to solve 
the classical response in the inhomogeneous system within the boundary element 
method, we divide the gap into a sufficient number n of cylindrical shells, as 
schematically illustrated in Fig. 2b, with each ith shell characterized by a dielectric 
permittivity εi = ε(li,ω) where li is the corresponding longitudinal length of the i th 
shell. In our calculations, results were converged typically with use of only eight 
of such shells. This description thus assumes that the key parameters to describe 
the fictitious material are the separation distance li at a given point (xi, yi) of the 
gap and the properties of the tunnelling at that particular point determined by the 
transmission probability Ti and the local damping γi. Any other dependence on  
the local shape of the object is neglected.

To implement the solution of Maxwell’s equations in large metallic systems 
forming a gap, the materials outside the gap are characterized by a classical 
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dielectric function ε0 = 1 for the surrounding vacuum and by a homogeneous and 
isotropic local dielectric function εm given by the Drude model with plasma  
frequency ωp and damping γp to describe the metal in the particles, as depicted 
in Fig. 2b. When solving the Maxwell’s equations to obtain the electrodynamical 
response of the full plasmonic system, the separation between the bulk metals 
and the surrounding media is assumed to be sharp, and a standard local classical 
description is adopted to describe the dielectric properties outside the gap within 
the QCM approach. Nevertheless, a non-local approach14 is also fully compatible 
with the QCM presented here and could be implemented straightforwardly.  
However, for large plasmonic systems and narrow junctions, quantum-mechanical  
electron tunnelling is the major non-local effect that determines the optical 
response of the system, dominating over other non-local effects arising from  
the spill-out of electrons from regions outside the gap that might produce slight 
corrections. We note that the results from the QCM calculations agree very well 
with the results from the QM approach, which fully accounts both for non-locality 
induced by spill-out and by electron tunnelling, and charge transfer effects in  
the system. 

References
1. Xu, H., Aizpurua, J., Käll, M. & Apell, P. Electromagnetic contributions to 

single-molecule sensitivity in surface-enhanced raman scattering. Phys. Rev. E 
62, 4318–4324 (2000).

2. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. 
Opt. Commun. 220, 137–141 (2003).

3. Atay, T., Song, J. - H. & Nurmikko, A. V. Strongly interacting plasmon 
nanoparticle pairs: from dipole-dipole interaction to conductively coupled 
regime. Nano Lett. 4, 1627–1631 (2004).

4. Mühlschlegel, P., Eisler, H. - J., Martin, O. J. F., Hecht, B. & Pohl, D. W. 
Resonant optical antennas. Science 308, 1607–1609 (2005).

5. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold 
nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

6. Kim, S. et al. High-harmonic generation by resonant plasmon field 
enhancement. Nature 453, 757–760 (2008).

7. Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements 
produced by a bowtie nanoantenna. Nat. Photon. 3, 654–657 (2009).

8. Schnell, M. et al. Controlling the near-field oscillations of loaded plasmonic 
nanoantennas. Nat. Photon. 3, 287–291 (2009).

9. Ward, D. R., Hüser, F., Pauly, F., Cuevas, J. C. & Natelson, D. Optical 
rectification and field enhancement in a plasmonic nanogap. Nat. Nano. 5, 
732–736 (2010).

10. Cang, H. et al. Probing the electromagnetic field of a 15-nanometre hotspot by 
single molecule imaging. Nature 469, 385–388 (2011).

11. Lim, D. -K. et al. Highly uniform and reproducible surface-enhanced Raman 
scattering from DNA-tailorable nanoparticles with 1-nm interior gap.  
Nat. Nano. 6, 452–460 (2011).

12. Taylor, R. W. et al. Precise subnanometer plasmonic junctions for sers within 
gold nanoparticle assemblies using cucurbit[n]uril ‘glue’. ACS Nano 5, 
3878–3887 (2011).

13. Larkin, I. A., Stockman, M. I., Achermann, M. & Klimov, V. I. Dipolar emitters 
at nanoscale proximity of metal surfaces: giant enhancement of relaxation in 
microscopic theory. Phys. Rev. B 69, 121403 (2004).

14. García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting 
nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 
(2008).

15. David, C., García de Abajo, F. J. Spatial nonlocality in the optical response of 
metal nanoparticles. J. Phys. Chem. C 115, 19470–19475 (2011).

16. McMahon, J. M., Gray, S. K. & Schatz, G. C. Optical properties of nanowire 
dimers with a spatially nonlocal dielectric function. Nano Lett. 10, 3473–3481 
(2010).

17. Jacob, Z. & Shalaev, V. M. Plasmonics goes quantum. Science 334, 463–464 
(2011).

18. Stratmann, R. E., Scuseria, G. E. & Frisch, M. J. An efficient implementation 
of time-dependent density-functional theory for the calculation of excitation 
energies of large molecules. J. Chem. Phys. 109, 8218–8224 (1998).

19. Marques, M. A. L. & Gross, E. K. U. Time-dependent density functional theory. 
Annu. Rev. Phys. Chem. 55, 427–455 (2004).

20. Zuloaga, J., Prodan, E. & Nordlander, P. Quantum description of the plasmon 
resonances of a nanoparticle dimer. Nano Lett. 9, 887–891 (2009).

21. Mao, L., Li, Z., Wu, B. & Xu, H. Effects of quantum tunneling in metal  
nanogap on surface-enhanced Raman scattering. Appl. Phys. Lett. 94, 243102 
(2009).

22. Song, P., Nordlander, P. & Gao, S. Quantum mechanical study of the coupling 
of plasmon excitations to atomic-scale electron transport. J. Chem. Phys. 134, 
074701 (2011).

23. Ward, D. R. et al. Electromigrated nanoscale gaps for surface-enhanced Raman 
spectroscopy. Nano Lett. 7, 1396–1400 (2007).

24. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 
(1985).

25. Xu, H., Bjerneld, E. J., Käll, M. & Börjesson, L. Spectroscopy of single 
hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 
83, 4357–4360 (1999).

26. Muskens, O. L., Giannini, V., Sánchez-Gil, J. A. & Gómez Rivas, J. Optical 
scattering resonances of single and coupled dimer plasmonic nanoantennas. 
Opt. Express 15, 17736–17746 (2007).

27. García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy 
loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).

28. Pitarke, J. M., Flores, F. & Echenique, P. M. Tunneling spectroscopy:  
surface geometry and interface potential effects. Surface Sci. 234, 1–16  
(1990).

29. Blanco, J. M., Flores, F. & Pérez, R. Stm-theory: image potential, chemistry and 
surface relaxation. Prog. Surface Sci. 81, 403–443 (2006).

30. Quijada, M., Borisov, A. G., Nagy, I., Díez Muiño, R. & Echenique, P. M. Time-
dependent density-functional calculation of the stopping power for protons 
and antiprotons in metals. Phys. Rev. A 75, 042902 (2007).

31. Prodan, E., Nordlander, P. & Halas, N. J. Electronic structure and optical 
properties of gold nanoshells. Nano Lett. 3, 1411–1415 (2003).

32. Tamaru, H., Kuwata, H., Miyazaki, H. T. & Miyano, K. Resonant light scattering 
from individual Ag nanoparticles and particle pairs. Appl. Phys. Lett. 80, 
1826–1828 (2002).

33. Su, K. -H. et al. Interparticle coupling effects on plasmon resonances of 
nanogold particles. Nano Lett. 3, 1087–1090 (2003).

34. Pérez-González, O. et al. Optical spectroscopy of conductive junctions in 
plasmonic cavities. Nano Lett. 10, 3090–3095 (2010).

35. Romero, I., Aizpurua, J., Bryant, G. W. & García de Abajo, F. J. Plasmons 
in nearly touching metallic nanoparticles: singular response in the limit of 
touching dimers. Opt. Express 14, 9988–9999 (2006).

36. Lassiter, J. B. et al. Close encounters between two nanoshells. Nano Lett. 8, 
1212–1218 (2008).

37. Xu, H. et al. Interparticle coupling effects in surface-enhanced Raman 
scattering. Proc. SPIE 4258, 35–42 (2001).

38. García de Abajo, F. J. & Aizpurua, J. Numerical simulation of electron  
energy loss near inhomogeneous dielectrics. Phys. Rev. B 56, 15873–15884 
(1997).

39. Aubry, A. et al. Plasmonic light-harvesting devices over the whole visible 
spectrum. Nano Lett. 10, 2574–2579 (2010).

40. Lei, D. Y., Aubry, A., Maier, S. A. & Pendry, J. B. Broadband nano-focusing of 
light using kissing nanowires. New J. Phys. 12, 093030 (2010).

41. Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. 
Improving the mismatch between light and nanoscale objects with gold bowtie 
nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

42. Farahani, J. N. et al. Bow-tie optical antenna probes for single-emitter scanning 
near-field optical microscopy. Nanotechnology 18, 125506 (2007).

43. Ko, K. D. et al. Nonlinear optical response from arrays of Au bowtie 
nanoantennas. Nano Lett. 11, 61–65 (2011).

44. Esteban, R., Teperik, T. V. & Greffet, J. J. Optical patch antennas for single 
photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 
026802 (2010).

45. Aizpurua, J., Hoffmann, G., Apell, S. P. & Berndt, R. Electromagnetic coupling 
on an atomic scale. Phys. Rev. Lett. 89, 156803 (2002).

46. Ruppin, R. Optical properties of a metal sphere with a diffuse surface. J. Opt. 
Soc. Am. 66, 449–453 (1976).

47. Yannouleas, C., Vigezzi, E. & Broglia, R. A. Evolution of the optical properties 
of alkali-metal microclusters towards the bulk: the matrix random-phase-
approximation description. Phys. Rev. B 47, 9849–9861 (1993).

48. Borisov, A. G., Juaristi, J. I., Díez Muiño, R., Sánchez-Portal, D. &  
Echenique, P. M. Quantum-size effects in the energy loss of charged particles 
interacting with a confined two-dimensional electron gas. Phys. Rev. A 73, 
012901 (2006).

49. Borisov, A., Sánchez-Portal, D., Díez Muiño, R. & Echenique, P. M. Building 
up the screening below the femtosecond scale. Chem. Phys. Lett. 387, 95–100 
(2004).

50. Borisov, A., Gauyacq, J. & Shabanov, S. Wave packet propagation study of the 
charge transfer interaction in the F − -Cu(1 1 1) and -Ag(1 1 1) systems. Surface 
Sci. 487, 243–257 (2001).

51. Chulkov, E. V. et al. Electronic excitations in metals and at metal surfaces. 
Chem. Rev. 106, 4160–4206 (2006).

52. Kosloff, D. & Kosloff, R. A fourier method solution for the time dependent 
Schrödinger equation as a tool in molecular dynamics. J. Comput. Phys. 53, 
35–53 (1983).

53. Chulkov, E., Silkin, V. & Echenique, P. M. Image potential states on metal 
surfaces: binding energies and wave functions. Surface Sci. 437, 330–352 
(1999).

54. Horn, R. G., Israelachvili, J. N. & Perez, E. Forces due to structure in a thin 
liquid crystal film. J. Phys. France 42, 39–52 (1981).

55. Derjaguin, B. Untersuchungen über die reibung und adhäsion iv. Colloid 
Polym. Sci. 69, 155–164 (1934).



ARTICLE   

�

nATuRE CommunICATIons | DoI: 10.1038/ncomms1806

nATuRE CommunICATIons | 3:825 | DoI: 10.1038/ncomms1806 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

Acknowledgements
R.E. and J.A. acknowledge support from the Spanish National project FIS2010-19609-
C02-01, Euroinvestigación project EUI200803816 CUBiHOLE and the European FP7 
project Nanoantenna (FP7-HEALTH-F5-2009-241818-NANOANTENNA).  
P.N. acknowledges support from the Robert A. Welch Foundation under grant C-1222 
and by the office of Naval Research under grant N00244-09-1-0989.

Author contributions
A.G.B. and J.A. ellaborated the idea behind the quantum-corrected model. R.E. 
performed the classical electrodynamical and the QCM calculations, and together  
with A.G.B. and J.A. developed and implemented the quantum-corrected dielectric 
function. P.N. provided criteria to connect the tunnelling probability and damping  
from the tunnelling regime to the touching limit. A.G.B. performed the fully  

quantum-mechanical calculations within the TDDFT. The four authors discussed the 
model and wrote the paper.

Additional information
Supplementary Information accompanies this paper on http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Esteban R. et al. Bridging quantum and classical plasmonics 
with a quantum-corrected model. Nat. Commun. 3:825 doi: 10.1038/ncomms1806 (2012).

License: This work is licensed under a Creative Commons Attribution-NonCommercial-
Share Alike 3.0 Unported License. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/


